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Abstract. Time-series classification is a widely examined data mining task with
various scientific and industrial applications. Recent research in this domain has
shown that the simple nearest-neighbor classifier using Dynamic Time Warping
(DTW) as distance measure performs exceptionally well, in most cases outper-
forming more advanced classification algorithms. Instance selection is a com-
monly applied approach for improving efficiency of nearest-neighbor classifier
with respect to classification time. This approach reduces the size of the train-
ing set by selecting the best representative instances and use only them during
classification of new instances. In this paper, we introduce a novel instance se-
lection method that exploits the hubness phenomenon in time-series data, which
states that some few instances tend to be much more frequently nearest neighbors
compared to the remaining instances. Based on hubness, we propose a frame-
work for score-based instance selection, which is combined with a principled
approach of selecting instances that optimize the coverage of training data. We
discuss the theoretical considerations of casting the instance selection problem as
a graph-coverage problem and analyze the resulting complexity. We experimen-
tally compare the proposed method, denoted as INSIGHT, against FastAWARD,
a state-of-the-art instance selection method for time series. Our results indicate
substantial improvements in terms of classification accuracy and drastic reduction
(orders of magnitude) in execution times.

1 Introduction

Time-series classification is a widely examined data mining task with applications in
various domains, including finance, networking, medicine, astronomy, robotics, bio-
metrics, chemistry and industry [11]. Recent research in this domain has shown that the
simple nearest-neighbor (1-NN) classifier using Dynamic Time Warping (DTW) [18]
as distance measure is “exceptionally hard to beat” [6]. Furthermore, 1-NN classifier is
easy to implement and delivers a simple model together with a human-understandable
explanation in form of an intuitive justification by the most similar train instances.

The efficiency of nearest-neighbor classification can be improved with several meth-
ods, such as indexing [6]. However, for very large time-series data sets, the execution
time for classifying new (unlabeled) time-series can still be affected by the significant
computational requirements posed by the need to calculate DTW distance between the
new time-series and several time-series in the training data set (O(n) in worst case,
where 7 is the size of the training set). Instance selection is a commonly applied ap-
proach for speeding-up nearest-neighbor classification. This approach reduces the size
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of the training set by selecting the best representative instances and use only them dur-
ing classification of new instances. Due to its advantages, instance selection has been
explored for time-series classification [20].

In this paper, we propose a novel instance-selection method that exploits the re-
cently explored concept of hubness [16], which states that some few instances tend to
be much more frequently nearest neighbors than the remaining ones. Based on hub-
ness, we propose a framework for score-based instance selection, which is combined
with a principled approach of selecting instances that optimize the coverage of training
data, in the sense that a time series x covers an other time series y, if y can be classi-
fied correctly using x. The proposed framework not only allows better understanding
of the instance selection problem, but helps to analyze the properties of the proposed
approach from the point of view of coverage maximization. For the above reasons, the
proposed approach is denoted as Instance Selection based on Graph-coverage and Hub-
ness for Time-series INSIGHT). INSIGHT is evaluated experimentally with a collec-
tion of 37 publicly available time series classification data sets and is compared against
FastAWARD [20], a state-of-the-art instance selection method for time series classifi-
cation. We show that INSIGHT substantially outperforms FastAWARD both in terms
of classification accuracy and execution time for performing the selection of instances.

The paper is organized as follows. We begin with reviewing related work in section
2. Section 3 introduces score-based instance selection and the implications of hubness
to score-based instance selection. In section 4, we discuss the complexity of the in-
stance selection problem, and the properties of our approach. Section 5 presents our
experiments followed by our concluding remarks in section 6.

2 Related Work

Attempts to speed up DTW-based nearest neighbor (NN) classification [3] fall into 4
major categories: i) speed-up the calculation of the distance of two time series, ii) reduce
the length of time series, iii) indexing, and iv) instance selection.

Regarding the calculation of the DTW-distance, the major issue is that implement-
ing it in the classic way [18], the comparison of two time series of length / requires the
calculation of the entries of an / x [ matrix using dynamic programming, and therefore
each comparison has a complexity of O(I?). A simple idea is to limit the warping win-
dow size, which eliminates the calculation of most of the entries of the DTW-matrix:
only a small fraction around the diagonal remains. Ratanamahatana and Keogh [17]
showed that such reduction does not negatively influence classification accuracy, in-
stead, it leads to more accurate classification. More advanced scaling techniques include
lower-bounding, like LB_Keogh [10].

