

Fusion Methods for

Time-Series Classification

A thesis submitted for the degree of

Doctor of Natural Science (Dr. rer. nat.)

by

Dipl.-Ing. Krisztian Antal Buza

Department of Computer Science

Information Systems and Machine Learning Lab (ISMLL)

UNIVERSITY OF HILDESHEIM

UPDATE 2

(27 AUG 2011)

2011

History

UPDATE 1 (18 AUG 2011) – Updated according to the formatting requests of the publisher

(Peter Lang Verlag), e.g. Abstract and Erklärung are deleted, etc.

UPDATE 2 (27 AUG 2011) – Updated based on native-English proofreading.

Acknowledgments

It is hardly possible to recollect the names of all the persons who directly or
indirectly inspired my research through discussions, conference talks, or in an
other way. Therefore, the acknowledgments below are limited to the persons I
directly cooperated with, who advised me, co-authored papers, with whom I had
focused discussions on the topics related to my thesis.

First of all, I would like to thank to my supervisior, Lars Schmidt-Thieme in
whose group I could spend four fruitful years at the University of Hildesheim. I
acknowledge him for advising my work, for all the research talks, and his comments
and suggestions. I would like to acknowledge Alexandros Nanopoulos for co-
supervising my thesis. I thank him for his comments, remarks and suggestions on
the papers we wrote.

I would like to acknowledge all my co-authors, especially Tomas Horváth for
his remarks on the GRAMOFON framework. I would like to thank to Leandro
Balby Marinho with whom we worked together on ontology induction, Philipp
Cimiano and Sebastian Blohm with whom we explored relation extraction from
natural language texts, Lucas Drumond and Timo Reuter furthermore Claudio
Guiliano and Lorenza Romano with whom we developed clustering methods for
images (according to events) and web pages (according to persons) respectively.

I would like to thank to Christine Preisach and Andre Busche for the beautiful
years we worked together on the X-Media project, in which we explored aeroplane
vibration analysis.

I would like to thank to Julia Koller for the discussions about electrocardio-
graph (ECG) signals and their medical applications.

Last, but not least, I would like to acknowledge Jessica Faruque for careful
proof-reading and helping me with the “secrets” of the English language.

Finally, I thank to all the persons who indirectly inspired my work.

I acknowledge Prof. Eamonn Keogh for making time-series classification datasets
available. I acknowledge Netflix for the datasets of the RMSE task of the Ensem-
bling Challenge of the Australian Data Mining Conference 2009. I also acknowl-
edge the UCI Machine Learning repository for the usage of their datasets [69].

Contents

I Preliminaries 1

1 Introduction 3

1.1 Outline . 4

2 Background 7

2.1 Basic Definitions and Problem Formulation 7

2.1.1 Variants of Time-Series Classification 9

2.1.2 Time-Series Classification and Vector Classification 10

2.2 Time Series Representations . 10

2.2.1 Discrete Fourier Transform 11

2.2.2 Discrete Wavelet Transform 12

2.2.3 Symbolic Aggregate Approximation 13

2.3 Distance Measures . 14

2.3.1 Euclidean Distance . 16

2.3.2 Dynamic Time Warping 16

2.3.3 Edit Distance on Real Sequences 24

2.3.4 Edit Distance with Real Penalty 25

2.3.5 Distance based on Longest Common Subsequences 27

2.3.6 DISSIM . 28

2.4 Time-Series Classification Algorithms 29

2.4.1 Local adaptations of the k-NN classifier 29

2.4.2 Speeding-up time-series classification 31

2.4.3 Hubs in Time Series Data 32

2.4.4 Classification based on Feature Extraction 35

2.5 Fusion Methods . 38

2.6 Evaluation of time series classifiers 40

2.7 Time-Series Classification Tasks and Benchmark Data 41

2.7.1 Analysis of Electrocardiograph Signals 41

2.7.2 Shape Recognition in Images 45

2.8 Summary . 45

viii Contents

II Fusion Methods for Time-Series Classification 47

3 Individual Quality Estimation 49
3.1 Motivating Example . 50
3.2 Outline of IQ Estimation . 51

3.2.1 IQ-MAX . 52
3.2.2 IQ-WV . 53

3.3 IQ Estimation for Time-Series Classification 53
3.3.1 Efficient Implementation 55

3.4 Experimental Evaluation . 56
3.4.1 Experimental Results . 58
3.4.2 Execution Time . 59
3.4.3 Meta model’s quality . 63

3.5 IQ-Reg: IQ Estimation for Regression 64
3.5.1 Experiments with IQ-Reg 65

4 Instance Selection 67
4.1 Score functions based on Hubness 68
4.2 Coverage and Instance Selection 69

4.2.1 Coverage graphs for Instance-based Learning 69
4.2.2 1-NN coverage graphs . 72
4.2.3 Coverage Graph for Relative Scores 73

4.3 Experiments . 73
4.3.1 Results on Effectiveness 74
4.3.2 Results on Efficiency . 77

5 Fusion of Distance Measures 79
5.1 Aspects of Similarity Captured by Various Time Series Distance

Measures . 79
5.2 Fusion of Distance Measures . 80
5.3 Experiments . 82

6 The GRAMOFON Ensemble Framework 85
6.1 Context and Notations . 87
6.2 General Model-Selection Framework 89

6.2.1 Model-Networks . 89
6.2.2 Ensemble framework . 91

6.3 Ensemble Techniques . 92
6.3.1 Basic . 93
6.3.2 BasicFast . 93
6.3.3 RegOptMST . 94
6.3.4 NetworkMST . 94
6.3.5 Analysis . 95

Contents ix

6.4 Experimental evaluation . 96
6.4.1 Experiments on the AusDM Datasets 96
6.4.2 Experiments on UCI Datasets 98

6.5 GRAMOFON for Time-Series classification and regression 100
6.5.1 Experiments on Time Series Data 100

7 Motifs for Time-Series Classification 103
7.1 Generalized Semi-Contiguous Motifs 103

7.1.1 Definitions . 103
7.1.2 Anti-monotonicity Constraints 104
7.1.3 Extensions of Apriori . 105
7.1.4 Extensions of Eclat . 108

7.2 Experiments . 112

III Conclusions and Outlook 115

8 Outlook: Some Related Applications 117
8.1 Classification of Electrocardiograph Signals 117
8.2 Extraction of Semantic Relations 118
8.3 Web People Search . 119
8.4 Clustering Images According to Events 120
8.5 Ontology induction . 120
8.6 Analysis of Aeroplane Engine Vibration 121

9 Conclusions and future work 123
9.1 Extensions of the proposed techniques 123
9.2 Some Open Questions . 124
9.3 Conclusions . 125

Notations

For better readability the notations used throughout this book and the ones used
in single chapters are listed separately.

Notations and abbreviations used throughout this book

x a time series (instance of a dataset),
or a segment of a time series

i, j index variables
n,m variables used to denote the size (length) of sets (sequences)
x[i] the i-th value of the time series x
xi the i-th time series in a dataset of time series
c(x) class label of time series x
D a labeled dataset (containing time series)
|D| Size of the data set D (number of instances contained in D)
f classifier
mod remainder of the division (modulo), e.g. 12 mod 5 = 2
d(x1, x2) Distance of two time series x1 and x2.
dEU(x1, x2) Euclidean distance of two time series x1 and x2.

(See Section 2.3.1)
dFEU(x1, x2) Euclidean distance of Fourier-coefficients of two

time series x1 and x2. (See Section 2.3.1)
dWEU(x1, x2) Euclidean distance of the Haar Wavelet Transform of

two time series x1 and x2. (See Section 2.3.1)
DTW Dynamic Time Warping
dDTW (x1, x2) Dynamic Time Warping distance of two

time series x1 and x2. (See Section 2.3.2)
dDTW

0 (i, j) Entries of the DTW-matrix (See Section 2.3.2)
cDTW
el Cost of elongation in the DTW algorithm (See Section 2.3.2)
cDTW
tr Cost of transformation (mathing) in the DTW algorithm

(See Section 2.3.2)
wDTW Warping window size in the DTW algorithm

(See Section 2.3.2)

xii Notations

brc Floor(r) – The largest integer number r0 so that r0 ≤ r
(r is a real number)

dre Ceil(r) – The smallest integer number r0 so that r0 ≥ r
(r is a real number)

gkN(x) Number of time series that have x among their
k nearest neighbors

gkG(x) Number of time series having x among their
good k nearest neighbors

gkB(x) Number of time series having x among their
bad k nearest neighbors

µg(x) Mean of g(x)
σg(x) Standard deviation of g(x)
Sg(x) Skewness of g(x)
nm Maximal number of allowed gaps in semi-continuous motifs
dm Maximal allowed length of a gaps in semi-continuous motifs

Notations used in Chapter 2

T set of all considered time series
cFj (x) the j-th Fourier-coefficient of the time series x (j ∈ Z)
I Imaginary unit:

√
−1

DFT (x) Discrete Fourier Transform of x (See Section 2.2.1)
FFT (x) Fast Fourier Transform of x (See Section 2.2.1)
DWT (x) Discrete Wavelet Transform of x (See Section 2.2.2)
HWT (x) Haar Wavelet Transform of x (See Section 2.2.2)
SAX(x) Symbolic Aggregate Approximation of x (See Section 2.2.3)
εEDR Similarity threshold for EDR (See Section 2.3.3
lm Predefined minimal length of motifs of interest

(see Section 2.4.4)

Notations used in Chapter 3

q(x, k) Quality score associated with a time series x and
k-NN classifier

M∗
i,j Meta models for individual quality estimation

p Noise ratio

Notations used in Chapter 4

N Number of selected instances
Gc Coverage graph
VG Set of vertices of the graph G
EG Set of edges of the graph G

Notations xiii

Notations used in Chapter 4 (cont.)

v Vertex of the coverage graph
C(v), C(S) Coverage of a vertex v and of a vertex-set S respectively
X,F X is a finite set, F is a family of subsets of X

(Set-Coverage Problem in Section 4.2.1)
w Weight of an edge

(in a weighted coverage graph in Section 4.2.3)

Notations used in Chapter 5

M Regression model that is used to construct the fused
distance measure

I(x1, x2) Indicator that shows whether two time series belong
to the same class

Notations used in Chapter 6

y(x) Numeric label of the instance x
m(x) Model (regressor) that estimates the numeric label of

instance (time series) x
m.predict(D) vector containing the predictions of m

for all the instances of dataset D
D.labels vector containing the labels of all the

instances of dataset D
M a set of models (regressors)
{pi} matrix consisting of column vectors

pi = mi.predict(D) for all mi ∈M
m∗(x) Meta-model (meta-regressor) that estimates the numeric

label of instance (time series) x
N number of considered models that is equal to

the number of nodes in the model-network
n, ε hyperparametes of GRAMOFON (see section 6.2.2)
C complexity constant of a support vector machine (SVM)
e exponent of the polynomial kernel used in an SVM
γ hyperparameter of an RBF kernel used in an SVM

Notations used in Chapter 7

DSAX Converted time series dataset (time series are converted to
a sequence of discrete symbols with SAX)

Σ Set of symbols
TΣ Taxonomic relation of the symbols in Σ
s Mimimum support threshold

Part I

Preliminaries

Chapter 1

Introduction

Time-series classification is the theoretical background of many recognition tasks
such as signature verification [77], [118], speech and handwriting recognition [124],
[131], [153]. While, for example, we are writing a character on the touch screen of
a mobile telephone or PDA, the device records the pen tip’s position in consecutive
moments of time, e.g. 100 times within a second. The pen tip’s position can be
described quantitatively by the horizontal and vertical coordinates of the point
where the screen is currently touched. As the position is recorded in consecutive
moments of time, as result, a sequence of measured numerical values (horizontal
and vertical coordinates) is produced. Based on this information, the device is
able to automatically recognize which character was written by the user.

Similar recognition tasks appear in numerous applications in various domains
such as finance, medicine, biometrics, chemistry, astronomy, robotics, networking
and industry1 [95]. In medicine, for example, time-series classification can be ap-
plied in the analysis of images, brainwaves (EEG) and electrocardiograph (ECG)
signals [21], [96], [116], [125].

The problem of time-series classification is challenging for many reasons. Two
crucial requirements of successful classification are accuracy and recognition time.
While in some of the above applications, one of these two basic criteria might be
more important than the other – for example, in the case of person identification,
accuracy might be more important than recognition time – in general, we require
algorithms that fulfill both of them. Irregularities in the electrocardiograph signals
should be recognized accurately before serious, irreversible deteriorations of the
patient’s health status; similarly, possible damages of an aircraft engine [35] should
be found before the engine becomes unusable.

The above requirements, accuracy and recognition time, are often contradic-
tory: the more accurate the recognition, usually, the longer the execution time.
Keeping this well-known trade-off between quality and execution time in mind, I
address both of these challenges in this work by aiming at speeding-up recognition

1 Section 2.7 surveys some of the most prominent tasks.

4 Chapter 1: Introduction

algorithms with minimal loss of accuracy and making recognition more accurate
at tolerable overhead in execution time.

As a single model is often unable to perform recognition within the expected
amount of time at the required accuracy, fusion (or hybridization) of various
methods is widely used. Fusion, as shown in the chapters of Part II, can be
achieved at various levels. In Chapter 3, I introduce a layer of meta models for
quality estimation of recognition algorithms and use this estimation to make the
recognition more accurate. In Chapter 6, I develop the GRAMOFON ensemble
framework that utilizes error compensation in context of the stacking schema. In
Chapter 4 I discuss instance selection that can be used as preprocessing technique
in order to speed up the recognition and propose the selection of instances based
on the hubness property. I propose fusion of distance measures in Chapter 5,
while in Chapter 7, I extend frequent pattern mining algorithms and show how
they can be incorporated in well-established recognition algorithms, classifiers.

While fusion is common for all the developed algorithms of the previously
mentioned chapters, the contribution of this work is not limited to hybridization.
For example, the frameworks that I introduce (individualized quality estimation
and GRAMOFON) are interesting on their own, as well as the algorithms that
I develop within these frameworks. Also the proof of NP-completeness of the
instance selection problem is a result that is expected to have impact beyond
the scope of fusion methods. A systematic overview of these contributions is
provided below.

1.1 Outline

This book summarizes the results of my recent research. It is organized as follows.
Chapter 2 defines the time-series classification problem, gives an overview of the
concepts, techniques and algorithms of the literature that are most relevant from
our point of view, and describes some of the real-life recognition tasks related
to time-series classification. The aforementioned sections of Part II summarize
major results of my research. Most of them were published in research papers
at international scientific conferences [28], [29], [30], [31], [32], [33], [34], [36].
Some parts of the work were published in Neurocomputing [27] and as a book
chapter [16]. Part III rounds off this book: before drawing conclusions, I discuss
possible extensions of the proposed techniques, as well as some open questions.
Next, the chapters of Part II are outlined.

Chapter 3: Individual Quality (IQ) Estimation

In Chapter 3, I develop the framework of individual quality (IQ) estimation [32].
After describing this in more detail, I deploy two new recognition algorithms, IQ-
MAX and IQ-WV, within this framework. An earlier version of IQ estimation,

1.1 Outline 5

called individualized error prediction, already achieved attention in the scientific
community by winning the best-paper award of IEEE’s renowned conference
on Computational Science and Engineering [29]. As I point out, IQ estimation
is not limited to time-series classification,therefore, I adapted and applied it for
conventional vector classification tasks as well [33].

Chapter 4: INSIGHT: Instance Selection based on Graph-coverage and
Hubness for Time series

In Chapter 4, I propose Instance Selection based on Graph-coverage and Hubness
for Time-series [31], [34]. Instance selection is a technique that is often used in
order to speed up time-series classification. The analysis focuses on the relation of
instance selection to the recently observed phenomenon of hubness, which states
that a few data instances tend to be frequently nearest neighbors of many other
instances. In order to model the problem, I introduce the concept of coverage
graphs and I prove that the instance selection problem is NP-hard in general. I
point out, however, that for a special case which is most relevant for time-series
classification, the problem can be solved computationally simply (in polynomial
time). Therefore, justified by this discussion, I propose INSIGHT.

Chapter 5: Fusion of Time Series Distance Measures

Recent research [56] suggests that distance measures play crucial role in time-series
classification. Different distance measures capture, however, different aspects of
similarity: as the relevant aspects of similarity vary from application to appli-
cation, none of them can be considered as the generally best distance measure.
Therefore, I propose a framework for combining various distance measures, in
order to capture relevant aspects of similarity. The fusion algorithm I propose
in Chapter 5 produces a fused distance measure which adapts to the underlying
application [30].

Chapter 6: GRAMOFON: General Model-selection Framework based
on Networks

I propose the General Model-selection Framework based on Networks (GRAMO-
FON) in Chapter 6. Whenever many recognition algorithms are available for the
same task, in order to achieve accurate recognition, instead of selecting the best
one, usually it is worth combining different algorithms according to an ensemble
schema. I observed, however, that combining all the algorithms (or the individ-
ually best ones) may be a sub-optimal choice. This observation motivated the
development of the GRAMOFON framework, which supports the deployment of
algorithms that select a subset of all the available algorithms in a more sophis-
ticated way, in order to make the recognition more accurate. In Chapter 6, I

6 Chapter 1: Introduction

propose GRAMOFON and four model selection algorithms, namely Basic, Ba-
sicFast, RegOptMST, GraphOptMST, that I deployed within the GRAMOFON
framework [27], [28].

Chapter 7: Generalized Sequential Pattern Mining Algorithms

I generalized frequent pattern mining algorithms, ECLAT and Christian Borgelt’s
doubly recursive counting schema [19], [20] for the case of taxonomic sequential
patterns [163] and used these patterns for time-series classification (Chapter 7).
In joint work with Sebastian Blohm we used these algorithms for information
extraction from the world wide web [16], [15].

Chapter 8: Further Related Applications

Together with my collaborators, Philipp Cimiano, Sebastian Blohm, Leandro
Balby Marinho, Lucas Drumond, Timo Reuter, Lorenza Romano and Claudio
Guiliano we used techniques similar to the proposed ones in various applications
related to the world wide web. Together with Christine Preisach, Andre Busche,
W.H. Leong, and Mark Walters, we aimed at detecting patterns in aeroplane en-
gine vibration data. This is a crucial recognition task related to time series. These
applications are outlined in Chapter 8.

In order to assist reproducibility and justify the relevance of the above methodical
innovations in real-world applications, I performed experiments on publicly avail-
able real-world data from various domains. (I introduce these datasets and the
corresponding recognition tasks in Section 2.7.) In most of the cases, I performed
10-fold-cross-validation and statistical significance tests in order to justify that
my algorithms outperform their competitors. In total, the experiments presented
here correspond to several years of CPU-time.2

2 I performed these experiments in parallel on several CPUs.

Chapter 2

Background

2.1 Basic Definitions and Problem Formulation

As mentioned in the Introduction, time-series classification is the common theoret-
ical background of various recognition tasks. Keeping this in mind, as is common
in machine learning, I will define the problem in a generic way.

Definition 1. A time series x of length l, is a sequence of real numeric values:

x = (x[0], ..., x[l − 1]) (2.1)

where x[j] denotes the j-th element of the time series x, ∀j : x[j] ∈ R, 0 ≤ j < l,
thus: x ∈ Rn.

Let T denote the set of all considered time series, T = ∪∞l=0Rl. Some subsets
of T are given, these subsets are called classes, and they are denoted as C1, ..., Cm.
Each time series xi ∈ T belongs to exactly one of the classes:

∀xi ∈ T : ((xi ∈ C1) ∨ ... ∨ (xi ∈ Cm)) ∧ (xi ∈ Cj ⇒ xi 6∈ Ck, k 6= j) (2.2)

For some time series xi ∈ T , however, it is unknown to which class they belong.

Definition 2. A labeled dataset D = {(xi, c(i))}ni=1, D ⊂ (T ×{1, ...,m}) consists
of n time series together with their class labels c(i).

In the above definition, for a time series xi, the notation c(i) stands for the
class to which xi belongs, e.g. c(i) = 2⇔ xi ∈ C2.

Time series in a labeled dataset are called labeled time series. Other time
series, for which their classes are unknown, are called unlabeled time series. The
time series in a (labeled) dataset D are also called instances of D.

The time-series classification problem is the task of constructing a model that
is able to assign new, unlabeled time series to their classes. The formal definition
of this problem is developed in the next steps, I begin with the definition of a
classifier :

8 Chapter 2: Background

Definition 3. A classifier is a function f that maps time series to class labels is:

f : T → {1, ...,m} (2.3)

As classes are often associated with events in the future, the output of the classifier,
f(x), is often called prediction of the classifier for time series x. Suppose, for
example, that patients are described by their medical time series. Some of theses
patients will quickly recover (they belong to class 1), while others will not (they
belong to class 2).

We say, a time series x is correctly classified by a classifier f , if f(x), the output
of the classifier, equals to the true class label of x.

Definition 4. Given a classifier f and a labeled dataset Dtest, the accuracy of f
is the portion of time series in Dtest that are correctly classified:

accuracy(f) =

∣∣∣{∀(xi, c(i)) ∈ Dtest|f(xi) = c(i)}
∣∣∣

|Dtest|
(2.4)

The dataset Dtest is called test data.

Definition 5. Given a labeled dataset Dtrain, called training data, and a set of
classifiers, i.e. a set of functions F that map time series to classes1:

∀f ∈ F : f : T → {1, ...,m}, (2.5)

the time-series classification problem is defined as the following task: using Dtrain,
find the function f ∈ F that has maximal accuracy on an unknown test dataset
Dtest.

This definition is a conceptual description of the problem: according to this
definition the test dataset is unknown when searching for the right classifier, there-
fore, one cannot directly find the optimal classifier based on the above definition.

In real-world applications, a recognition model is constructed by finding an
appropriate classifier function using the given labeled dataset (training data) and
then (possibly days, week or years later) the classifier is applied for new, unlabeled
time series. While searching for the appropriate classifier function, we aim at
finding that f which is expected to have the highest accuracy when classifying
new time series. Estimation of this expected performance is challenging because
the new, unlabeled time series are usually unknown during construction of the
classifier.

In experimental settings, usually, the realistic scenario is simulated by using
two disjoint labeled datasets Dtrain and Dtest: while searching for the classifier-
function, only the time series and labels in Dtrain are accessed (this way Dtest is

1 Note that the cardinality of F is not necessarily finite.

2.1 Basic Definitions and Problem Formulation 9

simulated to be unknown) and then, in a proceeding evaluation step, the found
classifier is applied for the time series of Dtest and the output of the classifier is
compared to the true labels of Dtest. A more detailed description of the experi-
mental protocol used in this book can be found in Section 2.6.

The process of constructing the recognition model by finding an appropriate
function f out of the set of potential functions F is called training of the classifier.

The above definition of the time-series classification problem is generic, to al-
low for various recognition tasks depending on the semantics of the classes. For
example, in case of handwriting recognition, the classes may correspond to the
letters of the alphabet (one class for each letter), while in case of the analysis
of electrocardiograph (ECG) signals, the classes may correspond to different dis-
eases. In Section 2.7, I give an overview of the datasets and corresponding tasks
considered in this book.

Instead of a single class label, advanced classifiers output a likelihood (or
probability) for each class. Based on this information we can automatically assign
an unlabeled time series to the most probable class, or we can use these class
probabilities when fusing several classifiers.

2.1.1 Variants of Time-Series Classification

In the literature, there are some slightly different variants of the above-defined
time-series classification problem. One of them is the early classification of time
series that aims at determining the class as early as possible, i.e., without observing
the entire time series. Therefore, in this case, the classifier only uses a prefix of the
entire time series [195]. In case of multi-dimensional time series, such as recordings
of brain waves (EEG), the elements of the time series are not single numbers, but
vectors of numbers [72], [184]. When the time series are sampled unevenly and/or
they contain missing values, interpolation techniques can be applied [45]. While
the above definition of accuracy only focuses on whether or not the classification
is correct, in many applications, different types of errors (Type I and Type II
error) should be distinguished: e.g. in a medical recognition system, the case
when (i) a healthy patient is recognized as an ill one (and consequently the doctor
unnecessarily examines the patient), is substantially different from the case when
(ii) an ill patient is recognized as healthy (and consequently the patient does not
receive a treatment and her/his health status deteriorates).

Some works focus on domain-specific problems related to time-series classifica-
tion, e.g. Botsch [22] developed recognition models for detection and categoriza-
tion of car crashes. In such applications, time-series classification often needs to
be combined with other techniques. Botsch, for example, distinguishes between
two subproblems which can be interpreted as (i) segmentation of time series and
(ii) classification of the segments. In this safety-critical application, besides ac-
curacy, interpretability is crucial and in cases when the classifier is not sure, it is

10 Chapter 2: Background

allowed to reject the input data, i.e., instead of an incorrect decision, the classifier
does not output any class label in some cases.

2.1.2 Time-Series Classification and Vector Classification

Conventional classification problems, from the formal point of view, are similar to
time-series classification: in both cases, each object to be classified is described
by a vector of real numbers. In case of conventional classification problems, these
vectors have the same length, while the length may vary in case of time-series
classification. Regarding the semantics of the data, however, differences are more
crucial and they substantially affect recognition algorithms: the elements of a time
series correspond to measured values of the same feature in consecutive moments
of time, and therefore these values are highly inter-correlated, in contrast, in
case of conventional classification, elements of the vectors correspond to measured
values of different features, and, in general, nothing can be assumed about their
correlation. In case of conventional classification, the k-th value of the vector
always corresponds to the same feature, while in case of time-series classification,
a characteristic pattern may appear at (slightly) different positions of the time
series, because it may be shifted and/or elongated.

In this book, in order to distinguish from time-series classification, I refer to
conventional classification as vector classification.

2.2 Time Series Representations

One of the first questions one has to answer before constructing recognition mod-
els, or classifiers, is: what is the best way to represent time series data? In terms of
Definition 1, the most natural representation is simply listing the numeric values
of the time series. Whenever necessary for disambiguity, throughout this thesis,
this representation is referred to as raw time series. Representing the data as
raw time series is not necessarily the most suitable choice when we aim at solving
the classification problem. In many tasks, specific properties of time series are
relevant, such as frequency (e.g. in speech recognition) or presence of a particular
pattern (if a disease have to be detected based on the electrocardiograph signal
of a patient).

Due to the heterogeneous nature of the applications of time-series classification,
various representations have been introduced ranging from Fourier and Wavelet
Transforms [39], [65], [121], [193] over piecewise approximations [74], [94], [97],
[111], [158], [125], [199] to Singular Value Decomposition [107]. I refer to [111]
for an overview and categorization of time series representation. The following
sections focus only on the ones that are used in this book later on.

2.2 Time Series Representations 11

2.2.1 Discrete Fourier Transform

Intuitively speaking, the Fourier Transformation decomposes a signal, i.e. time
series in our case, as a sum of sinusoidal signals. While doing so, it captures which
frequencies are present in the time series. Time series, defined as a sequence of
numeric values (see Definition 1), are time-discrete signals, therefore, for this
book, Discrete Fourier Transformation (DFT) is relevant.

DFT maps the time series x = (x[0], ..., x[l − 1]) to l complex coefficients:
cF0 , . . . , c

F
l−1. These coefficients are defined as

cFj (x) =
1√
l

l−1∑
i=0

x[i]e−
2πIji
l , 0 ≤ j ≤ l − 1 (2.6)

where I =
√
−1 (imaginary unit), e ≈ 2.718, π ≈ 3.142 and x[i] denotes the i-th

numeric value of the time series x. The Discrete Fourier Transform of x is defined
as the sequence of all its Fourier-coefficients cFj :

DFT (x) = (cF0 (x), ..., cFl−1(x)) (2.7)

Although, in principle, one can calculate the Discrete Fourier Transformation
of a time series according to Equation 2.6, there is a computationally more efficient
method for this, called Fast Fourier Transformation (FFT). The FFT-algorithm
is based on the property that the DFT of a discrete signal x = (x[0], x[1], ..., x[l−
2], x[l−1]) of even length (i.e. l = 2k, k ∈ Z+) can be decomposed2 as the function
of the DFTs of the even-positioned and odd-positioned values of x:

DFT (x[0], x[1], ..., x[l − 2], x[l − 1])) = (2.8)

h
(
DFT ((x[0], x[2], ..., x[l − 2])), DFT ((x[1], x[3], ..., x[l − 1]))

)
The above decomposition only works for signals of even length. FFT applies

this decomposition recursively, as long as it is possible (as long as the signal’s
length is even). Therefore, FFT is most efficient for signals which have a length
of 2k, k ∈ Z+. For such signals FFT works in O(l log l) time.

Algorithm 1 shows the pseudocode of FFT, while Figure 2.1 shows two ex-
amples of time series and their DFTs. In Figure 2.1 continuous lines denote the
real parts of the complex numbers, while dashed lines denote the imaginary parts.
The signal in the upper left is a simple sinusoidal signal, therefore its Fourier
Transform (upper right) is zero everywhere, except the positions corresponding
to the frequency of this sinusoidal signal. The signal in the bottom left con-
sists of a dominant low-frequency component, a high-frequency component and
some random noise. The low- and high-frequency components can be seen in its
Fourier-Transform (bottom right). The peaks at the beginning and end corre-
spond to low-frequency components, while the peaks at 16 and 48 correspond to
the high-frequency components.

2 For more details see also http://www.ismll.uni-hildesheim.de/lehre/ip-08w/script/
imageanalysis-2up-04-fourier-transform.pdf

12 Chapter 2: Background

Figure 2.1: Real-valued time series (time-discrete signals) of length 64 (in the left)
and their Discrete Fourier Transforms (in the right)

2.2.2 Discrete Wavelet Transform

By decomposing the time series as ”sum” of sinusoidal signals, Fourier Transfor-
mation of a time series captures global periodic behavior. Wavelets, in contrast,
aim at reflecting both local and global character of a time series [81].

Out of many variants of Discrete Wavelet Transform, in this book, I use only
one, the so called Haar Wavelet Transform3. While performing this transforma-
tion, one produces a lower-resolution representation of a time series x by averaging
its consecutive values. In order to keep all the information, detail-coefficients are
also stored (that allow to restore the original time series). The procedure is re-
peated recursively as long as the length of the time series is longer than two. This
is shown in Algorithm 2, where array a denotes the lower-resolution representation
of the time series x, while c denotes the array containing the detail-coefficients.4

For a detailed description, discussion and other variants of wavelets, the interested
Reader is referred to [51], [115].

3 See http://www.ismll.uni-hildesheim.de/lehre/ip-08w/script/
imageanalysis-2up-05-wavelets.pdf

4 Algorithm 2 works for time series that have a length of a power of two. If the length of
time series is different from a power of two, a simple and commonly-used technique is to
add some dummy values (e.g. zeros) at the end of the time series in order to ensure that
its length is a power of two.

2.2 Time Series Representations 13

Algorithm 1 Fast Fourier Transformation (FFT)
(Based on the source in Footnote 2.)

Require: Time Series x = (x[0], x[1], ..., x[l − 2], x[l − 1])
Ensure: Discrete Fourier Transform of x

1: if l is even then
2: a = FFT ((x[0], x[2], ..., x[l − 2])) (recursive function call)
3: b = FFT ((x[1], x[3], ..., x[l − 1])) (recursive function call)
4: for j = 0;j < l; j + + do
5: a0 = a[j mod (l/2)].realPart
6: a1 = a[j mod (l/2)].imaginaryPart
7: b0 = b[j mod (l/2)].realPart
8: b1 = b[j mod (l/2)].imaginaryPart

9: cFj .realPart=
(
a0 + b0 cos(2πj/l) + b1 sin(2πj/l)

)
/
√

2

10: cFj .imaginaryPart=
(
a1 + b1 cos(2πj/l)− b0 sin(2πj/l)

)
/
√

2

11: end for
12: return (cF1 , ..., c

F
l−1)

13: else
14: return Discrete Fourier Transformation according to Equation 2.6
15: end if

2.2.3 Symbolic Aggregate Approximation

Symbolic Aggregate Approximation (SAX) aggregates and discretizes consecutive
values of time series [111], [112]. Denoting the number of discrete values and
length of the aggregated representation as vSAX and lSAX respectively, the proce-
dure generating the Symbolic Aggregate Representation of a time series x can be
summarized in three steps (see also Figure 2.2 for an example).

1. Normalization of x in order to ensure that x has a mean of zero and standard
deviation of one. (Steps 1 ... 5 in Algorithm 3.)

2. Piecewise Aggregate Approximation of x — The entire time series x is di-
vided into lSAX equal sized, non-overlapping frames that cover the entire
time series. For each such frame, the average of the respective values of x
is calculated. The sequence of these averages is called Piecewise Aggregate
Approximation. (Steps 6 ... 13 in Algorithm 3.)

3. Discretization — The above averages are mapped to discrete symbols ’A’,
’B’, ’C’, etc. One aims at determining the breakpoints β0 . . . βm used for this
mapping in a way that the discretization technique produces each symbols
with equal probability: ”breakpoints are a sorted list of numbers (...) such
that the area under a (...) Gaussian curve from βi to βi+1 = 1/m (β0 and
βm are defined as −∞ and ∞ respectively)” [111]. Assignment of discrete
symbols is shown from Step 14 to Step 20 in Algorithm 3.

14 Chapter 2: Background

Algorithm 2 Haar Wavelet Transformation (HWT)
(Based on the source in Footnote 3.)

Require: Time Series x = (x[0], x[1], ..., x[l − 2], x[l − 1]) (l is even)
Ensure: Haar Wavelet Transform of x

1: for j = 0...l/2− 1 do
2: a[j] = 1√

2
(x[2j] + x[2j + 1])

3: c[j] = 1√
2
(x[2j]− x[2j + 1])

4: end for
5: if l > 2 then
6: return concat(HWT(a),c) (Concatenation of the sequences HWT(a)

and c)
7: else
8: return (a[0], c[0])
9: end if

Figure 2.2: Symbolic Aggregate Approximation (SAX) of a time series: (1) nor-
malization, (2) aggregation and (3) mapping to discrete symbols with mSAX = 4.

The number of discrete symbols m, and therefore the number of breakpoints, is
a parameter of SAX. In order to avoid ambiguity, in the remainder of the book I
denote the number of breakpoints as mSAX .

2.3 Distance Measures

A time series distance measure quantifies the difference between two time series.
The distance measure (or analogously similarity measure or kernel) is a central
component for many prominent time series classifiers, like shaplet-based decision
trees for time series [198], nearest neighbor models or SVMs. This section reviews
distance measures, while Section 2.4 is devoted to time series classifiers. Formally,
a distance measure is a function d(x1, x2):

Definition 6. A distance measure d is a function that takes two time series x1

and x2 as input, and returns a numeric value:

d(x1, x2) : T × T → R (2.9)

2.3 Distance Measures 15

Algorithm 3 Symbolic Aggregate Approximation (SAX)

Require: Time Series x = (x[0], x[1], . . . , x[l − 2], x[l − 1]),
Number of discrete values vSAX , Length of aggregated time series lSAX

Ensure: Symbolic Aggregate Approximation of x

1: a = (1/n)
i=l−1∑
i=0

x[i])

2: s =

√
(1/(n− 1))

i=l−1∑
i=0

(x[i]− a)2

3: for j = 0 . . . l − 1 do
4: x[j] = (x[j]− a)/s
5: end for
6: n = l/lSAX (Number of consecutive values that will be aggregated)
7: for j = 0 . . . lSAX − 1 do
8: b = 0
9: for i = jn . . . jn+ n− 1 do

10: b = b+ x[i]
11: end for
12: c[j] = b/n
13: end for
14: for j = 0 . . . lSAX − 1 do
15: (β0...βm are breakpoints calculated as described in [111])
16: if β0 < c[j] and c[j] ≤ β1 then d[j] = ’A’
17: else if β1 < c[j] and c[j] < β2 then d[j] = ’B’
18: else if β2 < c[j] and c[j] < β3 then d[j] = ’C’
19: ...
20: end for
21: return d

The numerical value returned by d(x1, x2) is the distance of x1 and x2. Intuitively
speaking, the more dissimilar x1 and x2 are, the higher is the value of d(x1, x2).

Most prominent distance measures for time series include Euclidean Distance,
Dynamic Time Warping [14], [98], [101], [143], [153], DISSIM [70], Edit Distance
on Real Sequences [41], Edit Distance with Real Penalty [40], Sequence Weighted
Alignment Model (Swale) [122], Spatial Assembling Distance (SpADe) [42] and
distance based on Longest Common Subsequences [181]. Vlachos et al. [182] in-
troduced a rotation invariant distance measure, while Agrawal took noise, scaling
and translation into account [2]. Caiado [37] proposed time series distance mea-
sures “based on the autocorrelations, partial and inverse autocorrelations, and
periodogram ordinates” as well as “time and frequency domain based metrics for
classification of time series with unequal lengths”5. Often, distance measures can

5 http://www.amazon.de/

16 Chapter 2: Background

be used with various time series representations resulting in a large number of
variants: “there are over a dozen distance measures for similarity of time series
data in the literature” [56]. The remainder of this section focuses on the ones that
are used in this book later on.

2.3.1 Euclidean Distance

Definition 7. The Euclidean Distance of two time series x1 and x2 of the same
length l is defined as follows:

dEU(x1, x2) =

√√√√ l−1∑
j=0

(
x1[j]− x2[j]

)2

(2.10)

The Euclidean Distance can not only be calculated with the raw representation
of time series. The Euclidean Distance over the Discrete Fourier Transform of
two time series, dFEU , can be calculated as (see also [1]):

dFEU(x1, x2) =

√√√√ l−1∑
j=0

(
DFT (x1)[j]−DFT (x2)[j]

)2

(2.11)

Analogously, the Euclidean Distance over the Discrete Haar Wavelet Transform is:

dWEU(x1, x2) =

√√√√ l−1∑
j=0

(
HWT (x1)[j]−HWT (x2)[j]

)2

(2.12)

2.3.2 Dynamic Time Warping

While calculating the Euclidean distance of two time series x1 and x2, the k-th
element of x1 is matched to the k-th element of x2. In reality, however, when
observing the same phenomenon several times, we cannot expect an event to
happen (or a characteristic pattern to appear respectively) always at exactly the
same time position, and the event’s duration can also vary slightly. Therefore,
Dynamic Time Warping (DTW) captures the similarity of two time series’ shapes
in a way that it allows for elongations: the k-th position of time series x1 is not
necessarily matched to the k-th position of time series x2, but it can be matched
to the k′-th position (k′ 6= k) of x2. This is illustrated in Figure 2.3. In order to
allow for elongations, the same position of the first time series is allowed to be
matched to several consecutive positions of the second time series and vice versa,
e.g. in Figure 2.3, position 16 in the top right time series is matched to positions
23, 24, . . . , 33 in the bottom right time series.

DTW is an edit distance [109]. This means that we can conceptually consider
the calculation of the DTW distance of two time series x1 and x2 of length l1

2.3 Distance Measures 17

Figure 2.3: Euclidean Distance vs. Dynamic Time Warping: Euclidean Distance
compares always the k-th positions of the both time series with each other (left),
while DTW allows for elongation, and therefore when calculating the distance of two
time series with DTW, the k-th position of the first time series is not necessarily
matched to the k-th position of the second time series (right). This matching is
shown by the roughly-vertical lines in both cases.

and l2 respectively as the process of transforming x1 into x2. Suppose we have
already transformed a prefix (possibly having length zero or l1 in the extreme
cases) of x1 into a prefix (possibly having length zero or l2 in the extreme cases)
of x2. Consider the next elements (the elements that directly follow the already-
transformed prefixes) of x1 and x2. The following editing steps are possible, both
of which being associated with a cost:

1. replacement of the next element of x1 for the next element of x2, in this
case, the next element of x1 is matched to the next element of x2, and

2. elongation of an element: the next element of x1 is matched to the last
element of the already-matched prefix of x2 or vice versa.

As result of the replacement step, both prefixes of the already-matched elements
grow by one element (by the next elements of x1 and x2 respectively). In contrast,
in an elongation step, one of these prefixes grows by one element, while the other
prefix remains the same as before the elongation step.

The cost of transforming the entire time series x1 into x2 is the cost of sum of
the costs of all the necessary editing steps. In general, there are many possibilities
to transform x1 into x2, DTW calculates the one with minimal costs. This minimal
cost serves as the distance between both time series. The details of the calculation
of DTW are described next.

18 Chapter 2: Background

Figure 2.4: The DTW-matrix. While calculating the distance (transformation cost)
between two time series x1 and x2, DTW fills-in the cells of a matrix. a) The values
of time series x1 = (0.75, 2.3, 4.1, 4, 1, 3, 2) are enumerated on the left of the matrix
from top to bottom. Time series x2 is shown on the top of the matrix. A number
in a cell corresponds to the distance (transformation cost) between two prefixes of x1

and x2. b) The order of filling the positions of the matrix.

DTW utilizes the dynamic programming approach [143], [144], [153]. Denoting
the length of x1 by l1, and the length of x2 by l2, the calculation of the minimal
transformation cost is done by filling the entries of an l1 × l2 matrix. Each
number in the matrix corresponds to the distance between a subsequence of x1

and a subsequence of x2. In particular, the number in the i-th row and j-th
column6, dDTW

0 (i, j) corresponds to the distance between the subsequences x′1 =
(x1[0], . . . , x1[i]) and x′2 = (x2[0], . . . , x2[j]). This is shown in Figure 2.4.

When we try to match the i-th position of x1 and the j-th position of x2, there
are three possible cases: (i) elongation in x1, (ii) elongation in x2, and (iii) no
elongation.

If there is no elongation, the prefix of x1 up to the (i−1)-th position is matched
(transformed) to the prefix of x2 up to the (j−1)-th position, and the i-th position
of x1 is matched (transformed) to the j-th position of x2.

Elongation in x1 means that the i-th position of x1 has already been matched
to some positions of x2, i.e., the prefix of x1 up to the i-th position is matched
(transformed) to the prefix of x2 up to the (j−1)-th position, and the i-th position
of x1 is matched again, this time to the j-th position of x2. This way the i-th
position of x1 is elongated, in the sense that it is allowed to match several positions
of x2. The elongation in x2 can be described in an analogous way.

Out of these three possible cases, DTW selects the one that transforms the
prefix x′1 = (x1[0], . . . , x1[i]) into the prefix x′2 = (x2[0], . . . , x2[j]) with minimal
overall costs. Denoting the distance between the subsequences x′1 and x′2, i.e. the

6 Please note that the numbering of the columns and rows begin with zero, i.e., the very-first
column/row of the matrix is called in this sense as the 0-th column/row.

2.3 Distance Measures 19

Figure 2.5: Example for the calculation of the DTW-matrix. a) The DTW-matrix
calculated with cDTW

tr (vA, vB) = |vA − vB|, cDTW
el = 0. The time series x1 and x2

are shown on the left and top of the matrix respectively. b) The calculation of the
value of a cell. c) The (implicitly) constructed mapping between the values of the
both time series. The cells are leading to the minimum in Formula (2.13), i.e., the
ones that allow for this mapping, are marked in the DTW-matrix.

value of the cell in the i-th row and j-th column, as dDTW
0 (i, j), based on the

above discussion, we can write:

dDTW
0 (i, j) = cDTW

tr (x1[i], x2[j]) + min


dDTW

0 (i, j − 1) + cDTW
el

dDTW
0 (i− 1, j) + cDTW

el

dDTW
0 (i− 1, j − 1)

 (2.13)

In this formula, the first, second, and third terms of the minimum correspond
to the above cases of elongation in x1, elongation in x2 and no elongation, respec-
tively. The cost of matching (transforming) the i-th position of x1 to the j-th
position of x2 is cDTW

tr (x1[i], x2[j]). (If x1[i] and x2[j] are identical, the cost of
this replacement is zero.) This cost is present in all the three above cases. In the
cases, when elongation happens, there is an additional elongation cost denoted as
cDTW
el .

According to the principles of dynamic programming, Formula (2.13) can
be calculated for all i, j in a column-wise fashion. First, we set dDTW

0 (0, 0) =
cDTW
tr (x1[0], x2[0]). Then we begin calculating the very first column of the matrix

(j = 0), followed by the next column corresponding to j = 1,etc. The cells of each
column are calculated in order of their row-indexes: within one column, the cell in
the row corresponding i = 0 is calculated first, followed by the cells corresponding
to i = 1, i = 2, etc. (See Figure 2.4.) In some cases (in the very-first column
and in the very-first cell of each row), in the min function of Formula (2.13), some
of the terms are undefined (when i − 1 or j − 1 equals −1). In these cases, the
minimum of the other (defined) terms are taken.

20 Chapter 2: Background

The DTW distance of x1 and x2, i.e. the cost of transforming the entire time
series x1 = (x1[0], x1[1], . . . , x1[l1 − 1]) into x2 = (x2[0], x2[1], . . . , x2[l2 − 1]) is

dDTW (x1, x2) = dDTW
0 (l1 − 1, l2 − 1) (2.14)

An example for the calculation of DTW is shown in Figure 2.5.
Note that the described method implicitly constructs a mapping between the

positions of the time series x1 and x2: by back-tracking which of the possible cases
lead to the minimum in the Formula (2.13) in each step, i.e. which of the above
discussed three possible cases lead to the minimal transformation costs in each
step, we can reconstruct the mapping of positions between x1 and x2.

Dynamic Time Warping for Multivariate Time Series

DTW can be easily extended for the case of multivariate time series [183]. In
order to do so, we only need to specify cDTW

tr (x1[i], x2[j]) for the multi-dimensional
case. As an example, we consider the case of two-dimensional time series, where
the time series consits of two-dimensional vectors, the components of which are
denoted with the postfixes a and b:

x =
(

(x[0].a, x[0].b), (x[1].a, x[1].b), . . . , (x[l − 1].a, x[l − 1].b)
)

(2.15)

In this case cDTW
tr (x1[i], x2[j]), the cost of transforming the two-dimensional vec-

tor (x1[i].a, x1[i].b) into another two-dimensional vector (x2[j].a, x2[j].b), can be
specified as their Euclidean distance:

cDTW
tr (x1[i], x2[j]) =

√
(x1[i].a− x2[j].a)2 + (x1[i].b− x2[j].b)2 (2.16)

Figure 2.6 shows an example for the calculation of two-dimensional DTW
from the handwriting recognition domain. Handwriting is considered here as
two-dimensional time series, i.e, time series of horizontal and vertical movements
within short time frames. In order to keep the presentation compact, the numerical
values of calculated numbers dDTW

0 (i, j) are not shown, instead, the matrix is
depicted as an image where light tones denote high values, and dark tones denote
low ones. One can clearly see that two a’s distance is much smaller than the
distance between a and b.

Avoiding the computation of the entire DTW-matrix

For the final result of the distance calculation, the values close to the diagonal of
the matrix are usually the most important ones (see Figure 2.5 for an illustration).
Therefore, a simple, but effective way of speeding-up dynamic time warping is to
restrict the calculations to the cells around the diagonal of the matrix [98], [153].
This means that one limits the elongations allowed when matching the both time
series (see Figure 2.7).

2.3 Distance Measures 21

Figure 2.6: DTW for handwriting recognition. Handwriting is considered here as
two-dimensional time series (time series of horizontal and vertical movements). The
numerical values of calculated cells of the matrix are not shown, instead, the matrix
is depicted as an image where light tones denote high values, and dark tones denote
low ones. One can clearly see that the distance between two a-s is much smaller than
the distance between a and b. (This illustration is adapted from [26].)

22 Chapter 2: Background

Figure 2.7: Limiting the size of the warping window: only the cells around the main
diagonal of the matrix (marked cells) are calculated. In the left, the size of warping
window is a constant of 20 %, while in the right the cells corresponding the Itakura
Parallelogram are shown.

Restricting the warping window size to a pre-defined constant wDTW (see in
the left of Figure 2.7) means that only the cells of the matrix are calculated that
at most wDTW positions far from the main diagonal along the vertical direction:

dDTW
0 (i, j) is calculated⇔ |i− j| ≤ wDTW (2.17)

The warping window size wDTW is often expressed in percentage relative to
the length of the time series. In this case, wDTW = 100% means calculating the
entire matrix, while wDTW = 0% refers to the extreme case of not calculating any
entries at all.

Recent research shows that setting wDTW to a relatively small value such as
5%, does not negatively affect the accuracy of the classification. In contrast, the
experiments in [143], [145] imply that such relatively small warping windows lead
to more accurate classification than calculation of the entire matrix. Interpreting
this results in terms of elongations, one can conclude that allowing for moderate
elongation is beneficial, however, allowing for too much elongation (and therefore
matching distant parts of time series) might harm the final quality of recognition.

More advanced techniques to avoid the computation of the entries of the entire
matrix, include the Itakura Parallelogram [86], [98], and learned constraints [144].
According to the Itakura Parallelogram, close to the corners of the matrix, only a
few cells are calculated, while many cells are calculated in the middle of the matrix
(see Figure 2.7). Ratanamahatana and Keogh applied learned constraints [144] in
order to adapt the warping window size locally, i.e. it may be different e.g. at the
beginning and end of time series. Besides avoiding the calculation of many cells,
these adaptations aim to optimize the classification accuracy.

2.3 Distance Measures 23

Indexing

In many problems, such as similarity search or nearest neighbor classification, for
a given time series x we aim at finding the most similar time series out of a set
of time series D. Indexing [38], [78] aims at efficiently solving this task. In order
to do so, several lower-bounding techniques were proposed [98], [100], [104], [200].
A lower-bound of DTW, dlbDTW (x1, x2), is an approximation of the true DTW-
distance, dDTW (x1, x2), of two time series x1 and x2, so that dlbDTW (x1, x2) is
guaranteed to be less than or equal to the true DTW-distance:

dlbDTW (x1, x2) ≤ dDTW (x1, x2) (2.18)

Computationally cheap lower-bounds were proposed in [98], [100], [104], [200]
which allowed to substantially speed up the search process for the most similar
time series. As an example, suppose, we are searching for the time series that is
most similar to x, and the current best candidate, i.e., the time series found to be
the closest one up to the current step of the search process, is x0. In the current
step, we examine whether another time series x1 is closer to x than x0. If the
computationally cheap lower-bound approximates that the distance of x1 to x is
larger than the distance of x0 to x, we do not need to calculate the computationally
expensive true distance of x1 and x because:

dDTW (x1, x) ≥ dlbDTW (x1, x) > dDTW (x0, x) (2.19)

If, however, dlbDTW (x1, x) ≤ dDTW (x0, x), we need to calculate the computationally
expensive true distance dDTW (x1, x).

Due to the above described filtering, the execution time for finding the time
series being most similar to a given time series x, can be considerable for large
time series datasets, since it can be affected by the significant computational
requirements posed by the need to calculate the true DTW distance between x
and several time series in the dataset D (O(|D|) in the worst case, where |D| is the
number of time series contained in D). Furthermore, in case of large time series
datasets, the lower-bound – which is computationally inexpensive for a single pair
of time series – needs to be calculated for large number of time series pairs causing
considerable computational expenses.

Therefore, indexing can be considered complementary to other speed-up tech-
niques such as instance selection (see Section 2.4.2) or the limiting the warping
window size, because these techniques can be applied together with indexing in
order to achieve the required execution time.

Further Recent Results on DTW

Recent research on dynamic time warping, besides the ones already mentioned,
aimed at making DTW more accurate and robust against noise: e.g. the derivation
of time series was proposed in [102] as a preprocessing step before calculating the

24 Chapter 2: Background

DTW-distances. Ratanamahatana and Keogh [143], [145] gave a thorough analysis
that altered our understanding of the properties of DTW. In their comprehensive
experiments on 38 datasets from various domains, Ding et al. [56] compared DTW
against other distance measures and showed that DTW is exceptionally hard to
beat. This is also justified by recent applications built on DTW, such as [146]. In
the context of the car crash detection and categorization problem, Botsch modified
DTW in order to capture, in addition to the similarity in time series shapes, the
duration of time series too [22].

Standard Parameter Settings for Dynamic Time Warping

In the standard settings used in this book, the cost of elongation, cDTW
el , is set to

zero:
cDTW
el = 0 (2.20)

The cost of transformation (matching), denoted as cDTW
tr , depends on what value

is replaced by what: if the numerical value vA is replaced by vB, the cost of this
step is:

cDTW
tr (vA, vB) = |vA − vB| (2.21)

I set the warping window size to wDTW = 5%, which is justified by the analysis
in [143], [145]. Whenever the opposite is not explicitly stated, I used the above
standard settings for DTW.

2.3.3 Edit Distance on Real Sequences

As another distance measure for time series, Chen et al. [41] introduced the
Edit Distance on Real Sequences (EDR). EDR between two time series x1 =
(x1[0], . . . , x1[l1 − 1]) and x2 = (x2[0], . . . , x2[l2 − 1]) was defined as ”the number
of insert, delete, or replace operations that are needed to change” [41] x1 into x2.
While calculating EDR, two elements, x1[i] and x2[j], are considered to match,
i.e., none of the above operations is necessary to transform x1[i] into x2[j], if
|x1[i]− x2[j]| ≤ εEDR, where εEDR is a parameter, called similarity threshold.

The generic description of DTW in Section 2.3.2 allows to interpret Edit
Distance on Real Sequences as a variant7 of DTW with warping window size
wDTW = 100%, elongation cost cDTW

el = 1, and transformation cost

cDTW
tr (vA, vB) =

{
0 if |vA − vB| ≤ εEDR

1 otherwise
(2.22)

7 Chen and Ng [40] already pointed out the analogy between DTW, EDR and ERP. They
described all these distance measures with recursive formulae of similar type, while my
descriptions here and in the next section are more procedural.

2.3 Distance Measures 25

A further difference is that instead of Equation (2.13), EDR uses (2.23), according
to which cDTW

tr is only added if there is no elongation:

dDTW
0 (i, j) = min


dDTW

0 (i, j − 1) + cDTW
el

dDTW
0 (i− 1, j) + cDTW

el

dDTW
0 (i− 1, j − 1) + cDTW

tr (x1[i], x2[j])

 (2.23)

The initialization of the recursive EDR-formula in [41] can be interpreted as fol-
lows. EDR initializes

dDTW
0 (−1,−1) = 0 (2.24)

dDTW
0 (i,−1) = i+ 1 for 0 ≤ i ≤ l1 − 1 (2.25)

and

dDTW
0 (−1, j) = j + 1 for 0 ≤ j ≤ l2 − 1 (2.26)

This way, all the terms of the minimum in Formula (2.23) are defined for all the
positions 0 ≤ i ≤ l1 − 1, 0 ≤ j ≤ l2 − 1, therefore the first column and first
row of the DTW-matrix (corresponding to i = 0 and j = 0 respectively) can be
calculated in the same way as the other cells of the matrix (instead of taking the
minimum only of the defined elements when calculating the first row or the first
column of the matrix).

2.3.4 Edit Distance with Real Penalty

Using their respective standard settings, neither DTW nor EDR fulfills triangle
inequality in general. Following the example in [40], this is illustrated in Fig-
ure 2.8. As described in [40], for EDR, this problem originates from Equation
(2.22), where the similarity threshold εEDR is used to decide whether two values
match. Although DTW has been shown to ”loosely” satisfy triangle inequality
for speech applications [180], after verifying this observation on 24 benchmark
datasets from various domains, Chen and Ng report: ”It appears that this obser-
vation is not true in general, as on average nearly 30% of all the triplets do not
satisfy the triangle inequality. (...) The key reason why DTW [with the standard
settings] does not satisfy the triangle inequality is that, when a gap needs to be
added, it replicates the previous element” [40], i.e., its allows to match the same
element several times in case of an elongation, see Figure 2.5 c) for an example.
When the same element x1[i] is matched several times, the costs of transforming
x1[i] into several elements x2[j], x2[j + 1], . . . are accumulated.

Edit Distance with Real Penalty (ERP) was designed to satisfy triangle in-
equality. Therefore, in contrast to EDR it avoids the usage of the similarity
threshold εEDR, instead, in line with DTW, as the cost of matching two elements,
ERP applies the difference of their values. In contrast to DTW, however, ERP
avoids the accumulation of costs in case of elongations.

26 Chapter 2: Background

Figure 2.8: Distance of time series x1, x2 and x3 with DTW (standard settings),
EDR and ERP. Gray marking denotes the additional cells (the ”minus first” rows
and columns). As shown, DTW and EDR do not fulfill the triangle inequality. (The
example in [40] is adapted in this illustration.)

One can formally describe ERP as an instance of DTW as follows. The warping
window size wDTW is set to 100%. In line with the standard settings of DTW,
cDTW
tr (vA, vB) = |vA−vB|. Instead of Equation (2.13), ERP uses (2.27), according

to which, in line with EDR, cDTW
tr is only added if there is no elongation, therefore

the above mentioned undesired accumulation of transformation costs is avoided:

dDTW
0 (i, j) = min


dDTW

0 (i, j − 1) + cDTW
el,1

dDTW
0 (i− 1, j) + cDTW

el,2

dDTW
0 (i− 1, j − 1) + cDTW

tr (x1[i], x2[j])

 (2.27)

In contrast to EDR, instead of a uniform elongation cost, ERP applies the value
of the ”inserted” element as an elongation cost: cDTW

el,1 = x2[j], cDTW
el,2 = x1[i]. In

2.3 Distance Measures 27

terms of transformation costs, this can be interpreted as follows: whenever there
is an elongation, it is considered as the insertion of an element, the cost of this
step is considered to be the value of the inserted element.

Similarly to EDR, the initialization of the Chen’s recursive ERP-formula [40]
can be interpreted as an additional column and an additional row of the DTW-
matrix (corresponding i = −1 and j = −1 respectively) :

dDTW
0 (−1,−1) = 0 (2.28)

dDTW
0 (i,−1) =

i′=i∑
i′=0

x1[i] for 0 ≤ i ≤ l1 − 1 (2.29)

dDTW
0 (−1, j) =

j′=j∑
j′=0

x2[j] for 0 ≤ j ≤ l2 − 1 (2.30)

This way, all the terms of the minimum in Formula (2.27) are defined for all the
positions 0 ≤ i ≤ l1 − 1, 0 ≤ j ≤ l2 − 1, therefore the first column and first
row of the DTW-matrix (corresponding to i = 0 and j = 0 respectively) can be
calculated in the same way as the other cells of the matrix (instead of taking the
minimum only of the defined elements when calculating the first row or the first
column of the matrix).