Another way to speed-up time series classification is to reduce the length of time
series by aggregating consecutive values into a single number [13], which reduces the
overall length of time series and thus makes their processing faster.

Indexing [4], [7] aims at fast finding the most similar training time series to a given
time series. Due to the “filtering” step that is performed by indexing, the execution
time for classifying new time series can be considerable for large time-series data sets,
since it can be affected by the significant computational requirements posed by the need
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to calculate DTW distance between the new time-series and several time-series in the
training data set (O(n) in worst case, where n is the size of the training set). For this
reason, indexing can be considered complementary to instance selection, since both
these techniques can be applied to improve execution time.

Instance selection (also known as numerosity reduction or prototype selection) aims
at discarding most of the training time series while keeping only the most informative
ones, which are then used to classify unlabeled instances. While instance selection is
well explored for general nearest-neighbor classification, see e.g. [1], [2], [8], [9], [14],
there are just a few works for the case of time series. Xi et al. [20] present the Fast-
AWARD approach and show that it outperforms state-of-the-art, general-purpose in-
stance selection techniques applied for time series.

FastAWARD follows an iterative procedure for discarding time series: in each it-
eration, the rank of all the time series is calculated and the one with lowest rank is
discarded. Thus, each iteration corresponds to a particular number of kept time time
series. Xi et al. argue that the optimal warping window size depends on the number of
kept time series. Therefore, FastAWARD calculates the optimal warping window size
for each number of kept time series.

FastAWARD follows some decisions whose nature can be considered as ad-hoc
(such as the application of an iterative procedure or the use of tie-breaking criteria [20]).
Conversely, INSIGHT follows a more principled approach. In particular, INSIGHT gen-
eralizes FastAWARD by being able to use several formulae for scoring instances. We
will explain that the suitability of such formulae is based on the hubness property that
holds in most time-series data sets. Moreover, we provide insights into the fact that the
iterative procedure of FastAWARD is not a well-formed decision, since its large com-
putation time can be saved by ranking instances only once. Furthermore, we observed
the warping window size to be less crucial, and therefore we simply use a fixed window
size for INSIGHT (that outperforms FastAWARD using adaptive window size).

3 Score functions in INSIGHT

INSIGHT performs instance selection by assigning a score to each instance and select-
ing instances with the highest scores (see Alg. 1). In this section, we examine how to
develop appropriate score functions by exploiting the property of hubness.

3.1 The Hubness Property

In order to develop a score function that selects representative instance for nearest-
neighbor time-series classification, we have to take into account the recently explored
property of hubness [15]. This property states that for data with high (intrinsic) dimen-
sionality, as most of the time-series data!, some objects tend to become nearest neigh-
bors much more frequently than others. In order to express hubness in a more precise
way, for a data set Z we define the k-occurrence of an instance x € &, denoted f/\‘, (),

n case of time series, consecutive values are strongly interdependent, thus instead of the
length of time series, we have to consider the intrinsic dimensionality [16].
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Fig. 1. Distribution of f(l7 (x) for some time series datasets. The horizontal axis correspond to the
values of fé (x), while on the vertical axis we see how many instance have that value.

that is the number of instances of & having x among their k nearest neighbors. With
the term hubness we refer to the phenomenon that the distribution of f%(x) becomes
significantly skewed to the right. We can measure this skewness, denoted by Yfl{{] (x)°

with the standardized third moment of f£(x):
k() — 3
E[(fy(x) Nf;;(x)) ]

T = )
1) 3
! Ot (x)

where £ () and Ok (v are the mean and standard deviation of f/\‘,(x). When ﬂf/\(’ )
is higher than zero, the corresponding distribution is skewed to the right and starts
presenting a long tail.

In the presence of labeled data, we distinguish between good hubness and bad hub-
ness: we say that the instance y is a good (bad) k-nearest neighbor of the instance x
if (i) y is one of the k-nearest neighbors of x, and (ii) both have the same (different)
class labels. This allows us to define good (bad) k-occurrence of a time series x, fé‘; (x)
(and f§ (x) respectively), which is the number of other time series that have x as one
of their good (bad) k-nearest neighbors. For time series, both distributions fé(x) and
f¥(x) are usually skewed, as is exemplified in Figure 1, which depicts the distribution
of f&(x) for some time series data sets (from the collection used in Table 1). As shown,
the distributions have long tails, in which the good hubs occur.