2.3.5 Distance based on Longest Common Subsequences

Originally, Vlachos et al. [181] defined a distance measure based on the length of
the Longest Common Subsequences (LCSS) for trajectories (two-dimensional time
series). In this section, their definition is adapted for the case of one-dimensional
time series.

For a time series x = (x[0], . . . , x[l − 1]), denote HEAD(x) its first l − 1
elements: HEAD(x) = (x[0], . . . , x[l − 2]). With this notation, the length of the
Longest Common Subsequences (LCSS) of two time series x1 and x2 is defined as
follows:

LCSS(x1, x2) =



0 if l1 = 0 or l2 = 0 (x1 or x2 is empty)

1 + LCSS(HEAD(x1),HEAD(x2))
if |x1[l1 − 1]− x2[l2 − 1]| < εLCSS and |l1 − l2| < wLCSS

max
(

LCSS(HEAD(x1), x2),LCSS(x1,HEAD(x2))
)

otherwise
(2.31)

where the parameters εLCSS and wLCSS stand for the similarity threshold and the
warping window size, respectively. Similarly to DTW, based on the above formula,
LCSS of two time series x1 = (x1[0], . . . , x1[l1− 1]) and x2 = (x2[0], . . . , x2[l2− 1])

28 Chapter 2: Background

can be calculated by filling the entries of an l1×l2 matrix according to the dynamic
programming schema.

Based on LCSS, the distance of two time series x1 = (x1[0], . . . , x1[l1− 1]) and
x2 = (x2[0], . . . , x2[l2 − 1]) can be defined as follows:

dLCSS(x1, x2) =
LCSS(x1, x2)

min(l1, l2)
(2.32)

2.3.6 DISSIM

Originally, the DISSIM distance measure was defined for two-dimensional time
series (also called as trajectories) as follows: ”The Dissimilarity [...] between
trajectories Q and T being valid during [a particular] period [...] is defined as the
definite integral of the function of time of the Euclidean distance between the two
trajectories during the same period.” [70]

Up to now, we considered time series as a discrete sequence of real numbers.
However, in order to be able to specify DISSIM for one-dimensional time series, we
need to define values of a time series x for continuous positions, i.e. for positions
between two discrete positions. As so far, we denote values at discrete (integer)
positions with x[t], t ∈ Z. For the positions between two such position, we can
use the linear approximation

x[t] = x[btc] + (t− btc)(x[dte]− x[btc]). (2.33)

Then, for the case of two one-dimensional time series x1 = (x1[0], . . . , x1[l−1])
and x2 = (x2[0], . . . , x2[l − 1]), the above definition of DISSIM simplifies to:

dDISSIM(x1, x2) =

∫ t=l−1

t=0

| x1[t]− x2[t] | dt (2.34)

The lower the value of this integral is, the more similar are the two time series x
and y. DISSIM is illustrated in Figure 2.9.

Figure 2.9: DISSIM calculates the area between two time series.

2.4 Time-Series Classification Algorithms 29

2.4 Time-Series Classification Algorithms

By reason of the increasing interest in time-series classification, various approaches
have been introduced including neural networks [93], [130], Bayesian networks [168]
to hidden markov models [103], [114], [139], genetic algorithms, support vector ma-
chines [62], methods based on random forests and generalized radial basis func-
tions [22] as well as frequent pattern mining [74]. Modular neural networks and
their applications to time-series classification, for example, are detailed in [130].
However, the k-nearest neighbor (k-NN) classifier has been shown to be compet-
itive (if not superior) to many other state-of-the-art models [56], [99], [146]. A
description of this classifier follows.

Suppose, we are given an unlabeled (or test) time series x. The k-NN classifier
searches in the labeled training dataset for those k time series that are most similar
to x. These k most similar time series are called the k nearest neighbors of x.
The k-NN classifier considers the k nearest neighbors, and takes the majority vote
of their labels and assigns this label to x: e.g. if k = 3 and two of the nearest
neighbors of x belong to class C1, while one of the nearest neighbors of x belongs
to class C2, then this 3-NN classifier recognizes x as an instance belonging to
the class C1. Besides experimental evidence [56], [99], [146], there are theoretical
results about the properties and optimality of nearest neighbor classifiers which
are reviewed e.g. in [52].

The applied distance measure plays a crucial role in the nearest neighbor clas-
sification of time series. Usually, nearest-neighbor classification of time series uses
Dynamic Time Warping (DTW), because it is an elastic distance measure, i.e., it
is robust w.r.t. elongation in the time series. As described in Section 2.3.2 in de-
tail, recent works aimed at making DTW more accurate and scalable [101], [144],
DTW has been examined in depth (a thorough summary of results can be found
at [143], [145]), whereas Ding et al. found no other distance measure that signifi-
cantly outperforms DTW [56].

2.4.1 Local adaptations of the k-NN classifier

Local adaptations of the k-NN classifier were explored by several authors: Prekopc-
sak et al. [49], for example, applied class-based attribute weighting. From the point
of view of my research, most relevant works deal with the choice of parameter k
for the k-NN classifier that is known to affect the bias-variance trade-off [81]:
smaller values of k may lead to overfitting, whereas larger values of k increase
the bias and in this case the model may capture only global tendencies. Recent
studies [142] indicate that significant improvement in the accuracy of the k-NN
time-series classification can be attained with k being larger than 1. This is due
to intrinsic characteristics in time series data sets, such as the mixture between
the different classes, the dimensionality, and the skewness in the distribution of
error (i.e., the existence of so called “bad hubs”, described in Section 2.4.3 that

30 Chapter 2: Background

account for a surprisingly large fraction of the total error). Whenever the data has
homogeneous characteristics, parameter k can be chosen based on the classifier’s
performance on a hold-out subset of the training data.

In complex time series data sets, however, the intrinsic characteristics, such
as the ones mentioned above, may vary from region to region. For this reason,
approaches performing local adaptation of the k-NN classifier should be developed.
A locally adaptive distance measure was proposed by Hastie and Tibshirani [80],
while Domeniconi and Gunopulos [57] used SVMs to define a local measure of
feature relevance, i.e., feature weights depending on the location of a data point
to be classified. In [58] adaptive nearest neighbor classification in high-dimensional
spaces was studied. In contrast to these works, my approaches based on individual
quality (IQ) estimation (called IQ-MAX and IQ-WV in Chapter 3) adapt by
selecting the proper value of k (IQ-MAX) and by combining several classifiers in
a localized way (IQ-WV).

Ougiaroglou et al. [126] presented three early-break heuristics for k-NN which
can be interpreted as adapting the number of nearest neighbors. These heuristics
aimed at speeding-up k-NN. In contrast, in Chapter 3, I focus on making nearest
neighbor classification more accurate using the principled framework of IQ estima-
tion. My instance selection method described in Chapter 4 aims at speeding-up
k-NN classification. This is orthogonal to the work of Ougiaroglou et al. [126], as
both techniques can be applied together in order to achieve higher speed-up.

Methods for quality estimation (also known as error estimation) are usually
applied globally in order to estimate the overall performance of a classification
model [88], [120]. In my proposed approach, however, as described in Chap-
ter 3, the focus is on individualized quality estimation. This is similar to learning
the residuals, i.e., the difference between predicted and actual labels. Duffy and
Helmbold followed this direction and incorporated residuals into boosting of re-
gression models [60]. In contrast to this work, I do not focus on boosting. Similar
to my work, Tuda et al. [178] proposed an individualized approach for estimat-
ing the leave-one-out error of vector classification with support vector machines
(SVM) and linear programming machines (LPM). Unlike this work, my proposed
approach performs general IQ estimation (not just for leave one out). More im-
portantly, my approach exploits IQ estimation in order to improve accuracy of
classification and I do not treat it as a per se task, as done in [178].

A set of earlier approaches to localized quality estimation for the k-NN clas-
sifier was proposed by Wettschereck and Dietterich [187]. However, these ap-
proaches were based solely on heuristics such as using different k values per class
or per cluster (after clustering the training set). My proposed framework of IQ
estimation is more principled and more generic than these simple approaches: I
distinguish between the quality estimation step and classification step, my frame-
work supports systematic usage of the estimated quality, and my framework al-
lows various classification and regression models. Furthermore, while predicting a
class, my framework can involve an arbitrary number of models and an arbitrary

2.4 Time-Series Classification Algorithms 31

number of meta models, whereas Wettschereck and Dietterich [187] used a fixed
number of models (mostly just one selected model) at the elementary level, and
they used heuristics instead of meta models.

Furthermore, the aforementioned works concerned with classification of vec-
tors, while I focus on time-series classification.

Kernel methods can be interpreted as local adaptations of k-NN classifiers
where the influence of a training instance x0 to the classification of an unlabeled
(or test) instance x is determined by the distance between x and x0 and its ratio
to the distances between x and the other training instances. In contrast, in my
methods IQ-MAX and IQ-WV (Chapter 3), the distances are only used to deter-
mine the nearest neighbors. More importantly, the meta-layer models estimate
the classification error for each test instance individually : in case of IQ-MAX, a
single k is selected in an extremely localized fashion, i.e., individually for each test
instance to be classified, while in case of IQ-WV, k-NN models are combined in an
individualized way: the weights of the elementary k-NN models are determined
for each test instance separately.

Therefore, IQ-MAX and IQ-WV perform extremely local adaptations of k-
NN classifiers by adapting the model for each test instance. This is different
from hyperparameter search, where e.g. grid-search or local search is applied in
order to find weights or proper values of k and other parameters, and then the
found weights and parameter-values are used universally, i.e., for the classification
of all the test instances. Furthermore, note that the proposed framework of
IQ estimation is neither limited to finding proper values of parameters for each
instance individually, nor to the context of k-NN classification: even though in
context of time-series classification I used k-NNs, in general, arbitrary classifiers
of various types (such as SVMs, decision trees, HMMs, etc.) can be combined in
various ways by selecting different meta-level decision methods.

2.4.2 Speeding-up time-series classification

Attempts to speed up DTW-based nearest neighbor classification fall into 4 major
categories: i) speeding-up the calculation of the distance of two time series (by
e.g. limiting the warping window size), ii) indexing, iii) reducing the length of
the time series used, and iv) instance selection. As the former two were already
described in Section 2.3.2, this section focuses on the latter two.

Reduction of the length of time series

A simple way to speed up time-series classification is to reduce the length of time
series by aggregating consecutive values into a single number [111], [112], [158],
which reduces the overall length of time series and thus makes their processing
faster. A more advanced method proposed by Salvador [155] uses multiple reso-
lutions in order to speed up the computation, while Sakurai et al. [154] combined

32 Chapter 2: Background

several ideas such as lower bounding, early stopping and aggregation of consecu-
tive values (with different resolutions).

Instance Selection

Instance selection (also known as numerosity reduction or prototype selection)
aims at discarding most of the training time series while keeping only the most
informative ones, which are then used to classify unlabeled instances. While
instance selection is well explored for general nearest-neighbor classification, see
e.g. [4], [23], [76], [89], [113], there are just a few works for the case of time series. Xi
et al. [194] present the FastAWARD approach and show that it outperforms state-
of-the-art, general-purpose instance selection techniques applied for time series.

FastAWARD follows an iterative procedure for discarding time series: in each
iteration, the rank of all the time series is calculated and the one with lowest rank
is discarded (see the Naive Rank Reduction function in Algorithm 4). Thus, each
iteration corresponds to a particular number of kept time series. Furthermore,
Xi et al. argue that the optimal warping window size depends on the number of
kept time series. Therefore, FastAWARD calculates the optimal warping window
size dependent on the number of kept time series (see the main function, called
FastAWARD in Algorithm 4).

2.4.3 Hubs in Time Series Data

The presence of hubs, i.e., that some few objects tend to be much more frequently
neighbors than the remaining ones, has been observed for many natural and ar-
tificial networks, such as protein-interaction networks or the internet [9]. As this
book focuses on time-series classification, in this section, hubness is described from
this point of view.

For classification, the property of hubness has recently been explored [140],
[141], [142]. This property states that for data with high (intrinsic) dimensionality,
like most of the time series data8, some objects tend to become nearest neighbors
much more frequently than others. In order to express hubness in a more precise
way, for a time series dataset D one can define the k-occurrence of a time series
x ∈ D, denoted by gkN(x), as the number of time series in D having x among their
k nearest neighbors. With the term hubness we refer to the phenomenon that the
distribution of gkN(x) becomes significantly skewed to the right. We can measure
this skewness, denoted by SgkN (x), with the standardized third moment of gkN(x):

SgkN (x) =
E[(gkN(x)− µgkN (x))

3]

σ3
gkN (x)

(2.35)

8 In case of time series, consecutive values are strongly interdependent, thus instead of the
length of time series, we have to consider the intrinsic dimensionality [142].

2.4 Time-Series Classification Algorithms 33

Algorithm 4 Simplified pseudocode of FastAWARD
(This pseudocode is based on [194], see that paper for more details.)

Require: Time Series Dataset D, Number of selected instances n
Ensure: Dataset containing the selected time series D∗,

Optimal warping window size wDTW
opt

1: function FastAWARD(Time Series Dataset D,
Number of selected instances n)

2: Determine the best warping window size on D and initialize w to this value
3: (This algorithm works with the relative warping window size, thus 0 ≤ w ≤ 100% here.)

4: S = Naive Rank Reduction(D)
5: while |S| > n do
6: number of selected instances = |S|
7: Remove worst (lowest ranked) instance from S
8: if warping window size of w+ 1% leads to better accuracy (on training
9: data) then w ← w + 1%

10: end for
11: return S together with w
12: (The remaining instances are the selected ones, w is the optimal
13: warping window size for this amount of selected instances.)
14: end

15: function Naive Rank Reduction(Time Series Dataset D)
16: Remove any duplicate instances from D
17: Leave-one-out 1-NN classification on D
18: OrderedSet S = {}
19: for (loop num = 0, loop num < |D|, loop num++)
20: Calculate gXi(x) (see Equation 4.3) for each time series x ∈ D \ S
21: Rank all the time series x ∈ D \ S based on gXi(x),
22: resolve ties based on distances
23: Select the worst (lowest ranked) instance,
24: discard it from D and push it (at the end of) S
25: end for
26: return S
27: end

where µgkN (x) and σgkN (x) are the mean and standard deviation of gkN(x). When
SgkN (x) is higher than zero, the corresponding distribution is skewed to the right
and starts presenting a long tail.

In the presence of labeled data, we distinguish between good hubness and bad
hubness : we say that the time series x′ is a good k-nearest neighbor of the time
series x, if (i) x′ is one of the k-nearest neighbors of x, and (ii) both have the same

34 Chapter 2: Background

Figure 2.10: Distribution of good hubs for some time series datasets. The horizontal
axis correspond to the values of g1

G(x), while on the vertical axis one can see how many
instances have that value.

class labels. Similarly: we say that the time series x′ is a bad k-nearest neighbor of
the time series x, if (i) x′ is one of the k-nearest neighbors of x, and (ii) they have
different class labels. This allows us to define good (bad) k-occurrence of a time
series x, gkG(x) (and gkB(x) respectively), which is the number of other time series
that have x as one of their good (bad respectively) k-nearest neighbors. For time
series, both distributions gkG(x) and gkB(x) are usually skewed, as it is exemplified
in Figure 2.10, which depicts the distribution of g1

G(x) for some time series data
sets (from the collection described 2.7). As shown, the distributions have long
tails in which the good hubs occur.

We say that a time series x is a good (bad) hub, if gkG(x) (and gkB(x) re-
spectively) is exceptionally large for x. For the nearest neighbor classification of
time series, the skewness of good occurrence is of major importance, because of
two reasons:

1. On one hand, some few time series are responsible for large portion of the
overall error: bad hubs tend to misclassify a surprisingly large number of
other time series, this problem is discussed and alleviated by the application
of an appropriate weighting schema in [142].

2. On the other hand, a few time series, the good hubs, are able to correctly
classify most of the other time series.

Therefore, one has to take into account the presence of good and bad hubs in time
series datasets. In Chapter 4, I discuss hub-based score functions for the problem
of instance selection that is described in Section 2.4.2. In the Chapter 4, I also
prove a theorem regarding the optimality of hub-based instance selection.

Note that in other domains, distributions have been found that are very similar
to the ones shown in Figure 2.10 [9], [10], [53], [179]. Therefore, this property can
be considered as a generic one, which further justifies its exploitation in the domain
of time-series classification.

2.4 Time-Series Classification Algorithms 35

Figure 2.11: Representation
of time series as attribute
vectors using motif features

2.4.4 Classification based on Feature Extraction

Besides nearest neighbor classification, an alternative approach for classifying time
series is based on feature extraction [123]. Simple features are for example the
average, minimum or maximum of a time series x. In general, a feature is a value
that aims at capturing a characteristic property of a time series x. Usually, one
selects some features (such as the ones mentioned above), and then calculates all
of the selected features for all the time series of the dataset D. Therefore, each
time series x ∈ D can be represented as a vector of features: suppose, for example,
that one selected average as the first feature, then for each time series x ∈ D the
first component of the corresponding vector is the average of x.

On one hand, converting time series into vectors has the advantage that con-
ventional, well-studied vector classifiers, such as SVMs [108], decision trees [61]
or Naive Bayes [67] can be used for the time-series classification problem. On the
other hand, however, finding good features that are descriptive and therefore allow
for distinguishing between classes, is a difficult task in general: whether a feature
is a good one or not, depends highly on the underlying application. Features
for a given application can be constructed based on domain-specific background
knowledge [22].

In contrast, a widely studied set of generic features are based on motifs [61],
[67], [108]. A motif is a characteristic pattern. In the most simple case, for each
motif there is a binary feature, which indicates whether the corresponding motif
appeared in the time series or not (see Figure 2.11). Alternatively, a feature can
indicate the total number and/or average length of motifs occurring in a time
series [67]. In order to construct motif-based features, motifs need to be found
first. This is detailed in the following section.

Motif Discovery

The task of motif discovery in time series has many variants in the literature.
Yankov et al. [197] and Patel et al. [127] define the task of motif discovery regarding
one long time series: the target of their work is to identify recurrent patterns, i.e.,

36 Chapter 2: Background

Figure 2.12: Specific and generic wild-cards build a taxonomy of symbols: suppose
that the time series are represented as a sequence of discrete symbols A,B,C,D,E
(see Section 2.2.3). One can define additional symbols, so called wild-cards that can
match several symbols: e.g. ∗ matches any symbol, while the symbol ”A∨B” matches
both symbols A and B.

approximately repeated parts of the given time series. In contrast, Futschik and
Carlisle [71] are concerned with a set of time series. They aim at finding global
patterns: they cluster times series, and calculate the “compromise” time series
for each cluster. Such a “compromise” time series is regarded as a representative
pattern of the time series in the cluster. Jensen at al. [90] and Ferreira at al. [68]
also use clustering, however, in a more local fashion: they do not cluster the whole
sequences, but subsequences of them.

Predefining a (minimal) length lm for motifs, scanning the database, and enu-
merating (almost) all the subsequences of the given length lm is common in the
biological domain [68], [90], [127], [197]. However, this may not be efficient enough,
especially if complex motifs with gaps and/or taxonomical wild-cards are to be
discovered (see Figure 2.12). For noise-robust motif detection (without wild-cards)
Buhler and Tompa used random projections [25]. A more sophisticated solution is
based on the property called anti-monotonicity, which was originally observed in
the frequent itemset mining community [3]. Anti-monotonicity states that subpat-
terns of a frequent pattern are also frequent. State-of-the-art frequent sequence
mining algorithms, see e.g. [17], [73], are based on anti-monotonicity which sug-
gests, roughly speaking, that one should discover short motifs first and grow them
step by step together to longer ones. Approaches based on anti-monotonicity avoid
processing of many redundant (i.e. non-motif) subsequences. They have been re-
searched intensively, resulting in highly efficient implementations [19], [20]. There
are different algorithms for databases of different character: for example, in case
if many short motifs are expected, they can efficiently be discovered (“grown to-
gether”) in a breadth-first search manner as in [18], whereas if long motifs are
expected, approaches utilizing a depth-first search schema could be preferable,
such as PrefixSpan [128].

In this book, by motifs I mean approximately repeated local patterns. In
Chapter 7, I propose two algorithms based on frequent pattern mining techniques
in order to discover motifs in a set of time series. Both of my approaches use the
symbolic aggregate approximation of time series (see Section 2.2.3).

2.4 Time-Series Classification Algorithms 37

Table 2.1: A systematic overview of selected related works on pattern mining

Flat Generalized
Patterns Patterns

Set Motifs (item sets) [3], [19], [20] [84], [133], [165], [166]

Sequential Motifs [18], [43] [73], [163]
(Contiguous and non-contiguous)

Semi-contiguous Sequential Motifs [67] Chapter 7

Given the symbolic aggregate approximation of the time series of a dataset D,
different classes of motifs can be defined regarding generality and character:

• Regarding generality, I distinguish (i) flat patterns (without wild-cards),
and (ii) patterns with wild-cards, called generalized patterns.

• Regarding character, I distinguish between (i) set motifs (the order of
symbols is omitted), (ii) sequential motifs (contiguous and non-contiguous
sequences), and (iii) semi-contiguous sequential motifs, which is a common
generalization of contiguous and non-contiguous motifs: in semi-contiguous
motifs maximal nm gaps are allowed, each of these gaps are allowed to
have maximal length of dm. (For dm = nm = 0 semi-contiguous motifs are
identical with contiguous motifs; for dm = nm = ∞ they are the same as
non-contiguous motifs.)

Table 2.1 provides a systematic overview of related works on pattern mining.
For the task of discovering flat patterns, optimization techniques (recursive

counting and recursion pruning) were introduced in [19] and [20]. In Chapter 7,
I generalize these techniques for the case of semi-continuous sequential patterns.
Similarly to my work, Ferreira and Azevedo [67] allowed gaps in motifs, however,
they did not use taxonomic wild-cards. My work also differs from theirs in the
algorithm used to discover motifs: they enumerated all subsequences (of a given
length), whereas I build my algorithms on frequent pattern mining techniques.

Schmidt-Thieme [156] presents a generic framework that allows to deploy fre-
quent pattern mining algorithms for various pattern types. In terms of [156],
the patterns used in my work can be interpreted as patterns of higher order.
Out of the pattern types considered in [156], most closely related to my work
is the type sequences of sequences because a sequential pattern containing tax-
onomic wild-cards can be considered as a sequence of sequences. This is illus-
trated with the following example. Suppose, we are given the sequential pattern
(A,D,A ∨ B, ∗, E) containing symbols of the taxonomy shown in Figure 2.12.
Instead of each symbol we can write the path that leads to that symbol in the

38 Chapter 2: Background

taxonomy: ((∗, A ∨ B,A) , (∗, D ∨ E,D) , (∗, A ∨ B) , (∗) , (∗, D ∨ E,E)).
Provided that the semi-continuous semantic of the patterns is taken into account
while counting the support, this interpretation allows to apply algorithms for
mining frequent sequences of sequences as presented in the 5th Chapter of [156].
However, in the case considered in my work the ”internal” sequences (i.e. the
sequences that correspond to symbols of the taxonomy) have the special prop-
erty that they are paths of the taxonomy, and therefore a symbol can only be
followed by an other symbol that is the specification of the previous symbol ac-
cording to the taxonomy. In contrast to [156], in Chapter 7 this property is taken
into account and exploited for efficient pattern mining algorithms (see taxonomic
antimonotone property in Chapter 7).

2.5 Fusion Methods

As a single model is usually unable to solve complex recognition tasks at the
required accuracy, fusion techniques are popularly used, see e.g. [87], [129], [135],
[160], [171], [191], [192], [202]. Fusion can be achieved various ways: in [35],
for example, together with my collaborators, we solved different subtasks of the
problem with separate models: we applied image processing methods in order to
recognize lines in aeroplane vibration diagrams, and in a subsequent task we used
a matching technique in order to label these lines. Whether such ”separation by
task” is possible (and effective) highly depends on the concrete application.

In contrast, one can provide more generic schemes, according to which a (large)
number of models solve the same classification task and their solutions are inte-
grated either using some heuristics or with a meta-model. This resulting structure
is often called an ensemble of classifiers. Fundamental statistical, computational
and representational reasons, why ensembles work better than single models, were
discussed in [55].

In practice, besides the simple voting schemes, most prominent ensemble meth-
ods include boosting, bagging [11], [54] and stacking [173] (also called stacked
generalization [189]). In case of boosting, a series of classifiers are trained: one
classifier in each iteration. While doing so, in each iteration, priority is given to
the correct classification of those instances that were misclassified by the mod-
els constructed in the previous iterations. This is achieved by assigning higher
weights to previously misclassified instances. In contrast, in case of bagging, dif-
ferent samples of the entire training data are used to train the models. Stacking is
similar to bagging, however, the variety of classifiers is usually achieved by using
different models, such as nearest neighbor approaches, decision trees, Bayesian
approaches, support vector machines, neural networks. Then, based on the out-
puts of these models, a meta-model decides the class label. Variety of models of
the ensemble can be achieved not only by using different model types, but also
by choosing different hyperparameters or (similarly to bagging) different subsets
of the entire training data.

2.5 Fusion Methods 39

Figure 2.13: Feature selection in ensembles: at the elementary level (variable selec-
tion, left) and at the meta-level (model selection, right)

The focus of Chapter 6 is on a generic framework in order to describe model
selection strategies. In context of stacking, model selection is feature selection at
the meta-level (and variable selection is feature selection at the elementary level).
This is shown in Figure 2.13. In the studied context, related works include feature
selection at the elementary level [85], [110]. Some more closely related works study
feature selection at the meta level, e.g. Bryll et al. [24] applies a ranking of models
and selects the best models to participate in the ensemble.

Other, less closely related works include the technique developed by Zhou et
al. [203], [204], who employed a genetic algorithm to find meta-level weights and
selected models based on these weights. They found that the ensemble of the
selected models outperformed the ensemble of all of the models. Yang et al. [196]
compared model selection and model weighting strategies for ensembles of Naive-
Bayes-extensions, called “Super-Parent-One-Dependence Estimators” (SPODE)
[186]. All of these works focus on specific models: Zhou et al. [204] are concerned
with neural networks and decision trees [203], whereas Yang et al. focused on
SPODE Ensembles [196]. In contrast to them, in Chapter 6, I develop a general
framework that operates with various models and meta-models.

The model selection approach by Tsymbal et al. [177] is also essentially dif-
ferent from mine: they select (dynamically) those models that deliver the best
predictions individually. In contrast, I view the task more globally by taking
interactions of models into account and thus supporting less greedy strategies.

Bacauskiene et al. [7] applied a genetic algorithm for finding the ensemble
settings both at the elementary level (hyper-parameters and variable selection)
and at the meta-level. However, due to their high computational costs, genetic
algorithms are impractical in the case of large number of models.

Based on weighted voting of heterogeneous classifiers, Tsoumakas et al. [175],
[176] developed “selective fusion”, while in context of the boosting schema [138],
in their pioneering work, Margineantu and Dietterich [117] observed that many
classifiers of an ensemble can be pruned without harming its accuracy. In Chap-
ter 6, I follow a similar direction, but in contrast to them, I consider the more
sophisticated stacking schema.

40 Chapter 2: Background

Several authors designed and applied ensembles of classifiers for time-series
classification [157], [201]. In contrast to these works, in Chapter 5, I aim at fusing
distance measures, instead of working at the level of classifiers’ outputs.

One of the core components of my framework presented in Chapter 5 is a
model for pairwise decisions about whether or not two time series belong to the
same class. Similar models were applied in context of record linkage (also called
object identification) [44], [149]. Both of these works, however, aimed at finding
groups of equivalent items. In contrast to them, in Chapter 5, I work with time
series. I use multilayer perceptrons and linear regressions instead of support vec-
tor machines, and, most importantly, I focus on classification. In a joint work
with my collaborators we used similar approaches for clustering web pages and
images [150], [152].

Fusion of distance measures is also related to multiple kernel learning [162].
As opposed to [162], I consider time series in a simple and generic framework.

For time-series classification, Preisach [134] combined DTW with relational
classifiers. She used DTW together with an appropriate threshold to build a
so-called similarity graph [134]. Then, she used relational classifiers for semi-
supervised classification of time series. All the techniques I propose in Part II of
this book are substantially different from the ones used by Preisach: as opposed
to [134], I neither build on relational classification, nor use the semi-supervised
training protocol. Furthermore, I propose time series classifiers based on indi-
vidual quality estimation (Chapter 3), exploit the presence of hubs (Chapter 4),
fuse distance measures (Chapter 5), exploit mutual error compensation (Chap-
ter 6) and extend sequential pattern mining algorithms (Chapter 7). In contrast,
Preisach [134] explored none of these techniques for time-series classification.

2.6 Evaluation of time series classifiers

Throughout this book, in many experiments, I performed 10-fold-cross-validation.
For this reason, I describe this protocol. Cross-validation protocols and other
evaluations protocols are surveyed in [5] and [188] respectively.

While performing 10-fold-cross-validation, the entire dataset is divided into
10 disjoint splits by putting each instance (time series) into exactly one split.
Out of the 10 splits, one is reserved as test data while the remaining 9 splits
constitute the training data. As described in Section 2.1, the training data is
used to construct the classifier. Then, in a proceeding evaluation phase, the
classifier is used to determine the class labels of the test data. Then, the class
labels output by the classifier are compared to the true class labels in order to
allow for a quantitative evaluation of the quality of the classifier. The whole
process of classifier construction and evaluation is repeated 10 times, in each of
the 10 rounds a different data split serves as test data.

2.7 Time-Series Classification Tasks and Benchmark Data 41

In order to quantitatively measure the quality of the constructed classifier, in
most of the experiments, I use accuracy and classification error. If the classifier
recognizes the label of an instance x correctly, we say that x is classified correctly.
Accuracy (see also Section 2.1) is the portion of correctly classified instances. In
contrast, classification error is the portion of instances that were misclassified
(incorrectly classified). Therefore:

accuracy = 1− classification error (2.36)

2.7 Time-Series Classification Tasks and Bench-

mark Data

As already mentioned, time-series classification finds applications in various do-
mains such as handwriting and speech recognition, finance, medicine, biometrics,
chemistry, astronomy, robotics, networking and industry [95].

In their fundamental work, Ding et al. [56] used a large collection of 38 bench-
mark datasets for the evaluation of time series distance measures and classifiers.
This collection (or subsets of that) was used by many authors, see e.g. [49], [142],
[143]. In order to assist reproducibility and comparability, I decided to use this
collection of datasets in the experiments I performed. The basic properties of
these datasets are summarized in Table 2.2. These basic properties include (i) the
size of the dataset (number of contained time series), (ii) the length of time series
in the dataset and (iii) number of classes.

Most of these datasets are available in the UCR repository.9 Datasets that are
not (yet) contained in the UCR repository are described at this URL:
http://users.eecs.northwestern.edu/˜hdi117/listfile/VLDB08 datasets.ppt .

In this section, I would like to illustrate how time-series classification can be
applied in real-world scenarios. Though this demonstration focuses on the context
of electrocardiography (Section 2.7.1), core components of many other practical
tasks can be formulated as time-series classification problems. For handwriting
recognition, this was already shown in Figure 2.6, datasets associated with related
tasks are 50words, Haptics, Symbols and WordsSynonyms. As another example,
Section 2.7.2 describes how shape recognition in images can be solved via time-
series classification and lists the datasets associated with such tasks.

2.7.1 Analysis of Electrocardiograph Signals

Electrocardiographs (ECG) are used in various ways in clinical practice: in the
most simple case, directly after the ECG has been recorded, the doctor analyses
it and makes the diagnosis [34]. In other cases, due to the general health state

9 http://www.cs.ucr.edu/˜eamonn/time series data/

42 Chapter 2: Background

Table 2.2: Basic characteristics of the datasets used in the experiments

Dataset Size Length of Number of
name time series classes
50words 905 270 50
Adiac 781 176 37
Beef 60 470 5
Car 120 577 4
CBF 930 128 3
ChlorineConcentration 4307 166 3
CinC 1420 1639 4
Coffee 56 286 2
DiatomSizeReduction 322 345 4
ECG200 200 96 2
ECGFiveDays 884 136 2
FaceFour 112 350 4
FacesUCR 2250 131 14
Fish 350 463 7
GunPoint 200 150 2
Haptics 463 1092 5
InlineSkate 650 1882 7
ItalyPowerDemand 1096 24 2
Lighting2 121 637 2
Lighting7 143 319 7
Mallat 2400 1024 8
MedicalImages 1141 99 10
Motes 1272 84 2
OliveOil 60 570 4
OSULeaf 442 427 6
Plane 210 144 7
SonyAIBORobotSurface 621 70 2
SonyAIBORobotSurfaceII 980 65 2
StarLightCurves 9236 1024 3
SwedishLeaf 1125 128 15
Symbols 1020 398 6
SyntheticControl 600 60 6
Trace 200 275 4
TwoLeadECG 1162 82 2
TwoPatterns 5000 128 4
Wafer 7164 152 2
WordsSynonyms 905 270 25
Yoga 3300 426 2

2.7 Time-Series Classification Tasks and Benchmark Data 43

of the patient or when the abnormality can only be observed at a previously
unknown time (in some types of arrhythmias and ischemias), the ECG signal is
being recorded continuously for a longer time period (intensive care monitoring
or monitoring with a mobile device called Holter monitor).

In such cases, automatic recognition of abnormalities in ECG signals may sub-
stantially support doctors’ work. When an out-patient is wearing a mobile ECG
recorder, and this device detects serious abnormalities, it can warn the patient
or call an emergency service automatically. If a nurse takes care for several pa-
tients and the ECG signal becomes abnormal, the ECG recording device displays
a warning so that the doctor can be called in advance. Recognizing a disease soon
and accurately, either by human experts or automatically, is a difficult task: a
retrospective study [75] showed that, e.g., the infants admitted to a neonatal in-
tensive care unit had abnormal heart beating patterns 24 hours before the doctor
diagnosed them with sepsis.

When an ECG signal is recorded for one day for an out-patient, the record
reflects approximately one hundred-thousand heart beats. Therefore, deep analy-
sis of the entire signal, due to its length, is usually impossible by human experts.
Rather, the doctor focuses on the most important parts of the signal, which can be
positions where an event happens (something changes) or abnormalities appear.
While the ECG is being recorded with a mobile device, the patient can press a
button in specific cases such as sickness, going to bed, taking pills, etc. ”A special
mark will be then placed into the record so that the doctors or technicians can
quickly pinpoint these areas when analyzing the signal.”10 Some abnormalities,
however, may be left unnoticed by the patient and therefore the system will not
record any marking points corresponding to that parts of the signal. In these
cases, the entire signal can be scanned and automatically analyzed by computers
that produce suggestions to medical experts for abnormal parts of the signal.

In order to allow for such an analysis, the task can be formulated as a time-
series classification problem. Our original definition of time-series classification
(in Section 2.1) was generic, allowing for several variants of the problem, e.g.:

1. If we want to find when abnormalities appear in a long (e.g. 24 hours)
ECG-recording, each time series in the above definition corresponds to a
short segment (e.g. 1 heartbeat) of the long signal. In this case, there
are two classes: normal signal segments belong to the first class, while
abnormal signal segments belong to the second class. Whenever a segment
is recognized as abnormal, this is a candidate for more accurate examination
by human experts. If the classifier outputs a probability for each segment of
being abnormal, the segments can be ranked according to this probability
so that the most serious segments can be checked first by the human expert.

2. Another task is to find where, in which part of the patient’s heart, the ab-
normality (e.g. an infarct) happened. This is possible as signals of different

10 http://en.wikipedia.org/wiki/Holter Monitor

44 Chapter 2: Background

leads of the ECG correspond to the electrical activity of different parts of
the heart.11 Therefore, the task is to find in which signal(s) the abnormality
is expressed. In this case, one class corresponds to the expression of the ab-
normality, while the signals where the abnormality is not expressed, belong
to the other class.

3. If we aim at recognizing the type of abnormality, we can define several
classes, one class for each disease and an additional class for normal signals.

Of course, we can combine all the above tasks (by e.g. using several classifiers),
so that the result of the automatic recognition is a list of items describing when
(at what time, at which position of the signal), where (at which part of the
patient’s heart) and what kind of abnormality was likely to happen. Such lists of
abnormality-candidates can support human expert’s diagnostic work.

Semi-automatic detection of irregularities in ECG signals has been explored
by several researchers. An early approach was proposed by Bortolan and Willems
who used neural networks for ECG classification [21]. Olszewski [125] exam-
ined feature extraction techniques for ECG classification, Melagni and Bazi used
support vector machines [119], Syed and Chia presented an approach based on
approximately conserved heart rate sequences [167], while Keogh et al. [96] ap-
plied a similarity-based, unsupervised, nearest-neighbor-like method in order to
find ”unusual” (and therefore likely irregular) segments of ECG signals.

Next, electrocardiograph datasets of the UCR Time-Series classification archive
(see also Table 2.2) are described.

ECG200

The ECG200 dataset contains 200 ECG signals, each of them consisting of 96
measured values (each time series reflects 1 heartbeat). Out of the 200 time series,
133 are labeled as normal while the remaining 67 are labeled as abnormal [125].
Time series are segments of a long ECG signal, therefore the experiments on this
dataset simulate the scenario when the automatic recognition system is supposed
to support the doctor while she or he is searching for abnormal parts of a long
ECG signal (first task listed above).

TwoLeadECG

The TwoLeadECG dataset contains 1162 ECG signals of length 82 (each time
series reflects 1 heartbeat). In the TwoLeadECG dataset, only two different leads
of the ECG are considered. Each signal originates from one out of these two leads.
An abnormality, infarct, is expressed with different intensity in these both leads.

11 From our point of view, each lead of the ECG is a signal that reflects the electrical
activity of a certain part of the heart, different leads correspond different parts. See also:
http://en.wikipedia.org/wiki/Electrocardiography

2.8 Summary 45

As the two classes correspond to two different leads of the ECG, experiments on
this dataset simulate the second scenario listed above, when we aim at finding in
which part of the patient’s heart the abnormality occurred.

ECGFiveDays

The ECGFiveDays dataset contains 884 ECG signals of length 136 taken from a
67 year old male. Two classes correspond to two different days, 12th and 17th
November 1990.

CinC

CinC (or CinC ECG Torso) contains 1420 ECG signals of length 1639. Four
classes of the data correspond to four different persons.

2.7.2 Shape Recognition in Images

One way of processing image data, and recognizing shapes is based on converting
images into time series, then time-series classification algorithms can be applied,
see e.g. [185]. “A two-dimensional shape, such as an arrowhead, can be converted
to a one-dimensional pseudo time series by tracing the boundary of the shape and
recording the local angle.”[197]

The datasets FacesUCR, FaceFour and OSULeaf were produced this way.
For FacesUCR and FaceFour, photographs of graduate students were taken and
converted into time series, the task is to recognize faces based on their head
profiles. OSULeaf was constructed based on the images available at the Herbarium
Website12.

2.8 Summary

In this chapter, the time-series classification problem was described. I emphasized
that this problem finds applications in various domains, and some of the real-world
tasks related to time-series classification were described in more detail. From the
research point of view, an interesting recent observation is that simple nearest
neighbor models together with the DTW distance measure work surprisingly well,
and in general they outperform many other state-of-the-art approaches. There-
fore, in the proceeding chapters I present techniques that I developed in order to
make the aforementioned model faster and more accurate.

12 http://web.engr.oregonstate.edu/˜tgd/leaves/dataset/herbarium

Part II

Fusion Methods for Time-Series
Classification

Chapter 3

Individual Quality Estimation

As described in Section 2.4, k-NN classifiers have been shown to be very successful
in the time series domain. In complex time series data sets, however, the intrinsic
characteristics, such as the dimensionality and the skewness in the distribution
of error (see Section 2.4.3), may vary from region to region. As a consequence,
a single, global choice for k (≥ 1) can become suboptimal, since each individual
region of the dataset may require a different value of k. Therefore, the motivation
of my study is to investigate how to perform k-NN time-series classification in
a more fine grained fashion that adapts to the varying characteristics among
different regions by avoiding the restriction of a single value of k.

In order to address the above problem in a principled way, and allow for
accurate k-NN classification of complex time series data, I propose individual
quality (IQ) estimation. IQ estimation is a mechanism that considers a range of
values for k and estimates for each time series x that has to be classified, the
local quality of each k-NN classifier. Local quality is defined as the likelihood of
correct classification of x by the k-NN classifier. This way, a quality score q(x, k)
is assigned to each pair (x, k-NN) of a time series x and a k-NN classifier.

This information is then used by a meta level decision method that combines
the predictions of k-NN classifiers. In my first approach, IQ-MAX, for each time
series x to be classified, the meta level decision method selects a value of k that
maximizes the estimated quality. As the quality estimation is done for each time
series x individually, for different time series, different values of k can be selected.
In my second approach, IQ-WV, the outputs of the different k-NN classifiers are
weighted according to their estimated quality.

Since I propose the classification of time series based on a quality score esti-
mated individually for each of them, the approach is called time-series classifica-
tion based on individual quality (IQ) estimation.1 IQ estimation, in particular the
calculation of the quality score, is performed by regression models that are trained
in order to make accurate estimations for the quality of the k-NN classifier.

1 I called an early-version of the approach as individualized error prediction in [29].

50 Chapter 3: Individual Quality Estimation

My contribution described in this Chapter can be summarized as follows:

1. I introduce IQ estimation. This is a general technique that can be applied
in context of many different classification problems and algorithms, i.e., not
just for the k-NN classification of time series. In particular, besides its
use in time-series classification, I will show that IQ estimation may also be
beneficial for regression problems involving conventional vector data.

2. I propose a novel method for IQ estimation and apply it in order to estimate
k-NN classifiers’ quality for the task of classifying time series.

3. In the IQ-estimation framework, I propose two approaches, IQ-MAX and
IQ-WV that use the output of IQ estimation in two different ways in order
to make time-series classification more accurate.

4. I perform a thorough experimental evaluation with 35 commonly used bench-
mark datasets. The results indicate significant improvement in accuracy
attained by the proposed approaches when compared to the widely used
1-NN classifier and to the k-NN classifier that determines a single optimal
k (k ≥ 1).

This Chapter is organized as follows: Section 3.1 presents a motivating ex-
ample, Section 3.2 outlines IQ estimation, whereas Section 3.3 describes both
proposed approaches IQ-MAX and IQ-WV. Section 3.4 presents the results of the
experimental evaluation. As IQ estimation is not limited to time-series classifi-
cation, I develop the IQ-Reg method for regression problems over conventional
vector data, which is presented in Section 3.5.

3.1 Motivating Example

As mentioned above, setting a single value of k for the k-NN time series classifier,
can lead to sub-optimal accuracy, because of varying characteristics among dif-
ferent regions of the data. I investigate this phenomenon in more detail by first
presenting a motivating example for the simple setting of binary classification of
a 2-dimensional dataset.2

Figure 6.1 depicts a set of labeled instances from two classes that are denoted
by triangles and circles. The density in the class of triangles (upper region) is
larger than in the class of circles (lower region). We consider two test instances,
denoted as ‘1’ and ‘2’ that have to be classified. We also assume that the ground-
truth considers test instance ‘1’ as a triangle, whereas ‘2’ as a circle. For ‘1’,
its 1-NN is a circle. Thus, the 1-NN method classifies ‘1’ incorrectly. Using the

2 In this example, in order to ease the presentation with an illustrative figure, I use a 2-
dimensional dataset, thus I depart for the moment from the examination of time series
data that are in general high-dimensional.

3.2 Outline of IQ Estimation 51

Figure 3.1: The optimal choice
of the number of nearest neighbors
is not unique for the entire data,
but it may be different from region
to region. In case of the classifica-
tion of the unlabeled instance de-
noted by ‘1’, k > 1 (e.g., k = 3) is
required; whereas for ‘2’ we should
choose k = 1. (We assume that
the ground-truth considers test in-
stance ‘1’ as a triangle, whereas
‘2’ as a circle.)

k-NN classifier with k > 1 (e.g., in the range between 3 and 6), we can overcome
this problem. However, the selection of a single k from the above range results in
incorrect classification of test instance ‘2’. Due to the lower density in the circles’
class, by setting k in the range between 3 and 6, we detect neighbors of ‘2’ whose
majority belongs to the triangles’ class (we assumed ‘2’ is a circle). This can be
observed in Figure 6.1, where the large dashed cycle around ‘2’ shows that among
all its 6-NN, only 1 belongs to the circles’ class. Thus, unlike for ‘1’, k = 1 is a
good choice for ‘2’, because its 1-NN (shown inside the smaller dashed cycle) has
the correct class.

The exemplified problem is amplified with time series data due to higher di-
mensionality and complexity in the latter. Therefore, I propose to estimate the
likelihood of correct classification (the quality) of the k-NN classifiers on an in-
dividualized basis, i.e., separately for each test instance to be classified I aim at
estimating the performance of each classifier. Based on this information, I want to
choose the classifiers having the best estimated quality and combine their outputs.
Following this approach in the example of Figure 6.1, besides the k-NN classifier,
an additional model is needed which will allow for predicting that k1 = 3, k1 = 4,
k1 = 5 and k1 = 6 are good choices (i.e. the likelihood of correct classification is
high) when classifying instance ‘1’, whereas k2 = 1 is an appropriate choice for the
classification of instance ‘2’. In the following I outline how the proposed approach
can be developed.

3.2 Outline of IQ Estimation

The schema of the proposed mechanism for individualized quality (IQ) estimation
for k-NN classifiers is depicted in Figure 3.2. This mechanism for IQ estimation

52 Chapter 3: Individual Quality Estimation

Figure 3.2: Classification based on IQ estimation

considers a range of values for k.3 This examined range of n values for k is
denoted as {ki}ni=1. For each ki-NN classifier and for each time series x that has
to be classified, we estimate the local quality: the quality score q̂(x, ki) denotes
the estimated likelihood that the ki-NN classifier (1 ≤ i ≤ n) correctly classifies x.

For IQ estimation, i.e. for the calculation of the estimated quality scores
q̂(x, ki), I introduce a second layer of models. The models of this second layer are
referred to as meta models. They are denoted as M∗

i,j in Figure 3.2. These meta
models are regression models that are trained to predict the likelihood of correct
classification of each considered ki-NN classifier. For each ki-NN classifier, several
meta models are trained, and the median of their outputs is used as the quality
score. Instead of the median, one could also use the average, however, I decided to
use the median because it is generally known to be more stable than the average.

3.2.1 IQ-MAX

In my first approach, IQ-MAX, for each time series x to be classified, k∗ ∈ {ki}ni=1

is selected so that k∗ maximizes estimated quality:

k∗ = arg max
ki
{q̂(x, ki)} 1 ≤ i ≤ n (3.1)

Finally, the k∗-NN classifier is used to classify x. This is shown in Figure 3.3.

3 Although this range is user-defined, its determination is much simpler and intuitive com-
pared to selecting a single k. This will be asserted by our experimental results, which
indicate that the range 1− 10 was appropriate for all examined benchmark datasets.

3.3 IQ Estimation for Time-Series Classification 53

Figure 3.3: Summary of IQ-MAX approach for k-NN classification

3.2.2 IQ-WV

In my second approach, IQ-WV, the labels predicted by the ki-NN classifiers are
combined according to a weighted voting schema. The quality scores are used as
weights. Formally, this approach can be described as follows. Consider the set
of ki-NN classifiers (models) that output class label c as the predicted class label
for a time series x. Let Mx

c denote the set of ki values for such ki-NN classifiers.
Denoting the class label predicted by the ki-NN classifier for the time series x as
fki(x), one can write:

Mx
c = {ki|fki(x) = c} (3.2)

The weight of class label c when classifying time series x, denoted as wx
c , can be

calculated as the sum of the quality scores associated to those ki-NN classifiers
that predict c as class label:

wx
c =

∑
ki∈Mx

c

q̂(x, ki) (3.3)

As final result of the classification of time series x, the class label having maximal
weight is selected:

f(x) = arg max
c
{wx

c } (3.4)

Note that in terms of Figure 3.2, IQ-MAX and IQ-WV differ only in the meta-
level decision method. In the case of IQ-MAX, this meta-level decision method
consists of selecting that ki-NN classifier which is expected to be the best. In
the case of IQ-WV, the meta-level decision method is realized by weighted voting
using q(x, ki) as weights of the respective predicted class labels fki(x).

A concrete algorithm for times-series classification is developed in the following
section, by specifying the secondary models that perform IQ estimation.

3.3 IQ Estimation for Time-Series Classification

The proposed mechanism for classification based on Individual Quality Estimation
involves two types of models:

54 Chapter 3: Individual Quality Estimation

• Primary models (for simplicity, I refer to them as models, whenever it is not
confusing) – they classify time series using the k-NN approach (with the
DTW distance).

• Meta models – they estimate the quality of the primary models, see M∗
i,j in

Figure 3.2.

In order to train the meta models, the original training data, D, is partitioned
into two disjoint subsets D1 and D2 (i.e., D1 ∪D2 = D,D1 ∩D2 = ∅). D2 is called
hold-out set. For each time series x ∈ D2, and for each examined value of ki in the
range {ki}ni=1, the ki-NN classifier uses D1 to classify x. Based on the class label
of x that is given in D2, one determines if the ki-NN classifier (for each 1 ≤ i ≤ n)
has correctly classified x. Time series x is associated with a quality score q(x, ki)
that is:

q(x, ki) =

{
1 if ki-NN classifies x correctly
0 otherwise

x ∈ D2 (3.5)

Thus, from the hold-out set D2, n new data sets D′i, 1 ≤ i ≤ n are generated.
Each D′i contains all time series of the hold-out set D2 along with their associated
quality scores (1 or 0) for the corresponding ki-NN classifier:

D′i =
{
∀x ∈ D2 :

(
x, q(x, ki)

)}
(3.6)

Next, each generated D′i acts as the training set for the corresponding meta
models. Thus, based on the associated quality scores in each D′i, the corresponding
meta models are trained as regression models in order to be able to predict the
quality score of the ki-NN classifier (i.e., the corresponding primary model) for
new time series.

The described process is shown in Figure 3.4, while the schema of the archi-
tecture of the approach is depicted in Figure 3.2. The quality of each primary
ki-NN classifier is estimated by n′ meta models, denoted as M∗

i,j, 1 ≤ j ≤ n′.

Figure 3.4: Training procedure for Individual Quality Estimation

3.3 IQ Estimation for Time-Series Classification 55

The estimation output by the meta model M∗
i,j is denoted as q̂j(x, ki). As already

mentioned,these quality estimations are aggregated by taking their median:

q̂(x, ki) = median q̂j(x, ki)
∀j (3.7)

Each meta model M∗
i,j is implemented as a k′j-NN regression model based on

the DTW distance (k′j is used in order to distinguish from ki that is used in the
primary ki-NN classification models). The secondary level prediction of M∗

i,j for
a new time series x∗ 6∈ D is calculated as

q̂j(x
∗, ki) =

∑
xn∈N (x∗)

q(xn, ki)

k′j
(3.8)

where N (x∗) ⊂ D′i is the set of k′j nearest neighbors of x∗ and q(xn, ki) is the
associated quality score of each xn ∈ N (x) and the ki-NN classifier.

3.3.1 Efficient Implementation

The training of meta models is performed in an off-line fashion, i.e., the process of
partitioning the train data into D1 and D2 and generating meta level training sets
D′i is performed off-line, independently of the (online) classification of unlabeled
(or test) time series.

Classification of new time series

Regarding the (online) time needed to classify a time series, first note that DTW,
as described in Section 2.3.2, can be calculated rapidly and the nearest neigh-
bors can be found efficiently using recent indexing techniques. More importantly,
please note that the schema presented in Figure 3.2 is a conceptual description of
the approach; in order to implement it efficiently, one can exploit an interesting
property of nearest neighbor classification and regression which is described be-
low. Suppose we want to classify a time series x using its k1 < . . . < kn nearest
neighbors.4 For this task, most of the computational costs are spent for finding
the nearest neighbors. However:

1. While classifying x with kn nearest neighbors, with minimal additional over-
head one can also produce the classification results for the other cases, be-
cause the sets of k1, . . . , kn−1 nearest neighbors of x, denoted as Nk1(x), . . . ,
Nkn−1(x), are subsets of the set of kn nearest neighbors: Nk1(x) ⊂ Nkn(x),
. . . , Nkn−1(x) ⊂ Nkn(x). Therefore, the nearest neighbors required for k1-
NN, . . . , kn−1-NN classifications can be found quickly among the kn nearest
neighbors.

4 In this discussion it is assumed that each ki is much smaller than the number of all the
time series in the train data: ∀ki : ki << |D|.

56 Chapter 3: Individual Quality Estimation

2. Furthermore: if the time series in two data sets are identical, only their
class labels differ, and we want to classify a new time series x∗, we need
to determine the nearest neighbors of x∗ only once. This can be exploited
in our case, because the training sets of all the meta models consist of the
same time series (only their meta-level class labels differ).

Taking both of the above observations into account, the whole meta level, con-
taining in total n × n′ nearest neighbor regression models, can be implemented
at approximately the same computational costs as one single nearest neighbor re-
gression model with k′ = max{k′1, . . . , k′n′}. Similarly, all the primary level models
together can be implemented at approximately the same computational costs as
one single nearest neighbor classifier with k = max{k1, . . . , kn}. Therefore, the
total classification time required for primary and meta models is approximately
twice as the classification time required by one single nearest neighbor classifier.

Training of the models

Regarding the training procedure and the respective off-line (training) time of
our approach, the computationally expensive part of the calculations consists
of the classification of the time series of the hold-out dataset D2. The same
is done in case if one searches for a globally optimal k for the k-NN classifier.
Therefore, the execution time of the (off-line) training procedure of our approach
is approximately the same as the time required for finding a globally optimal k
for the k-NN classifier using the hold-out data set D2.

Summarizing the discussion in this section, please note that, despite its complex
schema, my approach can be implemented efficiently. Assuming such an imple-
mentation, the execution times do not drastically differ from that of one single
a k-NN classifier: the online time necessary to classify new time series only in-
creases by a small factor of two, while the offline (training) time is approximately
the same as the time required to find a globally optimal k for one single k-NN
classifier.

3.4 Experimental Evaluation

In order to assist reproducibility, I provide a detailed description of the configu-
ration of the experiments I performed.

Methods. I compare the proposed methods, denoted as IQ-MAX and IQ-WV,
against two baselines: the 1-NN classifier and the k-NN classifier that selects a
global k using a hold-out set from the training data. The latter baseline uses the
same hold-out set as the proposed method, examines the same range of values for
k, and selects the one that produces the smallest average error for all time series

3.4 Experimental Evaluation 57

in the hold-out set. As distance measure, all examined methods use DTW with
standard settings (see Section 2.3.2).

Datasets. Out of all the 38 datasets introduced in Section 2.7, I examined 35
datasets: 3 of them were excluded (Coffee, Beef and OliveOil) due to their small
sizes (less than 100 time series). The names of the remaining data sets are listed
in the first column of Table 3.3.

Parameters. At the primary level of my both proposed methods, I use k-NN
classifiers with all k values in the range 1− 10.

For both of the proposed approaches, I implement the meta models as k′j-NN
regressors as described in Section 3.3. For IQ-MAX, in oder to keep the approach
simple, I use a single value of k′ = 5 at the meta level. The experimental results
show that this was appropriate for all the examined benchmark data sets.5 In
case of IQ-WV, I used a range of 1− 10 as k′ values.

Comparison protocol. I measure the misclassification error using 10-fold cross
validation, with the exception of three data sets (FaceFour, Lighting2, and Light-
ing7) for which I used the leave-one-out protocol due to their small size (less than
200 instances). In each round of the 10-fold cross validation, out of the 9 train-
ing splits, I used 5 to train the primary models (D1), the rest 4 splits served as
hold-out data (D2).6 For classifying test data, i.e., after training IQ-MAX and
IQ-VW and selecting the best k for k-NN, all training splits can be used by the
primary models.

After using the above evaluation procedure, I made a striking observation
about the performance of all examined methods (proposed and baselines): in the
majority of data sets, the misclassification error was rather low (less than 5%). In
order to have a challenging comparison with nontrivial classification, I choose to
affect intrinsic characteristics of the data sets. According to the findings in [142],
time series datasets usually have high intrinsic dimensionality and, thus, some of
their instances tend to misclassify a surprisingly large number of other instances
when using the k-NN classifier (k ≥ 1). These instances are called “bad hubs”
and are responsible for a very large fraction of the total error. For this reason,
for each time series x in a dataset, I measured two quantities: the badness f 1

B(x)
of x and the goodness f 1

G(x) of x. As described in Section 2.4.3, f 1
B(x) (f 1

G(x),
respectively) is the total number of time series in the data set, which have x as
their first nearest neighbor while having different (same, respectively) class label
compared to the class label of x. For each data set, I sort all time series according
to the fG

1 (x) − f 1
B(x) quantity in descending order. Then I change the label of

first p percent of the time series in this ranking (p varies in range 0-10%).7 Since

5 Note that I also experimented with other single k′ values for IQ-MAX. For k′ ≥ 5 I
observed similar results, whereas for small values of k′, such as 1 or 2, I observed worse
performance.

6 Ratios other than the examined 5-4, gave similar results. In case of leave-one-out, the
training data was split according to 5 to 4 proportion into D1 and D2.

58 Chapter 3: Individual Quality Estimation

Figure 3.5: Classification error (vertical axis) depending on the noise level p (hori-
zontal axis) for some data sets

the above procedure results in data sets that have stronger “bad hubs” and a less
clear separation between classes, the comparison among the examined methods
both becomes more challenging and can better characterize the robustness of the
methods.

3.4.1 Experimental Results

The results on classification error are summarized in Table 3.2, Table 3.3 and
Table 3.4. For brevity, the tables only report results at p = 0%, p = 1% and 5%
noise8, however, I observed similar tendencies at all the examined noise ratios.
For four data sets, Motes, SonyAIBORobotSurface, Trace and Plane Figure 3.5
shows the classification error for all the examined values of p.