We say that a time series x is a good (bad) hub, if f&(x) (and f&(x) respectively)
is exceptionally large for x. For the nearest neighbor classification of time series, the
skewness of good occurrence is of major importance, because a few time series (i.e.,
the good hubs) are able to correctly classify most of the other time series. Therefore, it
is evident that instance selection should pay special attention to good hubs.

3.2 Score functions based on Hubness

Good 1-occurrence score — In the light of the previous discussion, INSIGHT can use
scores that take the good 1-occurrence of an instance x into account. Thus, a simple
score function that follows directly is the good I-occurrence score fg(x):

fo(x) = f&(x) )
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Henceforth, when there is no ambiguity, we omit the upper index 1.

While x is being a good hub, at the same time it may appear as bad neighbor of
several other instances. Thus, INSIGHT can also consider scores that take bad occur-
rences into account. This leads to scores that relate the good occurrence of an instance
x to either its total occurrence or to its bad occurrence. For simplicity, we focus on the
following relative score, however other variations can be used too:

Relative score fr(x) of a time series x is the fraction of good 1-occurrences and total
occurrences plus one (plus one in the denominator avoids division by zero):

f&(x)
Tr(x) = 72—~ 3
S +1
Xi’s score — Interestingly, f&(x) and f£%(x) allows us to interpret the ranking criterion
of Xi et al. [20], by expressing it as another form of score for relative hubness:

fxi(x) = f&(x) —2f3(x) )

4 Coverage and Instance Selection

Based on scoring functions, such as those described in the previous section, INSIGHT
selects top-ranked instances (see Alg. 1). However, while ranking the instances, it is also
important to examine the interactions between them. For example, suppose that the 1st
top-ranked instance allows correct 1-NN classification of almost the same instances as
the 2nd top-ranked instance. The contribution of the 2nd top-ranked instance is, there-
fore, not important with respect to the overall classification. In this section we describe
the concept of coverage graphs, which helps to examine the aforementioned aspect
of interactions between the selected instances. In Section 4.1 we examine the general
relation between coverage graphs and instance-based learning methods, whereas in Sec-
tion 4.2 we focus on the case of 1-NN time-series classification.

4.1 Coverage graphs for Instance-based Learning Methods

We first define coverage graphs, which in the sequel allow us to cast the instance-
selection problem as a graph-coverage problem:

Definition 1 (Coverage graph). A coverage graph G. = (V,E) is a directed graph,
where each vertex v € Vg, corresponds to a time series of the (labeled) training set. A
directed edge from vertex vy to vertex vy denoted as (vy,vy) € Eg, states that instance 'y
contributes to the correct classification of instance x.

Algorithm 1 INSIGHT

Require: Time-series dataset D, Score Function f, Number of selected instances N
Ensure: Set of selected instances (time series) D’

1: Calculate score function f(x) for all x € D
2: Sort all the time series in D according to their scores f(x)
3: Select the top-ranked N time series and return the set containing them
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We first examine coverage graphs for the general case of instance-based learning
methods, which include the k-NN (k > 1) classifier and its generalizations, such as
adaptive k-NN classification where the number of nearest neighbors k is chosen adap-
tively for each object to be classified [12], [19].2 In this context, the contribution of
an instance y to the correct classification of an instance x refers to the case when y is
among the nearest neighbors of x and they have the same label.

Based on the definition of the coverage graph, we can next define the coverage of a
specific vertex and of set of vertices:

Definition 2 (Coverage of a vertex and of vertex-set). A vertex v covers an other
vertex V' if there is an edge from V' to v; C(v) is the set of all vertices covered by v:
Clv)={V|V #vA(V,v) € Eg,}. Moreover, a set of vertices Sy covers all the vertices
that are covered by at least one vertex v € So: C(So) = Uwyes, C(v)-

Following the common assumption that the distribution of the test (unlabeled) data
is similar to the distribution of the training (labeled) data, the more vertices are covered,
the better prediction for new (unlabeled) data is expected. Therefore, the objective of an
instance-selection algorithm is to have the selected vertex-set S (i.e., selected instances)
covering the entire set of vertices (i.e., the entire training set), i.e., C(S) = V.. This,
however, may not be always possible, such as when there exist vertices that are not
covered by any other vertex. If a vertex v is not covered by any other vertex, this means
that the out-degree of v is zero (there are no edges going from v to other vertices).
Denote the set of such vertices with by VGOF. Then, an ideal instance selection algorithm
should cover all coverable vertices, i.e., for the selected vertices S an ideal instance
selection algorithm should fulfill:

U o) =vs \V (5)
YvesS

In order to achieve the aforementioned objective, the trivial solution is to select all
the instances of the training set, i.e., chose S = V.. This, however is not an effective
instance selection algorithm, as the major aim of discarding less important instances
is not achieved at all. Therefore, the natural requirement regarding the ideal instance
selection algorithm is that it selects the minimal amount of those instances that together
cover all coverable vertices. This way we can cast the instance selection task as a cov-
erage problem:

Instance selection problem (ISP) — We are given a coverage graph G, = (V,E). We
aim at finding a set of vertices S C V, so that: 1) all the coverable vertices are covered
(see Eq. 5), and ii) the size of S is minimal among all those sets that cover all coverable
vertices.

Next we will show that this problem is NP-complete, because it is equivalent to the
set-covering problem (SCP), which is NP-complete [5]. We proceed with recalling the
set-covering problem.

ZPlease notice that in the general case the resulting coverage graph has no regularity regarding
both the in- and out-degrees of the vertices (e.g., in the case of k-NN classifier with adaptive k).
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Set-covering problem (SCP) — ”An instance (X, %) of the set-covering problem con-
sists of a finite set X and a familiy .# of subsets of X, such that every element of X
belongs to at least one subset in .%. (...) We say that a subset F' € .% covers its ele-
ments. The problem is to find a minimum-size subset ¥’ C .% whose members cover all
of X”[5]. Formally: the task is to find ¢ C .%, so that |¢| is minimaland X = |J F
VFe®

Theorem 1. ISP and SCP are equivalent. (See Appendix for the proof.)

4.2 1-NN coverage graphs

In this section, we introduce 1-nearest neighbor (1-NN) coverage graphs which is moti-
vated by the good performance of the 1-NN classifier for time series classification. We
show the optimality of INSIGHT for the case of 1-NN coverage graphs and how the
NP-completeness of the general case (Section 4.1) is alleviated for this special case.
We first define the specialization of the coverage graph based on the 1-NN relation:

Definition 3 (1-NN coverage graph). A I-NN coverage graph, denoted by Giyy is a
coverage graph where (vy,vy) € Eg,, If and only if time series y is the first nearest
neighbor of time series x and the class labels of x and y are equal.

This definition states that an edge points from each vertex v to the nearest neighbor of
v, only if this is a good nearest neighbor (i.e., their labels match). Thus, vertexes are not
connected with their bad nearest neighbors.

From the practical point of view, to account for the fact that the size of selected
instances is defined apriori (e.g., a user-defined parameter), a slightly different version
of the Instance Selection Problem (ISP) is the following:

m-limited Instance Selection Problem (m-ISP) — If we wish to select exactly m la-
beled time series from the training set, then, instead of selecting the minimal amount
of time series that ensure total coverage, we select those m time series that maximize
the coverage. We call this variant m-limited Instance Selection Problem (m-ISP). The
following proposition shows the relation between 1-NN coverage graphs and m-ISP:

Proposition 1. In I-NN coverage graphs, selecting m vertices vy, ..., Vi, that have the
largest covered sets C(vy), ..., C(vy,) leads to the optimal solution of m-ISP.

The validity of this proposition stems from the fact that, in 1-NN coverage graphs,
the out-degree of all vertices is 1. This implies that each vertex is covered by at most
one other vertex, i.e., the covered sets C(v) are mutually disjoint for each v € Vg, -

Proposition 1 describes the optimality of INSIGHT, when the good 1-occurrence
score (Equation 2) is used, since the size of the set C(v;) is the number of vertices having
v; as first good nearest neighbor. It has to be noted that described framework of coverage
graphs can be extended to other scores too, such as relatives scores (Equations 3 or 4).
In such cases, we can additionally model bad neighbors and introduce weights on the
edges of the graph. For example, for the score of Equation 4, the weight of an edge
e is +1, if e denotes a good neighbor, whereas it is —2, if e denotes a bad neighbor.
We can define the coverage score of a vertex v as the sum of weights of the incoming
edges to v and aim to maximize this coverage score. The detailed examination of this
generalization is addressed as future work.
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Fig. 2. Accuracy as function of the number of selected instances (in % of the entire training data)
for some datasets for FastAWARD and INSIGHT.

S Experiments

We experimentally examine the performance of INSIGHT with respect to effectiveness,
i.e., classification accuracy, and efficiency, i.e., execution time required by instance se-
lection. As baseline we use FastAWARD [20].