Whenever IQ-MAX and/or IQ-WV significantly outperform(s) one or both of
the baselines, IQ-MAX and/or IQ-WV is/are marked bold in Table 3.2, Table 3.3
and Table 3.4. Additionally, I provide two symbols in the form ±/± in order to
denote the result of statistical-significance test (t-test at 0.05 level) against 1-NN

7 The time series whose labels were changed by this procedure, are assigned to an additional
class (not included in the original data set). In order to keep the experimental evaluation
meaningful, the time series with changed labels were excluded from the test set.

8 For simplicity, I refer to the above-described enrichment in bad hubs as noise.

3.4 Experimental Evaluation 59

and k-NN, respectively, where + denotes significance and − its absence. Similarly,
if one of the baselines significantly outperforms IQ-MAX or IQ-WV, it is marked
bold and I provide the result of statistical-significance test (again in form of ±/±)
against IQ-MAX and IQ-WV.

Table 3.1 summarizes these results by reporting the number of cases, per noise
level and in total, when IQ-MAX and IQ-WV wins/looses against the baselines,
1-NN and k-NN. (In parentheses I report in how many cases the differences are
statistically significant).

As shown, in the vast majority of the cases both IQ-MAX and IQ-WV outper-
form the competitors, often significantly; whereas when they loose, the difference
is usually not significant. Note that in several cases, the errors of my IQ estima-
tion based methods are an order of magnitude lower than the error of 1-NN and
k-NN: see e.g. TwoLeadECG at p = 1% (for both IQ-MAX and IQ-VW) and
at p = 5% (for IQ-WV) in Table 3.3 and Table 3.4, furthermore GunPoint and
Trace at p = 5% (for both IQ-MAX and IQ-VW) in Table 3.4. As expected, IQ-
WV, which is more sophisticated than IQ-MAX, generally performs better than
IQ-MAX, e.g. at p = 5% noise IQ-VW is superior to IQ-MAX on 29 datasets,
whereas IQ-MAX is better than IQ-VW in only 2 cases.

3.4.2 Execution Time

Even for the large data sets, I observed the execution times of my methods to
be reasonable, e.g. for IQ-MAX, I measured 12.9, 19.8 and 6.8 minutes off-line
(training) times (on a Xeon 2.3 GHz processor) for the data sets Wafer, TwoPat-
terns and ChlorineConcentration respectively. Note that this off-line time refers
to the time required for training which has to be performed only once. The same
off-line time was necessary for k-NN to find the globally optimal k. This is because
training is dominated by the classification of the hold-out set D2 in both cases.

Table 3.1: Number IQ-MAX’s and IQ-WV’s wins/looses against 1-NN and k-NN.
(In parentheses I report in how many cases wins/looses are statistically significant.)

p = 1 % p = 5 % total
IQ-MAX wins against 1-NN 29 (20) 34 (29) 63 (49)
IQ-MAX looses against 1-NN 5 (1) 1 (0) 6 (1)
IQ-MAX wins against k-NN 30 (15) 29 (9) 59 (24)
IQ-MAX looses against k-NN 5 (1) 5 (1) 10 (2)
IQ-WV wins against 1-NN 31 (21) 35 (31) 66 (52)
IQ-WV looses against 1-NN 3 (1) 0 3 (1)
IQ-WV wins against k-NN 31 (15) 34 (22) 65 (37)
IQ-WV looses against k-NN 4 (1) 0 4 (1)

60 Chapter 3: Individual Quality Estimation

Table 3.2: Classification error at p = 0% noise

Dataset IQ-MAX IQ-WV 1-NN k-NN
50 Words 0.229 0.233 0.203 -/+ 0.203 -/+
Adiac 0.370 0.374 0.344 +/+ 0.344 +/+
Car 0.275 0.267 0.250 0.258
CBF 0.000 0.000 0.000 0.000
ChlorineConcentration 0.048 0.055 0.004 +/+ 0.004 +/+
CinC 0.003 0.001 0.000 0.000
DiatomSizeReduction 0.006 0.006 0.003 0.003
ECG200 0.135 0.125 0.115 0.120
ECGFiveDays 0.012 0.010 0.009 0.009
FaceFour 0.054 0.063 0.045 0.054
FacesUCR 0.028 0.027 0.015 +/+ 0.015 +/+
Fish 0.229 0.217 0.203 +/- 0.200
GunPoint 0.010 0.010 0.010 0.015
Haptics 0.477 +/- 0.471 +/- 0.547 0.512
InlineSkate 0.457 0.432 0.429 0.448
ItalyPowerDemand 0.038 0.033 0.041 0.042
Lighting2 0.182 0.149 0.091 0.107
Lighting7 0.245 0.210 0.210 0.224
Mallat 0.014 0.012 0.013 0.013
MedicalImages 0.211 0.201 0.197 0.203
Motes 0.057 0.054 0.053 0.064
OSULeaf 0.303 0.292 0.251 +/- 0.251 +/-
Plane 0.005 0.005 0.000 0.000
SonyAIBORobotS. 0.027 0.029 0.021 0.021
SonyAIBORobotS.II 0.035 0.031 0.019 +/+ 0.019 +/+
StarLightCurves 0.075 0.071 -/+ 0.073 0.086
Symbols 0.023 0.024 0.019 0.019
SyntheticControl 0.018 0.018 0.017 0.015
SwedishLeaf 0.167 0.166 0.159 0.171
Trace 0.005 0.005 0.000 0.000
TwoLeadECG 0.001 0.001 0.001 0.001
TwoPatterns 0.000 0.000 0.000 0.000
Wafer 0.003 0.003 0.003 0.003
WordsSynonyms 0.217 0.217 0.194 -/+ 0.194 -/+
Yoga 0.068 0.071 0.055 +/+ 0.056 -/+

3.4 Experimental Evaluation 61

Table 3.3: Classification error at p = 1% noise

Dataset IQ-MAX IQ-WV 1-NN k-NN
50 Words 0.239 0.241 0.249 0.242
Adiac 0.373 0.377 0.381 0.384
Car 0.279 0.270 0.278 0.303
CBF 0.004 +/+ 0.001 +/+ 0.106 0.047
ChlorineConcentration 0.053 0.058 0.021 +/+ 0.021 +/+
CinC 0.003 +/+ 0.001 +/+ 0.033 0.011
DiatomSizeReduction 0.006 +/+ 0.006 +/+ 0.031 0.038
ECG200 0.136 0.126 0.171 0.156
ECGFiveDays 0.013 +/+ 0.010 +/+ 0.041 0.045
FaceFour 0.063 0.072 0.108 0.072
FacesUCR 0.029 +/+ 0.026 +/+ 0.059 0.039
Fish 0.228 0.219 +/- 0.254 0.239
GunPoint 0.010 -/+ 0.010 -/+ 0.036 0.061
Haptics 0.490 +/- 0.482 +/- 0.582 0.532
InlineSkate 0.469 0.442 -/+ 0.461 0.483
ItalyPowerDemand 0.038 +/+ 0.034 +/+ 0.087 0.081
Lighting2 0.192 0.142 0.133 0.125
Lighting7 0.254 0.211 0.254 0.289
Mallat 0.014 +/- 0.012 +/- 0.055 0.018
MedicalImages 0.212 0.203 0.228 0.234
Motes 0.059 +/+ 0.055 +/+ 0.090 0.078
OSULeaf 0.320 0.301 0.287 0.292
Plane 0.005 +/+ 0.005 +/+ 0.034 0.038
SonyAIBORobotS. 0.026 +/+ 0.031 +/- 0.073 0.068
SonyAIBORobotS.II 0.034 +/+ 0.032 +/+ 0.063 0.067
StarLightCurves 0.076 +/- 0.071 +/- 0.119 0.073
Symbols 0.023 +/- 0.024 +/- 0.061 0.031
SyntheticControl 0.020 +/- 0.018 +/- 0.076 0.017
SwedishLeaf 0.170 +/+ 0.169 +/+ 0.206 0.197
Trace 0.005 0.005 0.046 0.036
TwoLeadECG 0.001 +/+ 0.001 +/+ 0.041 0.052
TwoPatterns 0.001 +/+ 0.001 +/+ 0.065 0.007
Wafer 0.003 +/- 0.003 +/- 0.042 0.004
WordsSynonyms 0.224 0.220 0.238 0.241
Yoga 0.071 +/+ 0.072 +/+ 0.099 0.114

62 Chapter 3: Individual Quality Estimation

Table 3.4: Classification error at p = 5% noise. The last column shows the overall
standard deviation of the secondary models for all k′ values in the range 5 ≤ k′ ≤ 10.

Dataset IQ-MAX IQ-WV 1-NN k-NN σk′

50 Words 0.270 +/- 0.254 +/- 0.388 0.260 0.021
Adiac 0.415 +/- 0.411 +/+ 0.508 0.451 0.018
Car 0.310 +/- 0.283 +/+ 0.416 0.353 0.051
CBF 0.043 +/- 0.034 +/+ 0.328 0.057 0.044
ChlorineConc. 0.077 0.073 0.075 0.075 0.021
CinC 0.008 +/- 0.004 +/+ 0.143 0.021 0.048
DiatomSizeRed. 0.010 +/+ 0.010 +/+ 0.141 0.049 0.058
ECG200 0.150 +/- 0.124 +/- 0.313 0.134 0.073
ECGFiveDays 0.020 +/+ 0.017 +/+ 0.164 0.136 0.041
FaceFour 0.075 0.075 0.234 0.112 n/a
FacesUCR 0.044 +/- 0.033 +/+ 0.193 0.046 0.028
Fish 0.244 +/- 0.244 +/- 0.386 0.280 0.042
GunPoint 0.016 +/+ 0.011 +/+ 0.162 0.176 0.107
Haptics 0.540 +/- 0.533 +/- 0.681 0.553 0.026
InlineSkate 0.523 0.504 +/+ 0.562 0.570 0.025
ItalyPowerDemand 0.059 +/- 0.047 +/- 0.237 0.060 0.030
Lighting2 0.209 0.157 0.270 0.209 n/a
Lighting7 0.279 0.243 0.426 0.338 n/a
Mallat 0.019 +/+ 0.017 +/+ 0.178 0.034 0.030
MedicalImages 0.228 +/- 0.211 +/+ 0.339 0.256 0.023
Motes 0.073 +/+ 0.065 +/+ 0.206 0.107 0.038
OSULeaf 0.363 0.308 +/+ 0.402 0.345 0.028
Plane 0.020 +/+ 0.010 +/+ 0.148 0.114 0.093
SonyAIBOR.S. 0.035 +/+ 0.034 +/+ 0.234 0.083 0.047
SonyAIBOR.S.II 0.037 +/- 0.034 +/+ 0.212 0.119 0.031
StarLightCurves 0.096 +/- 0.089 +/+ 0.253 0.098 0.003
Symbols 0.029 +/- 0.031 +/- 0.196 0.036 0.040
SyntheticControl 0.028 +/- 0.035 +/- 0.227 0.058 0.057
SwedishLeaf 0.189 +/+ 0.181 +/+ 0.328 0.216 0.023
Trace 0.005 +/- 0.005 +/- 0.180 0.064 0.074
TwoLeadECG 0.005 +/+ 0.002 +/+ 0.175 0.025 0.042
TwoPatterns 0.014 +/- 0.012 +/+ 0.236 0.019 0.026
Wafer 0.006 +/- 0.005 +/- 0.160 0.005 +/- 0.025
WordsSynonyms 0.270 +/- 0.257 +/+ 0.379 0.287 0.032
Yoga 0.085 +/- 0.080 +/+ 0.223 0.115 0.020

3.4 Experimental Evaluation 63

Figure 3.6: RMSE
of the meta models for
various values of k′ for
FacesUCR and CinC
at p = 5 % noise.
(Bars show standard
deviations.)

For IQ-MAX the on-line time required to classify a new time series was 0.22, 0.51
and 0.23 seconds (for the above mentioned datasets). For IQ-WV, I measured
similar execution times which justify the expectations based on the discussion in
Section 3.3.1. Therefore, my approaches are able to maintain fast classification of
new time series.

3.4.3 Meta model’s quality

I also examined the error of the quality estimation performed by the meta models.
In order to gain insight in to the role of the number of nearest neighbors at the
meta level, k′, Figure 3.6 depicts the root mean squared error (RMSE)9 of the
meta models as function of k′ for two characteristic datasets. Increasing k′ initially
leads to improvement of the meta models. However, after a point (k′ = 5 in the
examined cases) the error of the meta models becomes stable, i.e. it does not
change significantly. This tendency is similar in the range 5 ≤ k′ ≤ 10 for all data
sets. The difference of the meta models’ performance between k′ = 5 and k′ = 10
is very small in general, which is shown in Figure 3.7. Further, the last column of
Table 3.4 shows for each dataset the overall standard deviation of the secondary
models for all k′ values in the range 5 ≤ k′ ≤ 10. The resulting small values in
all cases indicate the stability of the approach w.r.t. k′. This justifies the use of
k′ = 5 for the IQ-MAX approach.

9 RMSE is defined in Section 6.1. Given a primary model and a meta model, the RMSE of
the meta model describes how well the meta model estimates the quality of the primary
model. Smaller values correspond more accurate meta models. While calculating the
RMSE of the meta model, for each time series x in the test data, q̂(x, ki), the quality
estimation output by the meta model is compared to the true quality of the primary
model, q(x, ki) which is 1 if the primary model classifies x correctly and 0 otherwise. The
reported results are aggregated over 10 folds and various primary models.

64 Chapter 3: Individual Quality Estimation

Figure 3.7: Average difference of the meta models’ performance (in RMSE) between
using k′ = 5 and k′ = 10 at p = 5% noise for each dataset

3.5 IQ-Reg: IQ Estimation for Regression

As mentioned, Individual Quality Estimation is not limited to the context of time-
series classification. Here, using the framework of IQ Estimation, I develop the
IQ-Reg approach for regression problems. Since IQ-Reg is similar to IQ-MAX and
IQ-WV, therefore, the description below focuses on the differences.

Suppose we are given a primary regression model M and we aim at enhancing
M with Individual Quality Estimation. The major steps of IQ-Reg are:

1. Split the labeled training data into two subsets DA and DB.

2. Train the elementary model M on DA.

3. Let M predict the labels of DB. As opposed to the case of classification, for
regression problems, these labels are continuous.

4. As the true labels of DB are known, for each instance x ∈ DB, one can
calculate the quality score of the prediction as the absolute error of the
predicted labels:

q(x,M) = c(x)− fM(x) (3.9)

where fM(x) denotes the prediction of the primary model M and c(x) is the
true, in this case continuous, label of x.

5. Train a regression model M∗ on DB using the calculated errors as labels.

An example for the training procedure of IQ-Reg is shown in Figure 3.8.
When an unlabeled instance x′ is processed, the primary model M predicts its

label, while the meta model M∗ estimates the error of this prediction. Then the
final predicted label of x′ is the label predicted by M corrected with the estimated
error, i.e., the output of the meta-model, denoted as fM∗(x

′):

fIQReg(x
′) = fM(x′) + fM∗(x

′) (3.10)

3.5 IQ-Reg: IQ Estimation for Regression 65

Figure 3.8: Training procedure of IQ-Reg

Figure 3.9: Procedure of the evaluation of IQ-Reg

3.5.1 Experiments with IQ-Reg

IQ-Reg is generic as it allows us to apply various regression models both at the
primary level (as M) and at the meta-level (as M∗). Whenever a particular choice
of M and M∗ is made, one would like to evaluate how successfully M∗ could
predict the errors of M . As this evaluation procedure is non-trivial, I continue by
outlining the applied evaluation protocol.

In order to evaluate IQ-Reg, one first trains both M and M∗ on training data
as described above. Then, using M∗, one can estimate the error for each instance
of the disjoint test data DTest. Simultaneously, one can predict the labels of DTest

using M . Comparing the predicted labels to the ground-truth of the test data,
one can calculate the true errors of the predicted labels. Finally, one can compare
the estimated errors to the true errors. When doing so, I calculate RMSE (root
mean squared error) between the vector of true errors and the vector of estimated
errors. This process is shown in Figure 3.9.

In the first experiment, I systematically investigated various combinations of
primary models M and meta models M∗ for IQ-Reg. I used the following publicly
available real-world datasets from the UCI repository [69]: i) Communities, ii)
WineQuality (both red wines and white wines) and iii) Parkinson (both targets:
motoric abilities and total abilities). As I observed very similar trends on all data

66 Chapter 3: Individual Quality Estimation

Figure 3.10: Results of the experimental evaluation: the performance of IQ-Reg
with various combinations of models and meta-models (dataset: Communities). The
same model types were used at the elementary and meta levels. For more details
about the models see the WEKA software package [188].

sets, only results on the Communities data set are reported. As a simple baseline,
I used the meta-model M∗

bl that estimates that the prediction of the primary model
M is always perfectly accurate.

I performed 10-fold-cross-validation: in each round, out of the 9 training splits,
5 splits constituted DA and the remaining 4 splits served as DB.

Figure 3.10 summarizes the results: it shows for all the examined combinations
of models and meta-models, in how many folds the meta model was better than
the baseline. The applied models are listed in the right of the figure, I used
the implementations from the WEKA software package10 [188]. In the matrix,
the horizontal dimension corresponds to the applied meta-model M∗, while the
primary models are listed along the vertical dimension. For example, the 4th
column position in the 2nd row corresponds to the combination where the primary
model is k-NN and the meta model is LWL. The color of the cell shows how many
times (in how many rounds of the 10-fold-cross-validation) the trained meta-model
M∗ was better than the baseline M∗

bl. Black, dark gray, and light gray cells mean
that M∗ is better than M∗

bl 9 or 10 times, 7 or 8 times, and 5 or 6 times respectively.
As a general observation, one can see that for almost all of the elementary

models, there are meta-models that are capable to deliver relatively good error
estimations, although the particular choice of the meta-model is important: some
of the meta-models deliver very poor estimations, while others work well. As
a further observation, one can see that RBF-Networks and SVMs seem to work
generally well as meta-models.

10 http://www.cs.waikato.ac.nz/ml/weka/index.html

Chapter 4

Instance Selection

As described in Section 2.4.2, the efficiency of nearest-neighbor classification can
be improved with several methods, one of the commonly applied approaches is
instance selection. This approach reduces the size of the training set by selecting
the most representative instances. Then, only the selected ones are used while
classifying new instances. Instance selection is orthogonal to the other speed-up
techniques described in Section 2.4.2, as it can be used together with them in
order to achieve high efficiency.

According to the findings summarized in Section 2.4.3, the presence of hubs
has to be taken into account for instance selection. Score functions, which allow
for ranking the instances, constitute a core component of instance selection algo-
rithms. In this section, I will explain that the suitability of such score functions
is based on the hubness property that holds in most time series data sets.

As major contributions of this section, I analyze the complexity of the instance
selection problem and show that my approach, INSIGHT, which is based on the
aforementioned score functions, optimize the coverage of training data, in the
sense that time series x covers an other time series x′, if x′ can be classified
correctly using x.

I also propose the usage of graphs for better understanding the instance se-
lection problem and for the design of new algorithms: the proposed notion of
graph-coverage supports the analysis of the properties of my approach from the
point of view of coverage maximization. For the above reasons, my approach is de-
noted as Instance Selection based on Graph-coverage and Hubness for Time-series
or INSIGHT. INSIGHT generalizes FastAWARD [194], a state-of-the-art instance
selection method for time-series classification (Section 2.4.2), by being able to use
several formulae for scoring instances. Furthermore, instead of the ”pessimistic”
selection applied in FastAWARD, INSIGHT uses an ”optimistic” strategy: while
FastAWARD iteratively discards bad instances, beginning with the worst one, and
the instances remaining at the end are considered as the selected ones, INSIGHT
focuses on the identification of the good instances, and directly selects the good
ones. Moreover, compared to FastAWARD, INSIGHT is simpler and computa-

68 Chapter 4: Instance Selection

tionally more efficient by avoiding iterative re-ranking of instances. I evaluate
INSIGHT in experiments on the collection of time-series classification datasets
described in Section 2.7 and I compare INSIGHT against FastAWARD. The re-
sults show that INSIGHT substantially outperforms FastAWARD both in terms
of classification accuracy and execution time required for performing the selection
of instances.

Most likely, the reason for this is that FastAWARD follows some decisions
whose nature can be considered ad-hoc (such as the application of an iterative
procedure or the tie-breaking criterion [194]). In particular, I provide insights into
the fact that the iterative procedure of FastAWARD is not a well-formed decision,
since its large computation time can be saved by ranking instances only once.
Furthermore, I observed the warping window size to be less crucial, and therefore
I simply use a fixed window size for INSIGHT (that outperforms FastAWARD
using adaptive window size).

This Chapter is organized as follows. Section 4.1 discusses score-based instance
selection in the light of the hubness phenomenon. In section 4.2, I analyze the
complexity of the instance selection problem, and the properties of my approach.
Section 4.3 presents the experimental results.

4.1 Score functions based on Hubness

INSIGHT performs instance selection by assigning a score to each instance and
selecting instances with the highest scores (see Algorithm 5), therefore the ”in-
telligence” of INSIGHT is hidden in the applied score function. In this section,
I explain the suitability of score functions in the light of the hubness property
described in Section 2.4.3.

Good 1-occurrence Score

INSIGHT can use scores that take the good 1-occurrence of an instance x into
account. Thus, a simple score function is the good 1-occurrence score gG(x):

gG(x) = g1
G(x) (4.1)

Henceforth, when there is no ambiguity, the upper index 1 is omitted.

Relative Score

While x is being a good hub, at the same time it may appear as bad neighbor of
several other instances. Thus, INSIGHT can also consider scores that take bad
occurrences into account. This leads to scores that relate the good occurrence of
an instance x to either its total occurrence or to its bad occurrence. For simplicity,
I focus on the following relative score, however, other variations could be used too:

4.2 Coverage and Instance Selection 69

Algorithm 5 INSIGHT

Require: Time series dataset D, Score Function g,
Number of selected instances N

Ensure: Set of selected instances (time series) D′

1: Calculate score function g(x) for all x ∈ D
2: Sort all the time series in D according to their scores g(x)
3: Select the top-ranked N time series and return the set containing them

Relative score gR(x) of a time series x is the fraction of good 1-occurrences and
total occurrences plus one (to avoid division by zero):

gR(x) =
g1
G(x)

g1
N(x) + 1

(4.2)

Xi’s score

Interestingly, gkG(x) and gkB(x) allows us to interpret the ranking criterion used by
Xi et al. in FastAWARD [194] as another form of score for relative hubness:

gXi(x) = g1
G(x)− 2g1

B(x) (4.3)

4.2 Coverage and Instance Selection

Based on scoring functions, such as the ones described in the previous section,
INSIGHT selects top-ranked instances (see Algorithm 5). However, while rank-
ing the instances, it is also important to examine the interactions between them.
For example, suppose that the first top-ranked instance allows correct 1-NN clas-
sification of almost the same instances as the second top-ranked instance. The
contribution of the second top-ranked instance is, therefore, not important with
respect to the overall classification. In this section, I describe the concept of cov-
erage graphs, which helps to examine the aforementioned aspect of interactions
between the selected instances. In Section 4.2.1, I examine the general relationship
between coverage graphs and instance-based learning methods that can be used
for classification, whereas in Section 4.2.2, I focus on the case of 1-NN time-series
classification.

4.2.1 Coverage graphs for Instance-based Learning

I first define the notion of coverage graphs1 , which in the sequel allows to cast
the instance-selection problem as a graph-coverage problem:

1 Instead of the term coverage graph, one could alternatively use similarity graph.

70 Chapter 4: Instance Selection

Definition 8 (Coverage graph). A coverage graph Gc = (V,E) is a directed graph,
where each vertex v ∈ VGc corresponds to a time series of the (labeled) training
set. A directed edge from vertex vx to vertex vx′ denoted as (vx, vx′) ∈ EGc states
that instance x′ contributes to the correct classification of instance x.

I first examine coverage graphs for the general case of instance-based learning
methods, which include the k-NN (k ≥ 1) classifier and its generalizations, such
as adaptive k-NN classification where the number of nearest neighbors k is cho-
sen adaptively for each object to be classified [126], [187].2 In this context, the
contribution of an instance x′ to the correct classification of an other instance x
refers to the case when x′ is among the nearest neighbors of x and they have the
same label.

Based on the definition of the coverage graph, the coverage of a vertex and
the coverage of a vertex-set are defined as follows:

Definition 9 (Coverage of a vertex and of vertex-set). A vertex v covers an other
vertex v′ if there is an edge from v′ to v; C(v) denotes3 the set of all vertices
covered by v: C(v) = {v′|v′ 6= v ∧ (v′, v) ∈ EGc}. Moreover, a set of vertices S0

covers all the vertices that are covered by at least one vertex v ∈ S0:

C(S0) =
⋃
∀v∈S0

C(v) (4.4)

Let Gc denote the coverage graph constructed based on the (labeled) training
data. Following the common assumption that the distribution of the test (unla-
beled) data is similar to the distribution of the training data, the more vertices are
covered in Gc, the better prediction is expected for new (unlabeled) data. There-
fore, the objective of an instance-selection algorithm is to find the vertex-set S
(i.e., select instances) that covers the entire set of vertices (i.e., the entire train-
ing data), or formally: C(S) = VGc . This, however, may not be always possible,
such as when there exist vertices that are not covered by any other vertex. If a
vertex v is not covered by any other vertex, this means that the out-degree of
v is zero (there are no edges going from v to other vertices). Denote the set of
such vertices with V 0

Gc
. Then, an ideal instance selection algorithm should cover

all coverable vertices, i.e., for the selected vertices S, an ideal instance selection
algorithm should fulfill: ⋃

∀v∈S

C(v) = VGc \ V 0
Gc (4.5)

In order to achieve the aforementioned objective, the trivial solution is to
select all the instances of the training set, i.e., chose S = VGc . This, however is

2 Please notice that in the general case the resulting coverage graph has no regularity
regarding both the in- and out-degrees of the vertices (e.g., in the case of k-NN classifier
with adaptive k).

3 Instead of C(v), one could alternatively use the notation fanin(v).

4.2 Coverage and Instance Selection 71

not an effective instance selection algorithm, as the major aim of discarding less
important instances is not achieved at all. Therefore, the natural requirement
regarding the ideal instance selection algorithm is that it selects the minimal
amount of those instances that together cover all coverable vertices. This way,
the instance selection task is cast as a coverage problem:

Instance selection problem (ISP) — We are given a coverage graph Gc =
(V,E). We aim at finding a set of vertices S ⊆ VGc so that: i) all the coverable
vertices are covered (see Equation 4.5), and ii) the size of S is minimal among all
those sets that cover all coverable vertices.

Next, I will show that this problem is NP-complete, because it is equivalent to the
set-covering problem (SCP), which is NP-complete [47]. I proceed with recalling
the set-covering problem:

Set-covering problem (SCP) — ”An instance (X,F) of the set-covering prob-
lem consists of a finite set X and a family F of subsets of X, such that every
element of X belongs to at least one subset in F . (...) We say that a subset
F ∈ F covers its elements. The problem is to find a minimum-size subset C ⊆ F
whose members cover all of X”[47]. Formally: the task is to find C ⊆ F , so that
|C| is minimal and X =

⋃
∀F∈C

F .

Theorem 1. ISP and SCP are equivalent.

Proof. I show the equivalence in two steps. First, I show that ISP is a subproblem
of SCP, i.e. for each instance of ISP a corresponding instance of SCP can be
constructed (and the solution of the SCP-instances directly gives the solution of
the ISP-instance). In the second step, I show that SCP is a subproblem of ISP.
The both together imply equivalence.

For each ISP-instance one can construct a corresponding SCP-instance: X :=
VGc \ V 0

Gc
and F := {C(v)|v ∈ VGc} We say that vertex v is the seed of the set

C(v). The solution of SCP is a set F ⊆ F . The set of seeds of the subsets in F
constitute the solution of ISP:

S = {v|C(v) ∈ F} (4.6)

While constructing an ISP-instance for an SCP-instance, we have to be careful,
because the number of subsets in SCP can be greater than the size ofX. Therefore,
in the coverage graph Gc to be constructed, there are two types of vertices. Each
first-type-vertex vx corresponds to one element x ∈ X, and each second-type-
vertex vF correspond to a subset F ∈ F . Edges go only from first-type-vertices
to second-type-vertices, thus only first-type-vertices are coverable. There is an
edge (vx, vF) from a first-type-vertex vx to a second-type-vertex vF if and only if

72 Chapter 4: Instance Selection

the corresponding element x ∈ X is included in the corresponding subset F , i.e.
x ∈ F . When the ISP is solved, all the coverable vertices (first-type-vertices) are
covered by a minimal set of vertices S. In this case, S obviously consists only of
second-type-vertices. The solution of the SCP are the subsets corresponding to
the vertices included in S:

C = {F |F ∈ F ∧ vF ∈ S} (4.7)

4.2.2 1-NN coverage graphs

In this section, I introduce the notion of 1-nearest neighbor (1-NN) coverage
graphs which is motivated by the good performance of the 1-NN classifier for
time-series classification. I show the optimality of INSIGHT for the case of 1-NN
coverage graphs and how the NP-completeness of the general case is alleviated for
this special case.

I begin with defining the specialization of the coverage graph based on the
1-NN relation:

Definition 10 (1-NN coverage graph). A 1-NN coverage graph, denoted by G1NN

is a coverage graph where (vx, vx′) ∈ EG1NN
if and only if time series x′ is the first

nearest neighbor of time series x and the class labels of x and x′ are equal.

This definition states that an edge points from each vertex v to the nearest
neighbor of v if and only if this is a good nearest neighbor (i.e., their labels match).
Thus, vertexes are not connected with their bad nearest neighbors.

From the practical point of view, in order to account for the fact that the size
of selected instances is defined a priori (e.g., it is a user-defined parameter), a
slightly different version of the Instance Selection Problem (ISP) is the following:

m-limited Instance Selection Problem (m-ISP) — If one wishes to select
exactly m labeled time series from the training set, then, instead of selecting the
minimal amount of time series that ensure total coverage, one can select those
m time series that maximize the coverage. I call this variant m-limited Instance
Selection Problem (m-ISP). The following proposition shows the relation between
1-NN coverage graphs and m-ISP:

Proposition 1. In 1-NN coverage graphs, selecting those m vertices v1, ..., vm
that have the largest covered sets C(v1), ..., C(vm) leads to the optimal solution
of m-ISP.

The validity of this proposition stems from the fact that, in 1-NN coverage
graphs, the out-degree of all vertices is 1. This implies that each vertex is covered
by at most one other vertex, i.e., the covered sets C(v) are mutually disjoint for
each v ∈ VG1NN

.
Proposition 1 describes the optimality of INSIGHT, when the good 1-occurrence

score (Equation 4.1) is used, since the size of the set C(vi) is the number of vertices
having vi as their first good nearest neighbor.

4.3 Experiments 73

4.2.3 Coverage Graph for Relative Scores

It has to be noted that the described framework of coverage graphs can be ex-
tended to other scores too, such as the relative score of Equations 4.3. In such
cases, one can additionally model bad neighbors and introduce weights on the
edges of the graph.
Consider scores of the form

gY (x) = a g1
G(x)− b g1

B(x) (4.8)

where a and b are user-defined real-number coefficients, e.g. for the score of
Equation 4.3, a = 1 and b = −2. I extend the definition of the 1-NN coverage
graph below:

Definition 11 (Weighted 1-NN coverage graph). In a weighted 1-NN coverage
graph, denoted by Gw

1NN , there is an edge (vx, vx′) ∈ EGw1NN
if and only if time

series x′ is the first nearest neighbor of time series x. The weight of the edge
w(vx, vx′) is

w(vx, vx′) =

{
a if the class labels of x and x′ are equal
b otherwise

(4.9)

For a weighted coverage graph I introduce the coverage score of a vertex v as
the sum of weights of incoming edges to v:

CScore(v) =
∑

∀v′∈C(v)

w(v′, v) (4.10)

In this framework, the selection of the highest-scored instances according to Equa-
tion 4.3 corresponds to selecting instances that have highest coverage score in case
of a = 1 and b = −2.

4.3 Experiments

I experimentally examine the performance of INSIGHT with respect to effective-
ness (i.e. classification accuracy), and efficiency (i.e. execution time required for
instance selection). As baseline, FastAWARD [194] is used.4

I used 37 publicly available time series datasets from the collection described
in Section 2.7.5 I performed 10-fold-cross validation. INSIGHT uses gG(x) (Equa-
tion 4.1) as the default score function, however gR(x) (Equation 4.2) and gXi(x)

4 Note that I used my own implementation of FastAWARD because I could not find any
other available implementation. Also note that the experimental protocol differs from
the one used in [194], therefore, the results are not directly comparable. However, using
my implementation of FastAWARD, I observed very similar behavior of FastAWARD
compared to what was reported in [194].

5 For StarLightCurves the calculations took unacceptably long for FastAWARD, therefore
this dataset is omitted.

74 Chapter 4: Instance Selection

Table 4.1: Accuracy ± standard deviation for INSIGHT and FastAWARD
(underlined: winner)∗

Dataset FastAWARD INS-gG(x) Dataset FastAWARD INS-gG(x)
50words 0.526±0.041 0.642±0.046 Lighting7 0.447±0.126 0.510±0.082
Adiac 0.348±0.058 0.469±0.049 MALLAT 0.551±0.098 0.969±0.013
Beef 0.350±0.174 0.333±0.105 MedicalImg 0.642±0.033 0.693±0.049
Car 0.450±0.119 0.608±0.145 Motes 0.867±0.042 0.908±0.027
CBF 0.972±0.034 0.998±0.006 OliveOil 0.633±0.100 0.717±0.130
Chlorine 0.537±0.023 0.734±0.030 OSULeaf 0.419±0.053 0.538±0.057
CinC 0.406±0.089 0.966±0.014 Plane 0.876±0.155 0.981±0.032
Coffee 0.560±0.309 0.603±0.213 Sony 0.924±0.032 0.976±0.017
Diatom 0.972±0.026 0.966±0.058 SonyII 0.919±0.015 0.912±0.033
ECG200 0.755±0.113 0.835±0.090 SwedishLeaf 0.683±0.046 0.756±0.048
ECGFive 0.937±0.027 0.945±0.020 Symbols 0.957±0.018 0.966±0.016
FaceFour 0.714±0.141 0.894±0.128 Syntheticl 0.923±0.068 0.978±0.026
FacesUCR 0.892±0.019 0.934±0.021 Trace 0.780±0.117 0.895±0.072
FISH 0.591±0.082 0.666±0.085 TwoPatterns 0.407±0.027 0.987±0.007
GunPoint 0.800±0.124 0.935±0.059 TwoLead 0.978±0.013 0.989±0.012
Haptics 0.303±0.068 0.435±0.060 Wafer 0.921±0.012 0.991±0.002
Inline 0.197±0.056 0.434±0.077 WordsSyn 0.544±0.058 0.637±0.066
Italy 0.960±0.020 0.957±0.028 Yoga 0.550±0.017 0.877±0.021
Lighting2 0.694±0.134 0.670±0.096
∗ The names of some datasets are abbreviated, for the full names see Table 2.2.

(Equation 4.3) are also being examined. The resulting combinations are denoted
as INS-gG(x), INS-gR(x) and INS-gXi(x), respectively.

The distance function for the 1-NN classifier is DTW (see Section 2.3.2).
In contrast to FastAWARD, which determines the optimal warping window size
wDTW

opt , INSIGHT sets the warping-window size to a constant of 5%. (This selec-
tion is justified by the results presented in [143], [145], which show that relatively
small warping window sizes lead to higher accuracy, see also Section 2.3.2.) In
order to speed up the calculations, I used the LB Keogh lower bounding tech-
nique [100] both for INSIGHT and for FastAWARD.

4.3.1 Results on Effectiveness

I first compare INSIGHT and FastAWARD in terms of classification accuracy
that results when using the instances selected by these two methods. Table 4.1
presents the average accuracy and corresponding standard deviation for each data
set, for the case when the number of selected instances is equal to 10% of the size
of the training set (for INSIGHT, the INS-gG(x) variation is used). In the vast

4.3 Experiments 75

Figure 4.1: Accuracy as function of the number of selected instances (in % of the
entire training data) for some datasets for FastAWARD and INSIGHT.

majority of cases, INSIGHT substantially outperforms FastAWARD. In the few
remaining cases, their difference are remarkably small (in the order of the second
or third decimal digit, which are not significant in terms of corresponding standard
deviations).

I also compared INSIGHT and FastAWARD in terms of the resulting classi-
fication accuracy for varying number of selected instances. Figure 4.1 illustrates
that INSIGHT compares favorably to FastAWARD. Analogous conclusions can
be drawn for all other datasets for which INSIGHT outperforms FastAWARD.

Besides the comparison between INSIGHT and FastAWARD, what is also in-
teresting is to examine their performance relative to using the entire training data
(i.e., no instance selection is applied). Indicatively, for 17 datasets from Table 4.1

76 Chapter 4: Instance Selection

Figure 4.2: Skewness of the distribution of g1
G(x) as function of the number of

iterations performed in FastAWARD. The skewness is shown on the vertical axis,
while the number of performed iterations is shown on the horizontal axis. On the
trend, the skewness decreases from iteration to iteration.

the accuracy resulting from INSIGHT6 is worse by less than 0.05, compared to
using the entire training data. For FastAWARD7 this number is 4, which clearly
shows that INSIGHT selects more representative instances of the training set than
FastAWARD.

Next, I investigate the reasons for the presented difference between INSIGHT
and FastAWARD. In Section 2.4.3, the skewness of good k-occurrence, gkG(x),
was identified as a crucial property for instance selection to work properly, since
skewness renders good hubs to become representative instances. In the exami-
nation, I found that using the iterative procedure applied by FastAWARD, this
skewness has a decreasing trend from iteration to iteration. Figure 4.2 exempli-
fies this by illustrating the skewness of g1

G(x) for two data sets as a function of
iterations performed in FastAWARD. (In order to quantitatively measure skew-
ness, the standardized third moment is used, see Equation 2.35.) The reduction
in the skewness of g1

G(x) means that FastAWARD is not able to identify in the
end representative instances, since there are no pronounced good hubs remaining.
Note that FastAWARD iteratively drops bad instances, the instances remaining
at the end are considered as the selected instances that are used for classification,
therefore, the reduction of skewness is crucial.

In order to further understand that the reduced effectiveness of FastAWARD
stems from its iterative procedure and not from its score function, gXi(x) (Equa-
tion 4.3), I compare the accuracy of all variations of INSIGHT including INS-
gXi(x). Table 4.2 reports for how many datasets INS-gG(x), INS-gR(x) and INS-
gXi(x) win and loose compared to FastAWARD. Remarkably, INS-gXi(x) clearly
outperforms FastAWARD for the majority of cases, which verifies the previous
statement. Moreover, the differences between the three variations are not large,
indicating the robustness of INSIGHT with respect to the scoring function.

6 selection of 10 % of all the training instances with INS-gG(x)

7 selection of 10 % of all the training instances

4.3 Experiments 77

Table 4.2: Number of datasets where different versions of INSIGHT win/lose against
FastAWARD

INS-gG(x) INS-gR(x) INS-gXi(x)
Wins 32 33 33
Loses 5 4 4

Table 4.3: Execution times (in seconds, averaged over 10 folds) of instance selection
using INSIGHT and FastAWARD

Dataset FastAWARD INS-gG(x) Dataset FastAWARD INS-gG(x)
50words 94 464 203 Lighting7 5 511 8
Adiac 32 935 75 Mallat 4 562 881 19 041
Beef 1 273 3 MedicalImages 13 495 55
Car 11 420 18 Motes 17 937 55
CBF 37 370 67 OliveOil 3 233 5
Chlorine 16 920 1 974 OSULeaf 80 316 118
CinC 3 604 930 16 196 Plane 1 527 4
Coffee 499 1 Sony 4 608 11
Diatom 18 236 44 SonyII 10 349 23
ECG200 634 2 SwedishLeaf 37 323 89
ECGFiveDays 20 455 60 Symbols 165 875 514
FaceFour 4 029 6 SyntheticControl 3 017 8
FacesUCR 150 764 403 Trace 3 606 11
FISH 59 305 93 TwoPatterns 360 719 1 693
GunPoint 1 107 4 TwoLeadECG 12 946 45
Haptics 152 617 869 Wafer 923 915 4 485
InlineSkate 906 472 4 574 WordsSyn 101 643 203
Italy 1 855 6 Yoga 1 774 772 6 114
Lighting2 15 593 23
∗ The names of some datasets are abbreviated, for the full names see Table 2.2.

4.3.2 Results on Efficiency

The computational complexity of INSIGHT depends on the calculation of the
scores of the instances of the training set and on the selection of the top-ranked
instances. Thus, for the examined score functions, the computational complexity
is O(n2), n being the number of training instances. The reason for this complexity
is the calculation of the distance between each pair of training instances. For
FastAWARD, its first step (leave-one-out nearest neighbor classification of the
train instances) already requires O(n2) execution time. However, FastAWARD
performs additional computationally expensive steps, such as determining the
best warping-window size and the iterative procedure for excluding instances. For

78 Chapter 4: Instance Selection

this reason, INSIGHT is expected to require reduced execution time compared
to FastAWARD. This is verified by the results presented in Table 4.3, which
shows the execution time needed to perform instance selection with INSIGHT
and FastAWARD. As expected, INSIGHT outperforms FastAWARD drastically.

Regarding the time for classifying new instances, please notice that both meth-
ods perform 1-NN using the same number of selected instances, therefore the
classification times are equal.

Chapter 5

Fusion of Distance Measures

The success of DTW (see also Section 2.3.2) suggests that, in time-series clas-
sification, what really matters is the distance measure, i.e. when and why two
time series are considered to be similar. By allowing for shiftings and elongations,
DTW captures the global similarity of the shape of two time series very well.
In general, however, many other characteristic properties might be crucial in a
particular application, such as similar global or local behavior in the frequency
domain that can be captured by the Fourier or Cosine-spectrum or the Wavelet
Transform of the signal (see Section 2.3).

In this chapter, I examine this phenomenon in more detail. I consider time
series distance measure that were described in Section 2.3 and discuss what kind of
similarity (and dissimilarity respectively) they capture. As major contribution, I
propose a framework that allows for the fusion of these different distance measures
in a principled way. Within this framework, I develop a hybrid distance measure. I
evaluate these findings in context of time-series classification on the large, publicly
available collection of real-world datasets described in Section 2.7 and I show that
the method achieves substantial, statistically significant, improvements in terms
of classification accuracy.

5.1 Aspects of Similarity Captured by Various

Time Series Distance Measures

The most important time series distance measures, such as Euclidean Distance
over various representations, Dynamic Time Warping (DTW), Edit Distance on
Real Sequences (EDR), Edit Distance with Real Penalty (ERP), Distance based on
Longest Common Subsequences (LCSS) and DISSIM were reviewed in Section 2.3.
This section gives a brief overview about which aspects of similarity are captured
by each of these distance measures.

The Euclidean Distance over two (raw) time series x1 and x2, denoted as
dEU(x1, x2) captures the global similarity of two time series’ shapes. It does not

80 Chapter 5: Fusion of Distance Measures

allow for elongations. This is beneficial if any particular event (and the corre-
sponding pattern) begins regularly at the (approximately) same position within
the time series and the variance of the durations of the events is small.

In contrast, the intuition behind Dynamic Time Warping (DTW) is that we
can not expect an event to happen (or a characteristic pattern to appear respec-
tively) at exactly the same time position and its duration can also (slightly) vary.
Therefore, DTW captures global similarity of two time series’ shapes in a way
that it allows for shifting and elongations.

The Euclidean Distance over the DFT-coefficients of two signals x1 and x2,
denoted as dFEU(x1, x2) in Section 2.3, captures the similarity in the signal’s pe-
riodic behavior. This distance measure is beneficial, if different periodic behavior
characterize the time series classes of the underlying application.

While DFT captures global periodic behavior, as described in Section 2.2.2,
wavelets reflect both local and global character of a time series. Therefore, one
can calculate the Euclidean Distance of the Wavelet-transform of two time series
x1 and x2, denoted as dWEU(x1, x2) (see also Section 2.3).

In order to be able to capture further aspects of similarity, I also use (a)
DISSIM that is able to compute the similarity of two time series with different
sampling rates as the integral between the both time series, (b) distance based on
longest common subsequences (LCSS), (c) edit distance on real sequences (EDR),
and (d) edit distance with real penalty (EPR).

5.2 Fusion of Distance Measures

In the recent work of Ding et al. [56], none of the examined distance measures
could outperform DTW in general. However, in some specific tasks, one or the
other distance measure worked better than DTW, which is likely to be explained
by the fact that different aspects of similarity are relevant in different domains.
In case of simple tasks, one of the distance measures may capture the relevant
aspects of similarity entirely. This best distance measure can be found based
on domain knowledge or by measuring e.g. the leave-one-out classification error
on the train data for the candidate distance measures. In more complex cases,
however, a single distance measure may not be sufficient alone. Thus, in order
to achieve the desired accuracy, one needs to combine several distance measures.
Such hybridization is often achieved in an ad hoc manner. In contrast, I develop
a fusion schema for time series distance measures that allows to combine distance
measures in a principled way.

In order to distinguish between the distance measures that we want to combine
and the resulting distance measure, I refer to the former ones as elementary dis-
tance measures whereas to the later one as fused distance measure. My approach
for fusion of distance measures1 (see Figure 5.1) consists of the following steps:

1 Note that the elementary distance measures are not assumed to fulfill specific properties
(such as triangular inequality).

5.2 Fusion of Distance Measures 81

Figure 5.1: Example: fusion of time series distance measures. A regression model
M is trained and its output is used as distance measure.

1. For all the pairs of time series in the train data, the distances are calculated
using all the considered elementary distance measures.

2. In some of the above pairs, both time series belong to the same class, in
others they belong to different classes. The indicator I(x1, x2) of a pair of
time series (x1, x2) is defined as follows:

I(x1, x2) =

{
0 if x1 and x2 belong to the same class
1 otherwise

(5.1)

3. A regression modelM is trained: the distance values calculated in the first
step are used as training data along with the corresponding indicators as
labels.2

4. I propose to use the output ofM as the fused distance measure. For a pair
of time series (x, x′), where either or both of them can be unlabeled (test)
time series, one can calculate the distance values using all the considered
elementary distance measures. ThenM is used to estimate (based on these
distance values) the likelihood that x and x′ belong to different classes.
Finally, this estimation is used as the distance of x and x′.

2 I decided to use a regression model because it outputs continuous values which can be
used as distances in a natural way.

82 Chapter 5: Fusion of Distance Measures

Note that this approach is generic, as this framework allows the fusion of
arbitrary distance measures using various regression models as M. Furthermore,
this fused distance measure can be used by various classification algorithms.

Also note that the above description is just the conceptual description of the
approach. While implementing its first step (i.e. calculation of elementary dis-
tances), one would not separately calculate the distance of the pairs (x1, x2) and
(x2, x1) if the current elementary distance measure is symmetric. Furthermore,
one can pre-calculate and store the fused distances of pairs if the classification al-
gorithm (which uses the fused distance measure) queries the distance of the same
pair several times.

While fusing elementary distance measures according to the above description,
all the pairs of time series are considered. Therefore, if the training data contains
n time series, the elementary distances are required to be calculated O(n2) times
and the data used to train M contains O(n2) records. In case of small data sets,
this is not a problem. For large datasets, I propose to sample the pairs, and
calculate the elementary distances only for the sample. In this case, a sufficiently
large sample is used for training M.

As mentioned before, in simple domains, one single distance measure might
be sufficient to capture all the relevant aspects of similarity. In such cases, fusion
of distance measures is not necessary and could introduce noise. In order to
avoid it, I propose to select the best distance measure out of some fused distance
measures (that use different regression models as M) and all the elementary
distance measures. In order to allow for this selection, one can judge the quality
of each distance measure by its leave-one-out nearest neighbor classification error
on the training data.

5.3 Experiments

Datasets. I examined 35 out of all the 38 datasets described in Section 2.7. I
excluded 3 of them (Coffee, Beef, OliveOil) due to their small sizes (less than 100
time series).

Considered distance measures. I used all the elementary distance measures
described in Section 5.1. I used two versions of DTW with warping window
sizes constrained at 5% and 10% around the matrix diagonal (see Section 2.3.2
and [143], [144]).

Comparison protocol. As discussed in Section 2.4, in the time series domain,
the nearest neighbor (NN) algorithm has been shown to be competitive and of-
ten even superior to many state-of-the-art classification algorithms. Therefore, I
compared time series distance measures in context of 1-NN classification. I mea-
sured classification error as the misclassification ratio. I performed 10-fold cross
validation. For each dataset, I tested whether or not the differences between the

5.3 Experiments 83

performance of my approach and its competitors are statistically significant. For
this, I used t-test at significance level of 0.05.

Baselines. I used two state-of-the art time series classifiers as baselines: The
first one is the 1-NN using DTW with warping window size constrained at 5%.
This is denoted as DTW.

As the second baseline, I choose stacking with SVMs. For this second baseline,
first, I performed leave-one-out classification of the training data with several 1-
NN classifiers, each of them used a different elementary distance measure out of
the examined ones. The outputs of these classifiers together with the true class
labels served as training data for the SVM. At this step, each training instance
corresponds to a training time series x: a training instance consists of the outputs
of the different nearest neighbor classifiers for x and the true class label of x.
After training the SVM, each test time series x′ was classified with all the 1-NN
classifiers. (As before, each of these classifiers used a different elementary distance
measures out of the examined ones.) Then, these classification results were further
processed by the SVM: at this step, a test instance of the SVM consists of the
outputs of the classifiers for the test time series x′, and the SVM was used to
predict the class label of x′.

For the second baseline, I used the SVM-implementation from the WEKA
machine learning library3, which utilizes the one-against-one protocol for multi-
class problems. I used a polynomial kernel, and determined proper values for
the hyperparameters of the SVM (complexity constant C and the exponent of
the polynomial kernel) using a hold-out subset of the training data. This second
baseline is referred to as Stacking or short Stack in the proceeding tables.

Fusion of Distance Measures. I produced two fused distance measures4: for
regression models M1 and M2, I used (i) linear regression and (ii) multilayer
perceptron5, respectively, from the Weka library. After training M1 and M2,
the best-performing distance measure is selected out of the fused and elementary
distance measures based on the leave-one-out nearest neighbor classification error
on the train data. Finally, the selected distance measure is used in the 1-NN
classifier when classifying test time series. This approach is denoted as FUSION.

Results. The results are shown in Table 5.2 and summarized in Table 5.1.

3 http://www.cs.waikato.ac.nz/ml/weka/

4 In order to save computational time, according to Section 5.2, for some large datasets I
randomly sampled the pairs: I calculated similarities in case of FacesUCR and Mallat for
20 %, ChlorineConcentration and Yoga for 10%, TwoPatterns for 5%, Wafer for 1 %, and
StarLightCurves for 0.5 % of all the pairs. In order to ensure fair comparison, I used the
same sample of pairs both in my approach and for the baselines.

5 I used Weka’s standard parameter-settings, i.e. learning rate: 0.3, momentum: 0.2,
number of train epochs: 500. This model was used in my approach, FUSION. Tuning
these parameters could further improve FUSION’s performance.

84 Chapter 5: Fusion of Distance Measures

Discussion. For many of the examined datasets, the classification task is simple:
DTW’s error rates are less than 10 %. In such cases, all methods worked well, and
thus I could rarely observe statistically significant differences. In the last column
of Table 5.2, I provide two symbols in form of ±/± where + denotes statistical
significance and − its absence against DTW and Stacking respectively. While
FUSION significantly outperformed the baselines in 11 and 12 cases respectively,
the baselines did not outperform FUSION significantly.

Note that in most of the cases we are not concerned with binary classification
problems, however, the number of classes is more than two. In fact, this is one
of the reasons why these datasets are challenging and this explains the relatively
high error rates.

Table 5.1: Number of FUSION’s wins/loses and ties against DTW and Stacking

against DTW against Stacking
total significant total significant

Wins 27 11 25 12
Ties 5 - 3 -
Loses 3 0 7 0

Table 5.2: Classification errors∗

Dataset DTW Stack FUSION Dataset DTW Stack FUSION
50words 0.194 0.801 0.187-/+ Mallat 0.027 0.026 0.021-/-
Adiac 0.346 0.603 0.316+/+ MedicalImg 0.191 0.399 0.190-/+
Car 0.250 0.250 0.166-/+ Motes 0.048 0.016 0.020+/-
CBF 0.000 0.001 0.000-/- OSULeaf 0.272 0.217 0.136+/+
Chlorine 0.385 0.393 0.362+/+ Plane 0.000 0.000 0.000-/-
CinC 0.000 0.001 0.000-/- Sony 0.019 0.006 0.014-/-
Diatom 0.003 0.006 0.003-/- SonyII 0.017 0.011 0.007-/-
ECG200 0.125 0.090 0.070+/- StarLight 0.170 0.111 0.115+/-
ECGFiveDays 0.008 0.002 0.005+/- SwedishLeaf 0.155 0.276 0.101+/+
FaceFour 0.044 0.047 0.036-/- Symbols 0.018 0.013 0.016-/-
FacesUCR 0.050 0.075 0.029+/+ Synthetic 0.005 0.007 0.003-/-
Fish 0.194 0.214 0.120+/+ Trace 0.000 0.000 0.000-/-
GunPoint 0.020 0.025 0.030-/- TwoL.ECG 0.001 0.002 0.003-/-
Haptics 0.531 0.650 0.525-/+ TwoPatterns 0.057 0.001 0.000-/-
InlineSkate 0.443 0.463 0.434-/- Wafer 0.030 0.027 0.027-/-
Italy 0.049 0.045 0.036+/- WordsSyn 0.191 0.515 0.178-/+
Lighting2 0.083 0.147 0.115-/- Yoga 0.145 0.127 0.131-/-
Lighting7 0.201 0.453 0.243-/+
∗The names of some datasets are abbreviated, for the full names see Table 2.2.
+ and - denote statistical significance and its absence against DTW/Stacking

Chapter 6

The GRAMOFON Ensemble
Framework

As described in Section 2.5, the same recognition task can be solved by various
models. Based on the outputs of these models, a meta-level method determines
the class label of the instance (time series) to be classified.

In general, in order to achieve predictions of the required quality, the number
of models used in such ensembles (also called committee of experts) may have
to be large (several hundreds). Many models often deliver different predictions:
due to the variety of models (such as SVMs [132], neural networks [83], decision
trees [136], Bayesian models [151]) and the differences in the underlying principles
and techniques, one expects diverse error characteristics for the distinct models.
Ensembles assume that different models can compensate each other’s errors and
thus their right combination outperforms each individual model [55].

Next, I illustrate the aforementioned statement by a simple observation from
the movie recommendation domain.1 In the movie recommendation problem,
users can describe their preferences in form of ratings: if a user likes a movie,
she can rate it high, otherwise she can give a low rating for that movie. As the
total number of movies is usually very high, most of the users only rate a small
portion of all the movies (e.g. the ones they have previously watched). Based
on the known ratings, the recognition models aim at capturing the taste of the
users in order to be able to recommend new movies to the users. Therefore, for
each user-movie pair, each model predicts a score that estimates how the user
would rate that particular movie (see the tables p1 and p2 in the top left of
Figure 6.1 on page 90 for an example of such predictions). One can average the
predictions of several models for each user-movie pair (see p˜1,2 in the top right
of Figure 6.1 for an example for the average of p1 and p2). One can observe that
the average of all the available models may outperform the best individual model.
This is illustrated in Table 6.1, which presents results of simple ensembles of the

1 Although the following example focuses on movie recommendation, similar phenomena
can be observed in many other domains too.

86 Chapter 6: The GRAMOFON Ensemble Framework

Table 6.1: Performance (RMSEa) improvement with respect to the best individual
model using simple ensemble schemes on the AusDM-S dataset. (10 fold cross vali-
dation, averaged results, in each fold the best/worst model(s) were selected based on
the performances on the train subset.)

Method RMSE-improvementc

Average of all models’ predictionsb 2.40
Average of the best 10 models’ predictionsb 8.72
Average of the worst 10 models’ predictionsb −20.84

a RMSE stands for Root Mean Squared Error, see Section 6.1 for its definition
b For each user-movie pair
c In contrast to Figure 6.1 on page 90, the ratings in the AusDM-S dataset are on
the range between 1000 and 5000.

200 models contained in the AusDM-S dataset.2 Furthermore, Table 6.1 shows
that combining all the models may not be the best choice, because many of the
models may share similar error characteristics, that can substantially depress the
compensation effect: in particular, the average of the 10 individually best models’
predictions outperforms the aforementioned average of the predictions of all the
available models. In contrast, if one selects the 10 individually worst models, the
average of their predictions perform much worse than the best model.

I argue that different models have a high potential to compensate each other’s
errors, but the right selection of the models is important, otherwise the afore-
mentioned compensation effect may be depressed. How much the compensation
effect is depressed, also depends on how robust the applied ensemble schema is
against overfitting. For well-regularized ensemble methods, like stacking with lin-
ear regression or SVMs, the depression of compensation is typically much lower,
but the phenomenon in general is similar: for example, training a multivariate
linear regression as meta-model on all predictions of AusDM-S is likewise worse
than training it only on the predictions of the individually best 10 models (RMSE-
improvement: 8.58 vs. 9.42). However, the selection of the 10 individually best
models may be far from perfect: the potential power of an ensemble may be much
higher than the quality that is reached by combining the 10 individually best mod-
els. Thus, even in case of well-regularized models, the depression of compensation
is an acute problem.

Therefore I aim at selecting the best, or at least a good enough subset of models
for an ensemble. As the number of subsets is exponential in the number of mod-
els, exhaustive search is intractable. Therefore, conventional approaches perform
systematic non-exhaustive search on the power set. My work is in line with this
idea and, as an innovation, I let the pairwise error compensation power to drive
this search. Instead of pairs, theoretically, one could use triplets, quadruples, etc.

2 The dataset is described in Section 6.4.1.

6.1 Context and Notations 87

I decided for pairs because this is the simplest level where error compensation can
be observed. Even though the number of triplets, quadruples, etc. is polynomial
(just like in case of pairs), but in large, real-world sized applications, the degree
of the polynomial often plays an important role. More importantly, pairs enable
simple graph-based modeling and analysis of the problem3, which has the benefit
that one can import concepts and techniques from graph theory, like the minimal
spanning tree, and such concepts can be applied to our problem.