We used 37 publicly available time series datasets’ [6]. We performed 10-fold-cross
validation. INSIGHT uses f(x) (Eq. 2) as the default score function, however fz(x)
(Eq. 3) and fx;(x) (Eq. 4) are also being examined. The resulting combinations are
denoted as INS- f(x), INS- fg(x) and INS- fx;(x), respectively.

The distance function for the 1-NN classifier is DTW that uses warping windows [17].

In contrast to FastAWARD, which determines the optimal warping window size 7.,
INSIGHT sets the warping-window size to a constant of 5%. (This selection is justified
by the results presented in [17], which show that relatively small window sizes lead to
higher accuracy.) In order to speed-up the calculations, we used the LB_Keogh lower
bounding technique [10] for both INSIGHT and FastAWARD.
Results on Effectiveness — We first compare INSIGHT and FastAWARD in terms
of classification accuracy that results when using the instances selected by these two
methods. Table 1 presents the average accuracy and corresponding standard deviation
for each data set, for the case when the number of selected instances is equal to 10%
of the size of the training set (for INSIGHT, the INS-f(x) variation is used). In the
vast majority of cases, INSIGHT substantially outperforms FastAWARD. In the few
remaining cases, their difference are remarkably small (in the order of the second or
third decimal digit, which are not significant in terms of standard deviations).

We also compared INSIGHT and FastAWARD in terms of the resulting classi-
fication accuracy for varying number of selected instances. Figure 2 illustrates that
INSIGHT compares favorably to FastAWARD. Due to space constraints, we cannot
present such results for all data sets, but analogous conclusion is drawn for all cases of
Table 1 for which INSIGHT outperforms FastAWARD.

Besides the comparison between INSIGHT and FastAward, what is also interesting
is to examine their relative performance compared to using the entire training data (i.e.,
no instance selection is applied). Indicatively, for 17 data sets from Table 1 the accuracy

3For StarLightCurves the calculations have not been completed for Fast AWARD till the sub-
mission, therefore we omit this dataset.
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Table 1. Accuracy =+ standard deviation for INSIGHT and FastAWARD (bold font: winner).

Dataset FastAWARD INS-f;(x) Dataset FastAWARD INS-f(x)

50words 0.526+0.041 0.642+-0.046 Lighting7 0.447+£0.126 0.510+0.082
Adiac 0.348+0.058 0.469+-0.049 MALLAT 0.551£0.098 0.969+0.013
Beef 0.350+0.174 0.333+0.105 Medicallmages 0.642+0.033 0.693+0.049
Car 0.450+0.119 0.608+-0.145 Motes 0.867+0.042 0.908+0.027
CBF 0.9724+0.034 0.9981-0.006 OliveOil 0.6334+0.100 0.717+0.130
Chlorine®  0.53740.023 0.734+0.030 OSULeaf 0.41940.053 0.538+0.057
CinC 0.406+0.089 0.966+0.014 Plane 0.876+0.155 0.981+0.032
Coffee 0.560+£0.309 0.603+0.213 Sony? 0.92440.032 0.976+0.017
Diatom” 0.97240.026 0.966+0.058 SonyII® 0.919+0.015 0.912+0.033
ECG200 0.755+0.113 0.835+0.090 SwedishLeaf  0.683+0.046 0.7560.048
ECGFiveDays0.9374+0.027 0.945+0.020 Symbols 0.957+0.018 0.966+0.016
FaceFour 0.714+0.141 0.894+0.128 SyntheticControD.923+0.068 0.978+0.026
FacesUCR  0.89240.019 0.934+-0.021 Trace 0.780+0.117 0.895+0.072
FISH 0.591+0.082 0.666+-0.085 TwoPatterns ~ 0.407+0.027 0.987+0.007
GunPoint ~ 0.800£0.124 0.935+0.059 TwoLeadECG 0.978+0.013 0.989+0.012
Haptics 0.303+0.068 0.435+0.060 Wafer 0.921£0.012 0.991+0.002
InlineSkate  0.19740.056 0.434-0.077 WordsSynonymd).544+0.058 0.637+0.066
Italy® 0.960+0.020 0.957+0.028 Yoga 0.5504+0.017 0.877+0.021

Lighting2  0.694+0.134 0.670+0.096

@ ChlorineConcentration, ? DiatomSizeReduction, € ItalyPowerDemand,
4 Sony AIBORobotSurface, ¢ Sony AIBORobotSurfacell

resulting from INSIGHT (INS-f¢(x)) is worse by less than 0.05 compared to using the
entire training data. For FastAward this number is 4, which clearly shows that INSIGHT
select more representative instances of the training set than FastAward.

Next, we investigate the reasons for the presented difference between INSIGHT and
FastAward. In Section 3.1, we identified the skewness of good k-occurrence, fé(x), as
a crucial property for instance selection to work properly, since skewness renders good
hubs to become representative instances. In our examination, we found that using the
iterative procedure applied by FastAWARD, this skewness has a decreasing trend from
iteration to iteration. Figure 3 exemplifies this by illustrating the skewness of f& (x) for
two data sets as a function of iterations performed in FastAWARD. (In order to quanti-
tatively measure skewness we use the standardized third moment, see Equation 1.) The
reduction in the skewness of fcl; (x) means that FastAWARD is not able to identify in the
end representative instances, since there are no pronounced good hubs remaining.

To further understand that the reduced effectiveness of FastAWARD stems from
its iterative procedure and not from its score function, fx;(x) (Eq. 4), we compare the
accuracy of all variations of INSIGHT including INS- fx;(x), see Tab. 2. Remarkably,
INS-fxi(x) clearly outperforms FastAWARD for the majority of cases, which verifies
our previous statement. Moreover, the differences between the three variations are not
large, indicating the robustness of INSIGHT with respect to the scoring function.
Results on Efficiency — The computational complexity of INSIGHT depends on the
calculation of the scores of the instances of the training set and on the selection of the
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top-ranked instances. Thus, for the examined score functions, the computational com-
plexity is O(n?), n being the number of training instances, since it is determined by the
calculation of the distance between each pair of training instances. For FastAWARD, its
first step (leave-one-out nearest neighbor classification of the train instances) already
requires O(n?) execution time. However, FastAWARD performs additional computa-
tionally expensive steps, such as determining the best warping-window size and the
iterative procedure for excluding instances. For this reason, INSIGHT is expected to
require reduced execution time compared to FastAWARD. This is verified by the re-
sults presented in Table 3, which shows the execution time needed to perform instance
selection with INSIGHT and FastAWARD. As expected, INSIGHT outperforms Fast-
AWARD drastically. (Regarding the time for classifying new instances, please notice
that both methods perform 1-NN using the same number of selected instances, there-
fore the classification times are equal.)

6 Conclusion and Outlook

We examined the problem of instance selection for speeding-up time-series classifica-
tion. We introduced a principled framework for instance selection based on coverage
graphs and hubness. We proposed INSIGHT, a novel instance selection method for
time series. In our experiments we showed that INSIGHT outperforms FastAWARD, a
state-of-the-art instance selection algorithm for time series.

In our future work, we aim at examining the generalization of coverage graphs for
considering weights on edges. We also plan to extend our approach for other instance-
based learning methods besides 1-NN classifier.
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Appendix: Proof of Theorem 1

We show the equivalence in two steps. First we show that ISP is a subproblem of SCP, i.e. for
each instance of ISP a corresponding instance of SCP can be constructed (and the solution of the
SCP-instances directly gives the solution of the ISP-instance). In the second step we show that
SCP is a subproblem of ISP. The both together imply equivalence.

For each ISP-instance we construct a corresponding SCP-instance: X := Vg, \VGO,. and # =
{C(v)|v € Vi, } We say that vertex v is the seed of the set C(v). The solution of SCP is a set
F C .. The set of seeds of the subsets in F constitute the solution of ISP: § = {v|C(v) € F}

While constructing an ISP-instance for an SCP-instance, we have to be careful, because the
number of subsets in SCP is not limited. Therefore in the coverage graph G, there are two types
of vertices. Each first-type-vertex vy corresponds to one element x € X, and each second-type-
vertex vg correspond to a subset F' € .%. Edges go only from first-type-vertices to second-type-
vertices, thus only first-type-vertices are coverable. There is an edge (vy,vF) from a first-type-
vertex vy to a second-type-vertex vr if and only if the corresponding element of X is included in
the corresponding subset F', i.e. x € F. When the ISP is solved, all the coverable vertices (first-
type-vertices) are covered by a minimal set of vertices S. In this case, S obviously consits only
of second-type-vertices. The solution of the SCP are the subsets corresponding to the vertices
included in S: € = {F|F € & Avp € S}