As motivated before, in this chapter, I aim at exploiting the error compen-
sation power by carefully selecting models for an ensemble. As major contribu-
tion, I propose GRAMOFON, the General Model-selection Framework based on
Networks. GRAMOFON allows to describe a wide range of model selection strate-
gies for ensembles varying from meta-filter to meta-wrapper methods.4 Using the
framework, I propose four ensemble methods: Basic, BasicFast, RegOptMST and
NetworkMST. While the first performs a search that is exhaustive with respect to
the pairs of models, in the latter three of these methods, I applied a principled
scaling technique based on minimal spanning trees that guarantees to examine
the contribution of each model. These strategies are evaluated in experiments on
publicly available real-world data and they are compared to well-known ensemble
methods such as boosting [159] and stacking [189]. The results indicate that my
methods outperform the state-of-the-art.

This chapter is organized as follows. The context, in which GRAMOFON is
developed as well as the notations used in the pseudocodes of this chapter are
explained in Section 6.1. In section 6.2, I introduce GRAMOFON. Next, I deploy
my four ensemble techniques in this framework (section 6.3). Finally, I present
the results of my experiments.

6.1 Context and Notations

Previous chapters focused on classification and therefore the labels were discrete
and nominal. In contrast, in the description of the GRAMOFON framework, it
is assumed that the labels are numeric and continuous, such as preference for
a given product, (expected) temperature at a given location, or (expected) time
required for the recovery of a patient. In this context, the recognition model
performs regression, i.e., predicts continuous labels instead of discrete ones, and
therefore the quality of the model can be measured as the difference between the
true and predicted label. I describe the conversion of classification problems into
this setting in Section 6.5.

Compared to other chapters of this book, a further unique property of the
settings used here is that the approach works exclusively at the meta-level: in

3 Triples, quadruples, etc. could be represented as hyper-edges too, however this would
lead to computationally more expensive methods.

4 Filter (wrapper) methods score models without (with) involving the meta-model [7].

88 Chapter 6: The GRAMOFON Ensemble Framework

this chapter it is irrelevant how the aforementioned recognition models work.
Instead, this section focuses on the meta-layer, i.e., on methods that use the labels
predicted by the recognition models in order to produce a new label that is closer
to the true label than the labels predicted by the recognition models. In order
to avoid ambiguity, whenever necessary, the aforementioned recognition models
are referred to as elementary models, while the method used at the meta-level for
combining the predictions of the elementary models is referred to as meta model.

In this chapter the term elementary model (or simply model) is used in order
to distinguish from a classifier. Formally, a model m is defined as a function that
predicts a numerical value m(x) ∈ R for an instance x of a dataset D:

m : D → R, x 7→ m(x) (6.1)

In order to distinguish from the classification problem, instead of c(x), y(x) is used
in this section to denote the true, real-valued label (also called target); ŷ(x) is an
estimation for y(x). In a procedural description (in the pseudocodes), similarly
to a method call of an object-oriented programming language, I write

p = m.predict(D) (6.2)

that denotes the column vector containing the predictions5 ŷ(x) of the model m
for all x ∈ D. Similarly, the column vector containing the values of the labels for
all x ∈ D is denoted as

D.labels (6.3)

Given a set M of models, I use the notation {pi}, to denote the matrix con-
sisting of column vectors pi = mi.predict(D) for all mi ∈ M . When training a
vector classifier, such as linear regression or SVM using such a matrix, each row
of the matrix is considered to be a training instance.

For a set M of elementary models m1, ...,mN , a meta model m∗ is a function
that estimates the label of an instance x ∈ D based on the predictions of the
elementary models m ∈M . The label predicted by the meta model is denoted as
m∗(x) , m∗(x) ∈ R.

m∗ : D → R, x 7→ m∗(x) = m∗(m1(x), ...,mN(x)) (6.4)

In this chapter, ensembles of the above type are considered. I focus on selecting a
subset of all the available elementary models so that the performance of the meta
model is optimized.

5 Throughout this section, it is assumed that the instances of sets, such as D, are enumer-
ated always in the same, deterministic order.

6.2 General Model-Selection Framework 89

Given a data sample Ds, one can use various error functions for measuring the
quality of an elementary model m or a meta model m∗. In this chapter, I used
the root mean squared error (RMSE), which is defined as follows:

RMSE =

√√√√√ ∑
∀x∈Ds

(
m(∗)(x)− y(x)

)2

|Ds|
(6.5)

In the pseudocodes I use error functions as a function of the predicted and true
class labels in form of

RMSE(p(∗),Ds.labels), (6.6)

where p(∗) = m(∗).predict(Ds).

6.2 General Model-Selection Framework

In this section I describe the General Model-Selection Framework based on Net-
works. First I define model-networks that constitute the core of the approach.
Afterwards, the details of my approach are presented in Section 6.2.2.

6.2.1 Model-Networks

Given the prediction modelsm1, . . . ,mN , my goal is to find their best combination.
As mentioned before, the key of our ensemble technique is the selection of models
that compensate for each other’s errors. Therefore, in my approach (Algorithm 7),
a network is built first, this network is called model-network, and it is denoted
as G in Algorithm 7 (line 5). Each node of the model-network corresponds to
one of the models m1, . . . ,mN . The network is a complete graph (all nodes are
connected). Connections are undirected and weighted, the weight of {mj,mk}
aims at reflecting both (i) the mutual error compensation power and (ii) the
quality of the models mj and mk.

Formally, a connection weight function can be defined as follows:

Definition 12 (Connection weight function). Given a network (or graph) G, a
connection weight function fw associates each edge e of G with a numerical value
w(e) that is called weight of e:

fw : E(G)→ R, e 7→ w(e) (6.7)

While calculating the weight of the edge between the nodes corresponding to
the models mj and mk, Algorithm 6 averages for each data instance the predictions
of both regression models mj and mk (lines 1...3). This results in a new prediction
vector p. Then the error of p is returned (line 4), which is used as the weight of
the connection {mj,mk}.

90 Chapter 6: The GRAMOFON Ensemble Framework

Algorithm 6 Connection Weight Function: connection score

Require: Model mj, Model mk, Data sample D, ErrorFunction err
Ensure: Connection weight of {mj,mk}

1: p1 = mj.predict(D)
2: p2 = mk.predict(D)
3: ∀x ∈ D : p[x] = (p1[x] + p2[x])/2

(Predictions are averaged for each instance x.)
4: return err(p,D.labels)

Figure 6.1: Calculation of the weights of connections. The weights of the connections
represent mutual error compensation power, which is calculated as the error of the
combined (averaged) predictions.

The calculation of the connection weights is illustrated in an example from
the movie recommendation domain in Figure 6.1. The higher rating is predicted
for a user-movie pair by an elementary model, the more probably (according to
that elementary model) the particular user will like that movie. Here, I show how
to calculate the weight of the connection between the prediction models m1 and
m2. Tables in the left upper part of the figure show the predictions of m1 and
m2 denoted by p1 and p2 respectively. These predictions are averaged in the right
upper table denoted by p˜1,2. Using the labeled training data (or a subset of that),
one can approximate the error of p˜1,2 which can be used as a connection weight.

6.2 General Model-Selection Framework 91

6.2.2 Ensemble framework

The pseudocode of GRAMOFON, my General Model-Selection Framework based
on Networks is shown in Algorithm 7. GRAMOFON works with various error
functions, subset score functions and meta model types. In order to scale up
the selection, one can specify a predicate called examine that drives the search
by determining which connections should be examined and which ones should be
excluded. As it will be shown in section 6.3, the specific choice of these parameters
(error function, subset score function, meta model type and examine predicate)
results in various ensemble methods having the common characteristic that they
all exploit the error compensation effect. In the following paragraphs, I describe
the steps of the algorithm in more detail.

While learning, the training data is divided into two disjoint subsets DA and
DB of the same size (lines 3 and 4)6. This division of the training data is iteratively
repeated in a round robin fashion (see the outer for-loop from line 2 to 19).

In line 5, the model-network is build as described in Section 6.2.1. GRAMO-
FON iterates over the connections of the model-network (see the inner for-loop
from line 9 to 18) in order to select models. While doing so, the connections are
processed in the order of their weights, beginning with the connection correspond-
ing to the best pair of models (see lines 8 and 9). In case of using RMSE as error
function, smaller values indicate better predictions, therefore one processes the
connections in ascending order with respect to their weights.

Mi denotes a set of models that are selected in the i-th iteration of the outer
loop, and scoreMi

denotes the score of Mi. This score reflects how good the
ensemble is based on the models in Mi. Formally speaking, the subset score
function can be defined as a function that assigns a numerical value to the subset
of models Mi. While iterating over the connections of the model-network, the
algorithm tries to improve scoreMi

by adding models to Mi. If a model improves
by at least ε, it will be added to Mi, otherwise not.

For each division of the training data (see the outer loop from line 2 to 19),
the algorithm selects a set of models Mi. Mfinal denotes the set of such models
that are contained at least n times among the selected models, i.e. improve at
least n times by at least ε (n and ε are hyper-parameters). Finally, a meta model
M of type meta model type is trained over the output of models of Mfinal using
all training data instances (line 22). Then,M can be used for the prediction task
(for unlabeled or test data).

Note that my framework operates fully at the meta level: the time series
themselves, or, in case of vector data, the values of the attributes of instances
are never accessed directly, only the prediction vectors delivered by the models
are used. Also note that the hyper-parameters (ε and n) can be learned using a
hold-out subset of the train data that is disjoint from D.

6 This is a natural way to split because it allows effective learning of the selection since it
balances well between fitting and avoiding of overfitting.

92 Chapter 6: The GRAMOFON Ensemble Framework

Algorithm 7
GRAMOFON: General Model-selection Framework based on Networks
Require: SubsetScoreFunction f , Predicate examine, ErrorFunction err,

ModelType meta model type, Int n, Real ε, set of all models MSet,
labelled training data D

Ensure: Ensemble of selected models

1: data[] splits = split D into 10 partitions
2: for i = 0; i < 10; i+ + do
3: data DA ← splits [i] ∪ . . .∪ splits [(i+ 4) mod 10]
4: data DB ← splits [(i+ 5) mod 10] ∪ . . .∪ splits [(i+ 9) mod 10]
5: G← build model-network using DA, calculate connection weights by Algo-

rithm 6 for all connections (edges) { mj,mk }
6: Mi ← empty set

(In Mi we collect the models selected in the i-th iteration.)
7: Let scoreMi

be the worst possible score
8: E(G) ← sort the connections of G according to their weights, begin with

the best one
9: for all connections {mj,mk} in E(G), process connections according to

the order do
10: if mj ∈Mi ∧mk ∈Mi then proceed to the next connection
11: if examine({mj,mk}) then
12: M ′

i ←Mi ∪ {mj} ∪ {mk}
13: scoreM ′i

← f(M ′
i ,DA,DB,err , G)

14: if scoreM ′i
+ ε < scoreMi

(i.e., scoreM ′i
is better than scoreMi

at least
by ε) then

15: Mi ←M ′
i , scoreMi

← scoreM ′i
16: end if
17: end if
18: end for
19: end for
20: Mfinal ← {m ∈MSet|m is included in at least n sets among M0 . . .M9}
21: Let pi = m.predict(D) for all m ∈Mfinal

22: M← train a model of type meta model type over the prediction vectors of the
models in Mfinal, i.e., use {pi} as training data and D.labels as labels when
training the model M

23: return M

6.3 Ensemble Techniques

As mentioned, the specific choice of the (i) error function err, (ii) subset score
function f , (iii) examine predicate and (iv) meta model type lead to different en-
semble techniques. In all of the proposed techniques, the error function calculates

6.3 Ensemble Techniques 93

Algorithm 8 Score Average Prediction: fAvg

Require: Modelset M , Data samples DA and DB, ErrorFunction err,
Model-network G

1: for ∀mi ∈M do pi = mi.predict(DB),
2: ∀x ∈ DB : p[x] = (

∑
i pi[x])/M.size

(Predictions are averaged for each instance)
3: return err(p,DB.labels)

Figure 6.2: An example for
a model-network with its minimal
spanning tree (MST). Connections
(edges) belonging to the MST are
the bold ones. MST balances be-
tween two criteria: it contains good
connections and all the nodes (mod-
els) are reachable through to con-
nections of the MST.

root mean squared error (RMSE) (Eq. 6.5). As meta model type I propose to
chose multivariate linear regression.

Next, I describe further characteristic settings of the ensemble techniques Ba-
sic, BasicFast, RegOptMST and NetworkMST.

6.3.1 Basic

When searching for the appropriate subset of models Mi, the average of predictions
of models in Mi is calculated for each instance and Mi is scored based on that: I
use fAvg (Algorithm 8) as subset score function in the 13th line of Algorithm 7.
In case of Basic, the examine predicate is constant true.

6.3.2 BasicFast

In order to save computation time, one can avoid the examination of all the
connections of the model-network by examining only the most promising ones.
Therefore, one first determines a minimal spanning tree (MST) of the model-
network. Then, only the connections (edges) contained in the MST are examined.
An example for a model-network with its MST can be seen in Figure 6.2.

In BasicFast the examineMST predicate is used, which is true for the con-
nections (edges) contained in the minimal spanning tree of the model-network
and false for the other connections. Similarly to the Basic technique, fAvg (Algo-
rithm 8) is chosen as subset score function.

94 Chapter 6: The GRAMOFON Ensemble Framework

Algorithm 9 Score Model Set using Linear Regression: fReg

Require: Modelset M , Data samples DA and DB, ErrorFunction err,
Model-network G

1: Let pAi = mi.predict(DA) for all mi ∈M
2: Train multivariate linear regression L using {pAi } as training data and
DA.labels as labels

3: p = L.predict({pBi }), where pBi = mi.predict(DB) for all mi ∈M
4: return err(p,DB.labels)

In an earlier version of these methods7 [28], instead of examineMST I used the
examinetopN predicate that was true for the best N connections of the network.

Connections (edges) selected by examinetopN, however, could form a (highly)

connected subgraph of the model-network. Therefore there were no guarantees
to contain all the nodes (models) among the examined ones. In contrast to
examinetopN, in the case of examineMST, the minimal spanning tree (MST)

balances well between two criteria: it contains good connections (edges having
small weights)8 and it contains all the nodes of the model-network; thus every
model has the chance to be selected. In order to empirically support these claims,
when presenting the experiments in Section 6.4.1, I will report the number of
examined models for both cases.

In addition, note that the MST can be found fast using e.g. Kruskal’s simple
greedy algorithm. [46]

6.3.3 RegOptMST

Similarly to BasicFast, in RegOptMST the examineMST predicate is used again.
However, instead of favg, I use multivariate linear regression, i.e., the fReg function
(Algorithm 9) in order to score the current model selection in the 13th step of
Algorithm 7.

In Algorithm 9, a multivariate linear regression L is trained over the currently
selected models’ outputs for the data sample DA, then the algorithm calculates
how well this linear regression fits to the data sample DB.

6.3.4 NetworkMST

This model selection technique operates exclusively on the model-network: fNet

serves as subset score function (Algorithm 10) and the examineMST predicate
is used. Function fNet calculates an average-like aggregation of the connection

7 called EarlyStop, RegOpt and GraphOpt

8 Remember that in the current case small weights denote good connections because RMSE
is used as error function.

6.3 Ensemble Techniques 95

Algorithm 10 Score Model Set using the Model-Network: fNet

Require: Modelset M , Data samples DA and DB, ErrorFunction err,
Model-network G

1: SumW ← 0
2: for (∀{mi,mj}|mi,mj ∈M) do
3: SumW ← SumW + G.connectionWeight({mi,mj})
4: return SumW

(M.size)2∗ln(M.size)

weights, but gives priority to larger sets: the sum of the weights is divided by a
number which, by increasing the number of connections, grows faster than the
number of connections. This leads to lower scores for larger sets, which gives
priority to larger sets: as RMSE is used as error measure when calculating the
weights of the edges, smaller values correspond to better scores. If simply the
average were calculated (without prioritizing large sets), the set M containing
solely the nodes of the best connection (and no other nodes) would optimize the
score function and therefore GRAMOFON would not be capable of finding any
model set with size larger than 2.

6.3.5 Analysis

Basic examines O(N2) connections (N is the number of models which is equal to
the number of nodes in the model-network). In contrast, due to the examineMST
predicate, BasicFast examines the most promising O(N) connections only. For
this reason, BasicFast is expected to be substantially faster than Basic and to have
approximately the same quality. One expects RegOptMST to be slower than Ba-
sicFast, because, from the computational point of view, training a linear regression
is more expensive then calculating an average. In contrast to RegOptMST, which
works in a meta-wrapper fashion, filter methods like NetworkMST are expected
to be faster, because of the computationally inexpensive subset score function.
Nevertheless, NetworkMST may produce worse results as only the information
encoded in the model-network is taken into account.

Note that one can expect well-performing ensemble techniques, if the score
function f and the meta model type are chosen in a way that there is a natural
correspondence between them, like in the case of the above ensemble techniques.

Also note that Algorithm 8 and Algorithm 9 are conceptual descriptions of the
score functions: in the implementation, the base models are not invoked as many
times as the score function is called, but their prediction vectors are pre-computed
and stored in an array.

96 Chapter 6: The GRAMOFON Ensemble Framework

Table 6.2: Main characteristics of the datasets associated to the RMSE task of the
Ensembling Challenge at the Australian Data Mining Conference 2009.

AusDM-S AusDM-M AusDM-L
Number of models 200 250 1151
Number of cases 15000 20000 50000

6.4 Experimental evaluation

I performed experiments on (i) datasets associated to the Australian Data Mining
Conference 2009, (ii) datasets from the UCI repository and (iii) time series data.
These experiments are described in the following subsections.

6.4.1 Experiments on the AusDM Datasets

Datasets. In order to allow for proper evaluation of the introduced techniques, I
used datasets that were designed for the comparison of ensemble learning methods.
In particular, I used the datasets of the RMSE task of the Ensembling Challenge
of the Australian Data Mining Conference9 2009. In this challenge, three datasets
were published, namely Small, Medium, and Large that are denoted in this section
as AusDM-S, AusDM-M and AusDM-L respectively. These datasets contain the
outputs of large collections of prediction models. All the models solve the same
task, their outputs can therefore be combined in order to achieve better predic-
tions. For this reason, these datasets are suited to evaluate different ensemble
methods that combine the outputs of the models in various ways. The sizes of
the datasets, i.e., number of models and cases, are summarized in Table 6.2.

The underlying prediction models were developed for movie rating prediction
by different teams of the Netflix challenge. In this domain, the task is to predict
for given user-movie pairs, how well the user will like that movie. The higher
the rating, the more probably the user will like that movie (see also Figure 6.1).
For more information on the Netflix prize see e.g. [13], [169], [170]. In the Netflix
challenge, the task was to predict how users rate movies on a 1 to 5 scale (5=best,
1=worst). In the AusDM datasets, however, both the predicted ratings and the
target were multiplied by 1000 and rounded to an integer value.

Experimental settings. I examined several baselines, namely the method pro-
posed by Tsymbal [177], as well as stacking of different number of individually
best models with linear regression and support vector machines (SVM).10 This

9 http://www.tiberius.biz/ausdm09/

10 As described, in the examined data, only the outputs of the prediction models are present
and therefore it allows for the comparison of learning methods that work exclusively on
the meta-level. For this reason, I had to slightly modify Tsymbal’s method in a way that
it calculates the similarity based on the meta-level information.

6.4 Experimental evaluation 97

Table 6.3: Performance (RMSE averaged over the 10 folds) of the baseline and my
methods. (The numbers in parenthesis indicate in how many folds my method won
against the baseline.)

Method AusDM-S AusDM-M AusDM-L
SVM-Stacking best 20 models 871.97 872.09 876.66
Basic 869.86 (8) 868.34 (10) 871.88 (10)
BasicFast 869.96 (9) 868.48 (10) 872.04 (10)
RegOptMST 869.25 (8) 868.53 (10) 871.41 (10)
NetworkMST 868.63 (9) 866.86 (10) 870.77 (10)

selection of the individually best models is in accordance with [24]. In order to
keep comparisons clear, I selected a single baseline, stacking of the individually
best models with SVMs, because SVM is generally regarded as one of the best
performing regression/classification methods.11

I used the WEKA-implementations12 of SVM [92], [132], [161] (for the baseline)
and Linear Regression (for RegOptMST and for the meta models). I performed
10-fold-crossvalidation.13 Proper values for the hyperparameters of the SVM and
my models (complexity constant C, exponent of the polynomial kernel e; and n,
ε respectively) were determined using a hold-out subset of the training data.14

Results on Prediction Quality. The results regarding the performance of my
methods are summarized in Table 6.3. The prediction quality is measured by the
root mean squared error (RMSE) on the test data.

Similarly to [186] and [196], in parentheses I report the number of folds where
my methods won against the baseline. Additionally, I also tested statistical sig-
nificance with t-test at significance level of 0.05 and I found that my ensemble
methods significantly outperformed the baseline in all of the cases.

Number of Examined Models. I compared the examineMST and examinetopN
predicates in terms of the number of examined models. These results are shown
in Table 6.4. The results show that by simply selecting the best N connections,
many models are a priori excluded from the search procedure while connections
along the minimal spanning tree ensure that all of the models are examined.

11 In the reported results, I used stacking of the 20 individually best models because i) this
number leads to very good performance for the baseline, and ii) ensures fair comparison
of all examined methods by having approximately the same number of selected models.

12 http://www.cs.waikato.ac.nz/˜ml/
13 This is not to be confused with the internal data splitting in Algorithm 7, which is

performed in each each round of the 10-fold-crossvalidation on the current training data.
In each round of the 10-fold-crossvalidation, Algorithm 7 is executed according to which
this internal splitting of the current training data is iteratively repeated several times in
a round robin fashion.

14 In order to simplify the reproducibility, I report the found SVM-hyperparameters: e =
20 = 1 and C = 2−5 (AusDM-S), C = 2−3 (AusDM-M), C = 2−8 (AusDM-L).

98 Chapter 6: The GRAMOFON Ensemble Framework

Table 6.4: The number of examined models (averaged over 10 folds and rounded to
integer values) in case of examineMST and examinetopN.

AusDM-S AusDM-M AusDM-L
examinetopN 52 59 211

examineMST 200 250 1151

Discussion. All the proposed techniques clearly outperform the baselines. As
expected, compared to Basic, BasicFast lost almost nothing in terms of quality.
Regarding RegOptMST, I observed that scoring the candidate model sets using
linear regression (fReg) instead of averaging (fAvg) could only slightly improve
compared to BasicFast and Basic in case of 2 datasets. NetworkMST that works
according to the filter schema, clearly outperforms the baselines, and it was slightly
better than Basic. These observations are in accordance with the previously
described expectations.

6.4.2 Experiments on UCI Datasets

As described in Section 6.2.2, my approach, GRAMOFON, works fully at the
meta level. Therefore, only the outputs of the models (i.e. their predictions)
are used, while neither the models themselves nor the data are accessed. Due
to this reason, in the first experiments presented in the previous section I used
the AusDM datasets because they are suitable for the evaluation of meta-learning
methods as they contain the predictions of a large collection of various models.

Datasets. In order to be able to draw more generic conclusions, I performed
experiments on datasets from the UCI Machine Learning repository [69] too. Out
of the datasets associated with regression problems, I selected Auto-Mpg [137],
Communities-and-Crime [147], Housing [137] and Wine-Quality [48].15

Elementary Prediction Models. In contrast to the AusDM datasets, the
datasets from the UCI repository are not meta-level datasets, i.e., they do not
contain the predictions of models, instead, they contain the elementary data.
Therefore, for my approaches as well as for the stacking-based baselines, I had to
construct elementary prediction models. In general, there are plenty of ways to
do that: degrees of freedom include the types and hyperparameters of the chosen
models. As kernel selection is one of the most crucial recent issues, and no sin-
gle kernel seems to be an absolute winner [172], I decided to test my approach
in the context of kernel selection. I trained SVMs with RBF kernels, normal-
ized and unnormalized polynomial kernels. Similarly to the experiments on the
AusDM data, I used the WEKA-implementations of these models. I varied γ

15 For Wine-Quality I used the dataset containing white wines.

6.4 Experimental evaluation 99

Table 6.5: Performance of GRAMOFON (Basic) and its competitors: root mean
squared error (RMSE) on test data averaged over 10 folds.

Method Auto- Communities Housing Wine-
Mpg and Crime Quality

Stacking (RBF Network) 4.812 0.172 6.567 0.763
AdaboostRT 5.188 0.199 7.300 0.813
Basic 2.671 0.136 3.574 0.697

for the RBF kernels and the exponent for the polynomial kernels in the range
{2−2, 2−1, ..., 22}.16 Similarly, I set the complexity constant in the same range.
This resulted in 3× 5× 5 = 75 models.

Experimental Settings. I compared the method against two state-of-the-art
ensemble approaches: (i) stacking with RBF Networks and (ii) boosting with
AdaboostRT17, a recent extension of Adaboost for regression problems [159].

I performed 10-fold-crossvalidation: in each round, 5 data splits served as train
data for the elementary models, and 4 splits were used to train the meta model
and 1 split was reserved as test data. In particular, I first trained the SVMs
with various kernels on 5 splits (these SVMs were the elementary models in the
experiment). Then the SVMs delivered predictions for the remaining 5 splits; out
of which 4 splits served as training data for my approach and its stacking-based
competitor, and I used the remaining 1 split as test data.

Results. Table 6.5 summarizes the results averaged over 10 folds. In order
to keep the presentation simple, I only show results for the Basic approach as
representative for the GRAMOFON-approaches. Note, however, that similarly to
Basic, all the other approaches outperformed the competitors.18 These results are
in line with the observation that in challenging cases, bagging (that is a simple
version of stacking) may outperform boosting [54].

Discussion. Regarding execution times, even for the largest out of these datasets,
Communities and Crime, the ensemble construction with GRAMOFON (Basic)

16 For the normalized polynomial kernel the exponent of 20 = 1 was not applicable, therefore
I used 20.5 =

√
2 ≈ 1.41.

17 I tried AdaboostRT with various hyperparameters. In general, I found AdaboostRT to
be robust in terms of hyperparameter settings, i.e., I observed only minor differences
between the settings. I report results for the settings that generally performed best out
of the examined ones. In order to simplify reproducibility, I report these hyperparameters
of AdaboostRT: number of iterations T = 100, demarcating threshold φ = 0.5, power
coefficient n = 1. As elementary models I use decision stumps in AdaboostRT.

18 The differences between my approach and its competitors were always significant in terms
of average and standard deviation: the differences were always larger than two-times
standard deviation.

100 Chapter 6: The GRAMOFON Ensemble Framework

took only approximately half a minute. This was, however, five times longer
than the execution time required for AdaboostRT. Despite this, I still argue that
in terms of the trade-off between execution time and quality, it is worth using
GRAMOFON, because the vast majority of execution time was spent not for
constructing the ensemble, but for training the elementary models that took about
50 minutes. Compared to that, the ensemble construction was very fast, in case
of GRAMOFON too.

6.5 GRAMOFON for Time-Series classification

and regression

The described GRAMOFON framework works fully at the meta-level, i.e., ex-
clusively with the outputs of elementary prediction models. Therefore, assuming
that the elementary models work with time series, GRAMOFON can combine
these elementary models in order to achieve more accurate predictions.

The previous description of the GRAMOFON framework focused on regres-
sion. However, the basic idea, i.e., paying special attention to the mutual error
compensation of elementary prediction models, is not limited to regression models
at all. In order to allow for classification, one can re-define the graph construction
and specify the error function err, subset score function f , examine predicate and
meta model type.

Furthermore, even without doing so, GRAMOFON can be used for time-series
classification problems by converting the classification problem into a regression
problem. In case of classification, labels describe discrete classes. When converting
into a regression problem, instead of denoting a particular class, one can re-define
labels so that they denote the likelihood (or probability) of a given class. Then,
for the training data, the new labels of instances belonging to the given class will
be 1, while other instances will have label 0. While predicting labels for new (test)
instances, regression models generate continuous values for the likelihood of the
selected class. Then, these values can be combined together with GRAMOFON
that outputs a better estimation for the likelihood of the selected class. If one only
aims at recognizing one single class (because e.g. only this class is relevant for
the current application), one can set a decision threshold: whenever the likelihood
generated by GRAMOFON is above that threshold, the instance is considered to
be recognized as an instance of that class. If, however, all the classes are relevant,
in a similar procedure, one can estimate the likelihood of each class separately
and one can finally select the most probable class.

6.5.1 Experiments on Time Series Data

In order to demonstrate the applicability of GRAMOFON to time series data, I
performed experiments on some of the datasets from the collection introduced in

6.5 GRAMOFON for Time-Series classification and regression 101

Table 6.6: Performance of GRAMOFON (Basic) and its competitors: root mean
squared error (RMSE) on test data averaged over 10 folds.

Method Motes Lighting2 ItalyPowerDemand GunPoint
Averagea 0.161 0.301 0.174 0.059
Bestb 0.133 0.439 0.236 0.063
Basic 0.131 0.267 0.173 0.035

a Average of the predictions of the 12 examined elementary models
b Best elementary model selected in each round of the 10 fold cross validation

Section 2.7. I selected some of the small datasets associated with binary classifi-
cation tasks and changed the semantics of the labels so that the labels denote the
likelihood of one of the classes.19 Therefore, all the true labels were either 0 or 1.

In the experiment, I used 12 nearest neighbor classifiers as elementary models.
For all these classifiers, k, the number of nearest neighbors taken into account was
set to 1. The variety of the classifiers were ensured by using different distance
measures for each classifier.20

After redefining the semantics of the class labels, I split the data into two dis-
joint subsets of equal size. I used the first one as training data for the elementary
models, then I predicted labels by the elementary models for the second split.
More concretely, I used the first split in the nearest neighbor classifiers in order
to predict labels of the second split.

For the time series of the second split, both the outputs of various prediction
models (nearest neighbor classifiers with different distance measures) and the true
class labels were present, and I constructed a meta-level data set that contains the
predictions of the various elementary models together with the true class labels.
Then I used this meta-level data set in an experiment similar to the one described
in Section 6.4.1.

The results21 (RMSE averaged over the ten rounds of the 10 fold cross valida-
tion on the constructed meta-level data sets) are summarized in Table 6.6. As a
representative of the GRAMOFON techniques, only Basic is shown.

19 This kind of redefinition of the semantics of the labels could be implemented simply: in
case of the selected class, the labels were changed to 1, while in case of the other class,
the labels were changed to 0.

20 I used the same distance measures as in Section 5.3.

21 Note that in Section 5.3, classification error is reported, while here RMSE is used as
quality measure. This is in accordance with the redefined semantics of the labels and the
previous sections of this Chapter.

Chapter 7

Motifs for Time-Series
Classification

In this Chapter, I focus on enhancing recognition systems by taking recurrent
patterns in time series data into account. These recurrent patterns are called
motifs. Motifs serve as basis for the extraction of additional features. I use these
additional features (together with the ones already present form other sources)
in conventional classifiers, in particular: Bayesian Networks and SVMs. As the
major contribution of this Chapter, In the experiments I show that motifs may
enhance recognition systems.

7.1 Generalized Semi-Contiguous Motifs

As described in Section 2.4.4, in case of motif-based classification of time series, in
the first phase, one searches for motifs in the time series. In this section, I describe
my motif discovery approaches in detail. Throughout this description, I assume
that the time series are converted into a sequence of discrete symbols (e.g. using
SAX, see Section 2.2.3). By motif discovery I mean finding which subsequences
occur frequently in the converted time series.

7.1.1 Definitions

Given a database of converted time series DSAX , a set of symbols Σ and a taxo-
nomic relation TΣ over Σ, the maximal number of allowed gaps nm, the maximal
allowed length of each gap dm, and a minimum support threshold s ∈ Z, I define
matching and motif as follows.

Definition 13 (Matching of two symbols). A symbol z ∈ Σ matches an other
symbol z′ ∈ Σ if either z = z′ or z′ is a descendant of z according to TΣ, z is
called the matching symbol, z′ is called the matched symbol. (See Figure 2.12 for
an example.)

104 Chapter 7: Motifs for Time-Series Classification

Definition 14 (Matching of sequences and time series). A sequence of symbols
x0 semi-contiguously matches a converted times series x ∈ DSAX , if all symbols of
x0 match at least one symbol in x so that (i) the order of matched symbols are the
same as the order of matching symbols, and (ii) the matched symbols in x build a
basically contiguous subsequence, but maximal nm gaps are allowed provided that
the length of each gap is not larger than dm.

Definition 15 (Generalized semi-contiguous motif). A sequence of symbols x0 is
called generalized semi-contiguous motif, if it matches at least s time series in
DSAX . The number of matched time series is called support of x0.

7.1.2 Anti-monotonicity Constraints

Checking the support of all possible sequences in order to decide whether they
are motifs or not is computationally infeasible due to the large number of pos-
sible sequences. Thus, the search space needs to be pruned in order to reduce
the number of sequences to be examined and an efficient implementation for sup-
port counting is needed. For this reason, I adapt constraints in [3], [165] and
[166] for semi-contiguous generalized motifs, and, in the next sections, I extend
optimization ideas in [19] and [20] for generalized semi-contiguous motifs.

The basic intuition behind the constraints on generalized semi-contiguous mo-
tifs is to use of the anti-monotonous property of the support function: (i) if a
sequence x0 contains another sequence x′0, the support of x0 is less than or equal
to the support of x′0, (ii) if a sequence x0 is less general than some other sequence
x′0, the support of x0 is less than or equal to the support of x′0.

These conditions hold as the number of time series matching x0 cannot be
higher than the number of time series matching x′0, as every time series x matching
x0 also matches x′0. Next, I describe these constraints formally. Both constraints
are consequences of the definition of support and matching. Let x0 be a sequence
over Σ (Σ contains elementary symbols and taxonomic wild-cards, therefore, be-
sides elementary symbols, the sequence may include taxonomic wild-cards too):

x0 = (w1, w2, . . . , wk−1, wk), each wi ∈ Σ, 0 < i ≤ k (7.1)

Constraint 1 (Sequential Anti-monotonicity). Let x′0 be a subsequence of x0:

x′0 = (wj, wj+1, wj+2, . . . wj+l), 0 < j ≤ j + l ≤ k (7.2)

In this case: support(x0) ≤ support(x′0).

Constraint 2 (Taxonomic Anti-monotonicity). Denote the transitive closure of
the taxonomic relation TΣ with T ∗Σ, i.e., (w,w′) ∈ T ∗Σ means that w is a (not
necessarily direct) descendant of w′ in TΣ. Assume that x′0 is a more general
sequence than x0:

x′0 = (w′1, w
′
2, . . . , w

′
k−1, w

′
k) with ∀i : (wi, w

′
i) ∈ T ∗Σ, 0 < i ≤ k (7.3)

In this case: support(x0) ≤ support(x′0).

7.1 Generalized Semi-Contiguous Motifs 105

These constraints suggest to check the shorter and more general sequences
first, whether they are motifs or not. For example, if we are given the taxonomy
depicted in the left of Figure 7.1, pattern (G,H) would be checked before (G,w)
and (G,H,H).

7.1.3 Extensions of Apriori

The first algorithm I propose for finding generalized semi-contiguous motifs is an
extended version of the algorithm Apriori [3]. The basic Apriori algorithm iterates
over three phases:

1. Candidate generation – Some sequences are selected so that their support
is checked in order to decide whether these sequences are motifs or not. The
selected sequences are called candidates. In the first iteration, all possible
sequences of length one are candidates. In other iterations, candidates are
generated based on the motifs found in the previous iteration. The algorithm
terminates if no more candidates can be generated.

2. Support counting – The support of each candidate is determined.

3. Filter infrequent candidates – The candidates with support lower than the
given threshold s are deleted. The other ones are motifs.

a) b)

Figure 7.1: a) An example taxonomy of the symbols G, H, J , K, N , m, n, p, s, t,
x, y, q and w. This taxonomy has two roots: G and H. b) An example illustrating the
data-structure used for counting the support of candidates and storing motifs in the
extended Apriori. Straight arrows denote sequential children, lines denote taxonomic
children. One of the cross-pointers is depicted with dotted arrow. Curved arrows show
the recursion steps according to the applied recursive search schema.

106 Chapter 7: Motifs for Time-Series Classification

The computational cost of Apriori highly depends on the applied data struc-
ture. Tries (or prefix trees) have been shown to be efficient for storing candidates
and the found motifs, see e.g. [19]. In the trie I used, there are taxonomic and
sequential edges, a path from the root to a node encodes a sequence. A simplified
example of the data structure is shown in the right of Figure 7.1, the two differ-
ent types of edges are shown with straight lines and straight arrows respectively.
Consider, for example, the path (root, G, J,H,w). There are two different types
of edges in this path: sequential edges are (root,G) and (J ,H), while taxonomic
edges are (G,J) and (H, w). Each sequential edge denotes a new symbol of the
sequence. The taxonomic edges in the path specialize the symbols. In this path,
G was specialized to J , and H was specialized to w, therefore the path encodes
the sequence (J, w).

There are also cross-pointers in the data structure that point from a sequence
(w1, w2, . . . , wk) to the sequence (w2, . . . , wk). In order to keep the example simple,
only one cross-pointer is depicted by the dashed arrow.1 These “cross-pointers”
allow quick candidate generation.

Candidate Generation

In this section I describe candidate generation that is performed in all iterations
of Apriori.

Let cr denote the count of roots in the taxonomy TΣ. At the beginning of the
first iteration, there are cr candidates, and each one corresponds to one of the
roots of the taxonomy. These are the most general and shortest sequences (they
consist of one item).

In each iteration, after counting the support of the current candidates, the fre-
quent patterns (motifs) are determined, and the candidates for the next iteration
are generated based on the motifs already found. There are two possible ways to
generate candidates from the motifs that are already known to be frequent.

Specification — As application of Constraint 2, given that x0 = (w1, . . . , wk−1, wk)
is a motif, and therefore frequent, its specification is x′0 = (w1, . . . , wk−1, w

′
k),

where the last symbol wk of x0 is replaced by a more specific one, w′k, i.e.,
(w′k, wk) ∈ T ∗Σ. According to Constraint 1, the specification of x0 can only be
frequent if xi = (w2, . . . , wk−1, w

′
k) is also frequent. Due to the cross-pointers, this

can be checked quickly. If xi is frequent, x′0 will be a candidate and the number
of time series matched by x′0 will be determined in the support counting phase of
Apriori.

1 Note that symbols in the sequences may denote symbols from any level of the taxonomy.
As shown, in the trie, several edges may correspond to one single symbol: in the example
shown in the right of Figure 7.1, the symbol w is represented by two edges: (∗, H) and
(H,w), where ∗ is J in the left branch of the trie and root in the right branch of the trie.

7.1 Generalized Semi-Contiguous Motifs 107

Sequential Extension — As application of Constraint 1, a motif x0 of length
1 may sequentially be extended by any other motif xii of length 1: x0 and xii
are concatenated to the new candidate x′′. For longer motifs: knowing that the
sequence x0 = (w1, w2, . . . , wk−1, wk) is a motif, its sequential extension x′′0 =
(w1, w2, . . . , wk, wk+1), can only be a motif if xii = (w2, . . . , wk−1, wk, wk+1) is
frequent, i.e. xii is a motif. Therefore, if xii is frequent, x′′0 will be a candidate
and the number of time series matched by x′′0 will be determined in the support
counting phase of Apriori.

When generating candidates, in each iteration of Apriori, all possible specifica-
tions and sequential extensions are applied in order to generate candidates for the
next iteration. Due to this policy, it is always known in advance, if the sequences
pi and pii are motifs: the support of pi and pii (whether they are frequent or not),
is determined before this information is necessary for the generation of candidates.

The new candidates are stored in the trie. As both candidates and motifs
(sequences that will be checked for frequency and the ones that are already found
to be frequent) are stored in the trie, one needs to distinguish between motifs
and candidates, which is possible –, for example by assigning a binary indicator
to each node of the trie (or by using counters in the nodes, see the subsequent
paragraphs).

When extending the trie in order to contain the new candidates, the cross-
pointers have to be updated according to their semantics as well.

Support Counting

Similarly to candidate generation, support counting is performed in each iteration
of Apriori. In this section, I describe how I implemented this step.

For each node, the trie contains a counter. The counter of a node shows how
many converted time series are matched by the sequence corresponding to that
node of the trie. When extending the trie with new candidates, their counters
are set to zero. Then, the converted dataset of time series is processed sequen-
tially, one sequence at a time. For each time series, the counters of the matched
candidates are incremented.

Matched candidates can be found efficiently using a doubly recursive search
scheme. This is shown in the right of Figure 7.1 and in the pseudocode of Algo-
rithm 11. In the right of Figure 7.1, counting is first invoked for the root-node with
the converted time series (m,w, d, f). Then, counting is invoked for the nodes G,
J and root with the tail of the previous sequence, i.e. (w, d, f). This is shown by
curved arrows. The details of the procedure are explained below.

When processing the time series dataset, for each time series x, the function
called support count0 is invoked for the root of the trie in line 3 of Algorithm 11.
At this point, the current node is the root of the trie and the second argument
of support count0 is the entire time series x. In the function support count0, the

108 Chapter 7: Motifs for Time-Series Classification

first symbol of x is checked whether it is matched by any of the candidates. Then,
the function support count0 is recursively invoked with the tail of the current time
series2 for

1. that sequential child of the current node which matches the first symbol of
the time series (if there is such a child),

2. all those taxonomic descendants of the aforementioned sequential child that
match the first symbol of the time series (if there are such descendants), and

3. the current node.

Note that this step is a generalization of the corresponding step in [19]. The first
two types of recursion allow for taxonomic wild-cards, while the third one allows
for gaps.

During this traversal of the trie, the counters of the candidates are incremented
so that at the end, i.e., when all the time series of the dataset are processed, the
counters show how many time series are matched by each candidate.

In contrast to [19], in case of generalized semi-contiguous motifs, some addi-
tional administration is necessary: during the doubly recursive search, one has
to take into account (and therefore possibly not invoke some of the third type
recursion steps because of) (i) the number of “gaps” while matching the (dm, nm)
semi-contiguous candidate to the input sequence, and (ii) the length of the current
“gap”, if there is currently a “gap” in the matched time series.3

While processing a single time series, it is possible to arrive several times at
the same node, as a candidate may be matched by several segments of the time
series. Therefore, we also have to take care to not increment the counter of a node
twice while processing a time series.

In order to increase the efficiency, I propose to use the adapted version of the
pruning technique described in [20], i.e., while traversing the trie according to the
described schema, I propose not to visit those nodes that do not lead to any of
the candidates, i.e. through which none of the candidates can be reached.

7.1.4 Extensions of Eclat

The second algorithm I present for finding generalized sequential semi-contiguous
motifs is based on the Eclat algorithm [79]. In contrast to Apriori that examines
sequences for being motifs in the order of their length and specificity, and there-
fore Apriori performs search in a bread-first-search manner beginning with the

2 With tail of a time series x = (w1, w2, ..., wk) the time series that is identical to x but
does not contain its first element is meant: tail(x) = (w2, ..., wk).

3 In my implementation, this additional administration is done by additional arguments
of the support count0 function that are set each time when the function is (recursively)
invoked.

7.1 Generalized Semi-Contiguous Motifs 109

Algorithm 11
Support Counting for Generalized Sequential Semi-contiguous Motifs

Require: SAX-Converted Time Series Dataset D
1: function support count(SAX-Converted Time Series Dataset D)
2: for each time series x ∈ D do
3: call support count0(trie of candidates.root, x)
4: if none of the counters were incremented because of x
5: (That is: x did not support any of the candidates)
6: then ignore x in the subsequent iterations of apriori
7: end for
8: end

9: function support count0(TrieNode node, TimeSeries x)
10: Symbol first symbol = getFirstSymbol(x)
11: TimeSeries tail sequence = tailTimeSeries(x) (See also Footnote 2)
12: TrieNode n1 = sequential child node of node which matches first symbol
13: if exists n1 and exists at least one candidate that is reachable over n1
14: then
15: N = { n1 } ∪ set of such taxonomic descendants of n1
16: that are matched by first symbol
17: for each n0 ∈ N
18: if n0 is candidate and n0 has not been supported by x before
19: then incrementSupport(n0)
20: call support count0(n0, tail sequence)
21: end for
22: end if
23: if maximal gap length and maximal gap count not exceeded
24: then call support count0(node,tail sequence)
25: end

shortest and most general sequences, Eclat organizes the search in a depth-first-
search manner, i.e., some long and specific sequences are examined sort after the
beginning of the search process.

Eclat assumes that each time series x ∈ D has a unique integer identifier,
called time series identifier or TID.4 The basic idea is to construct for each symbol
w ∈ Σ a so called TID-list, a list of TIDs of those time series that contain w. A
necessary (but not sufficient) condition for a generalized semi-contiguous sequence
x0 = (w0, w1, ..., wk) to match the time series x is that all the symbols w0, w1,
..., wk are contained in x. Therefore, if one wants to check the sequence x0 =

4 The algorithm originates from the frequent itemset mining community where records of
the database are often called transactions, and therefore the abbreviation TID originally
stands for transaction identifier.

110 Chapter 7: Motifs for Time-Series Classification

(w0, w1, ..., wk) for being frequent, one can first intersect the TID-lists of w1, w2,
..., wk. If the length of the intersection is smaller than the predefined minimum
support threshold s, one can be sure that x0 is not frequent. If, on the other
hand, the length of the intersection of the TID-list is larger than or equal to s,
the intersection of the TID-list defines a superset of the set of time series that are
matched by x0. Then, a simple solution for determining the true support of x0

is checking all the time series of the intersected TID-lists whether they are really
matched by x0. Algorithm 12 is based on this idea.

In Algorithm 12, additionally to the TID-list of a symbol w, the TID-list of
a sequence x0 is also used, which is the list of TIDs of those time series that
match x0. Keeping the anti-monotonicity constraints in mind, beginning from the
shortest and most generic ones, sequences are grown and specialized (generic wild-
cards are replaced by more specific symbols), as long as the resulting sequences
are frequent. When growing a sequence, the sequence is always extended by one of
the roots of the taxonomy (these are the most generic symbols) in lines 8 through
17 of Algorithm 12. When specializing the sequence, the last symbol is replaced
by a more generic one in lines 18 through 29 of Algorithm 12.

Algorithm 12 finds all the generalized semi-contiguous motifs due to the ap-
plication of the above-described steps of growing and specialization of sequences.
While doing so, it accesses the original time series dataset first when the TID-lists
of all the symbols are created at the beginning (line 2). Afterwards, only those
time series of the dataset are accessed that potentially match the currently exam-
ined sequence. For datasets of modest size that fit into the main memory (which
supports random access to time series) this is often sufficient. Therefore, we could
use this algorithm in joint work with Sebastian Blohm [16].

Speeding-up Algorithm 12

In order to speed up Algorithm 12 for large time series datasets, one can avoid
the accesses to the time series database in lines 11...16 and 22...27. In order to
do so, we need to modify the TID-lists. Up to now, TID-lists of a sequence x0 (in
some cases the sequence x0 contained only one symbol) were a list of identifiers
of time series matching x0. One time series identifier was contained at most once
in the list, even if the x0 matched a time series at several positions.

In the modified version, each entry of the TID-list of a sequence x0 corresponds
to one matching, and therefore the same TID can be contained several times, if the
corresponding time series is matched several times by x0. Further, the entries of
the TID-list are not single numbers, but triplets. Besides the time series identifier,
such a triplet (TID,pos,gaps) contains additional information about the matching:
the position, denoted as pos, where the given matching ends in the time series,
and the number of gaps in the given matching.

7.1 Generalized Semi-Contiguous Motifs 111

Algorithm 12
Extended Eclat for Generalized Sequential Semi-contiguous Motifs
We used this algorithm in joint work with Sebastian Blohm [16].

This is a simplified conceptual description, for efficient implementation, in particular avoiding

some of the accesses to the dataset, please see also Section Speeding-up Algorithm 12.

Require: SAX-Converted Time Series Dataset D, minimum support threshold s
Ensure: Set of generalized sequential semi-contiguous motifs denoted as motifs

1: function eclat(SAX-Converted Time Series Dataset D,
minimum support threshold s)

2: TID Lists TL = initTIDLists()
(TID-Lists for ∀w ∈ Σ, including wild-cards)

3: call eclat0(empty prefix,list of all transaction IDs)
4: return motifs
5: end

6: function eclat0(TimeSeriesPrefix p, TID List of Prefix tid)
7: motifs.add(p)
8: for ∀w ∈ D | w is a root do
9: p1 = concatenation(p,w)

10: tid1 = intersect(tid,TL.getTIDList(w))
11: if tid1.size() ≥ s then
12: for ∀ id ∈ tid1 do
13: if p1 does not match D.getInputSequence(id) then tid1.delete(id)
14: end for
15: if tid1.size() ≥ s then call eclat0(p1,tid1)
16: end if
17: end for
18: if length(p) > 0 then
19: for ∀w ∈ D | w is direct descendant of lastItem(p) do
20: p1 = replaceLast(p,w)
21: tid1 = intersect(tid,TL.getTIDList(w))
22: if tid1.size() ≥ s then
23: for ∀ id ∈ tid1 do
24: if p1 does not matchD.getInputSequence(id) then tid1.delete(id)
25: end for
26: if tid1.size() ≥ s then call eclat0(p1,tid1)
27: end if
28: end for
29: end if
30: end

112 Chapter 7: Motifs for Time-Series Classification

Denote

TL(x0) =
(

(tid1,pos1,gaps1), ..., (tidk,posk,gapsk)
)

and

TL(w) =
(

(tid ′1,pos ′1,gaps ′1), ..., (tid ′m,pos ′m,gaps ′m)
)

the TID-list of a sequence x0 and a symbol w respectively. The intersection of
these two lists is calculated as follows. For all tid i of TL(x0), one searches for
those tid ′j of TL(w) that are equal to tid i. Suppose, (tid ′j,pos ′j,gaps ′j) is one of
the entries of TL(w) corresponding to the entry (tid i,pos i,gaps i) of TL(x0), i.e.,
tid i=tid ′j. In this case:

• If pos ′j = pos i + 1, i.e., w directly follows x0 in the current time series5, then
(tid i,pos i + 1,gaps i) is inserted into the TID-list of the intersection.

• If 0 < pos ′j−pos i ≤ dm + 1, i.e., w follows x0 in the current time series, but
there is a gap between them and the length of the gap does not exceed the
maximal allowed gap length, and gapi < nm, i.e, the number of gaps in
the matching of x0 is less than the maximal allowed number of gaps, then
(tid i,pos ′j,gaps i + 1) is inserted into the TID-list of the intersection.

Formally: (tidk,posk,gapsk) ∈ TL(x0)∩TL(w)⇔((
(tidk,posk − 1,gapsk) ∈ TL(x0) ∧ (tidk,posk, 0) ∈ TL(w)

)∨
(

(tidk,posk − dg,gapsk − 1) ∈ TL(x0) ∧ (tidk,posk, 0) ∈ TL(w)
))

where 1 < dg ≤ dm and gapsk ≤ nm.

When calculating the intersections of TID-lists according to the above-described
procedure, the accesses to the time series dataset in lines 11...16 and 22...27 of
Algorithm 12 become unnecessary, because the intersection now contains exactly
the matchings of the new sequence (generated from x0 and w). Now, the support
of this new sequence equals to the number of distinct TIDs in the TID-list of the
intersection (instead of the length of the TID-list).

7.2 Experiments

Dataset. The data used in the experiments was collected at the Fresenius Clinics.
It contains recordings of dialysis sessions for 725 patients. The patients consult
the doctor regularly for treatment, some data (like blood pressure, body tempera-
ture. . .) is recorded every time, which leads to a sequence of observations. There
are about 40 different time series per patient. Some pieces of master data of the

5 the one having time series identifier: tid i

7.2 Experiments 113

patients (like age, sex, body mass index6,. . .) are also available. There are two
groups (classes) of patients: “normal” (53%) and “risky” (47%). This dataset was
previously used in [105], [106], the Reader is referred to [105] for a more detailed
description.

As usual in time series motif detection [105], [106], [127], as preprocessing
step, I converted time series into a sequence of discrete symbols using Symbolic
Aggregate Approximation (Section 2.2.3). The number of different symbols used
in the experiments was mSAX = 7, I aggregated elements of the time series over
non-overlapping frames of length 4, i.e., lSAX = 4.

Experimental Settings. In the experiments I examined the impact of motifs
in the common scenario when both master data of the patients and some time
series data are available. I discovered motifs on different time series separately, i.e.
separately on the time series of blood pressure, body temperature, etc. Minimum
support threshold was set to 0.05. For simplicity, I used contiguous motifs without
wild-cards.7 In line with [106], I select the best predictive motifs for each class:
I select motifs that predict the “normal” class with a probability of 80% and the
motifs that predict the “risky” class with a probability of 75%. Furthermore, I
only select motifs that are statistically significant for a class (χ2 test, significance
level: α = 0.05) and limit the total number of Apriori-iterations to 20 in order to
get short and therefore local motifs.

I performed 10-fold-cross-validation (see Section 2.6). In each round of the
10-fold-cross-validation, motifs are derived using the current training set, i.e., the
above described procedure of motif discovery and selection is performed on the
current training set.8 Then, the selected motifs are used to derive features in order
to allow for the usage of a vector classifier. In Section 2.4.4 binary features were
derived for each motif, these binary features indicate whether or not the motif is
included in a time series. As features, in some cases (these cases are listed later) I
used the total number of predictive motifs (TNPM) for each class, i.e., I used two
features, one of them is the number of motifs that are characteristic for the class
of risky patients while the other one is the number of motifs that are characteristic
for the class of normal patients.

As vector classifier, I used the WEKA-implementations of SVMs (with RBF
kernel) and Bayesian Networks.9 The hyper-parameters of the SVMs (complexity

6 Body mass index (or BMI) is calculated based on the weight and height of the patient
and it indicates whether the patient has overweight or underweight.

7 Note that my experiments reported in [36] indicate that both gaps and taxonomic wild-
chards (that are allowed in more complex semi-contiguous motif types) can further im-
prove accuracy compared to the case of using simple motifs. In order to keep the presen-
tation simple, in this section only the experiments with contiguous motifs are reported.

8 Note that this experimental protocol differs from the one used in [106], thus our results
are not directly comparable.

9 The choice of Bayesian Networks is also justified by the interpretability of the resulting
model which is an important requirement in the medical domain [148].

114 Chapter 7: Motifs for Time-Series Classification

Table 7.1: Classification accuracy (in %) with and without motifs

Baseline With motifs With motifs
(without motifs) TNPM features TNPM features +

indicators
SVM 72,40 72,12 75,61
SVM (logistic) 72,38 73,35 76,43
Bayesian Network 73,84 74,76 74,76

constant and exponent) are learned by grid search in the range 2−10, 2−9, . . . 23

and 2−10, 2−9, . . . 211 using a hold-out subset of the training data.
As baselines, I used vector classifiers (SVMs and Bayesian Network respec-

tively) without features derived from motifs. As features, the baselines used both
basic aggregates and the master data of patients. The baselines were compared
to vector classifiers that additionally use motif-features, i.e., features derived from
motifs. Regarding the additional motif-features, I examined two cases: (i) only
TNPM-features were used, and (ii) both TNPM-features and binary indicators
were used.

Results. All the examined models (including baselines and motif-based models)
worked much better than the trivial classifier that always outputs the majority
class’ label. The results (Table 7.1) show that motifs may enhance classification
accuracy, compared to the case when only master data is also available.

Part III

Conclusions and Outlook

Chapter 8

Outlook: Some Related
Applications

In the previous sections, I proposed concepts, techniques and algorithms for time-
series classification. The core ideas of them, however, can often be adapted for
other domains too, therefore, together with my collaborators, we used some of the
proposed techniques in various applications. In this section, these applications
are surveyed without complete descriptions. References are given to the sources
containing further information.

8.1 Classification of Electrocardiograph Signals

As described in Section 2.7.1, many recognition tasks related to electrocardiograph
(ECG) signals can be formulated as time-series classification problems. Fast and
accurate classification of ECG signals is substantial in many cases: e.g. in order
to call the emergency service in advance (if the patient is monitored continu-
ously at the intensive care department), or in order to allow for the thorough
analysis of long ECG signals (an ECG signal recorded over several days contains
several hundred-thousands heart beats). Therefore, in my joint work with Julia
Koller [34], we applied INSIGHT (Chapter 4) for recognition problems related to
ECG signals. In order to keep the presentation simple and compact, the results
on time series datasets containing ECG signals were already reported in the tables
and figures of Chapter 4.

Figure 8.1 provides more details by giving some examples for the classifica-
tion of some ECG signals of the ECG200 dataset. Note that in most cases, both
algorithms classified the signals correctly, the examples in Figure 8.1 aim at il-
lustrating the differences. Also note that all variants of my approach (INSIGHT
with different score functions) agreed on the classification of these signals.

118 Chapter 8: Some Related Applications

Figure 8.1: Some signals from the ECG200 dataset, their true class labels and
the class labels output by the nearest neighbor classifier with k = 1 after selecting
instances with FastAWARD and my approach, INSIGHT.

8.2 Extraction of Semantic Relations

A large portion of the information of websites is presented in form of natural
language texts. Representing this information in a more uniform structure may
be beneficial both for human users and machines by allowing e.g. faster and
more accurate search and reasoning. In collaboration with Philipp Cimiano and
Sebastian Blohm we were concerned with the task of relation extraction, which
can be introduced by the means of an example as follows: consider the relation
bornInYear between persons and the year they were born in, based on textual
information (such as texts of web pages), we aim at finding tuples for this relation,
i.e., pairs of person names and years they were born in.

Using generic sequential semi-continuous patterns, especially Algorithm 12 in
Chapter 7, we developed a method for relation extraction that works for a wide
variety of semantic relations such as currencyOf, locatedIn, headquarteredIn1 and
the aforementioned bornInYear. Using frequent pattern mining techniques, we
recognized the textual patterns that characterize the occurrence of the relevant
pieces of information, and used these textual patterns in order to extract the
tuples for the given relations.

We compared generic sequential semi-continuous patterns with other, simpler
pattern types such as continuous patterns without gaps. Our experiments showed
that generic sequential semi-continuous patterns were able to improve both pre-
cision and recall, see [16] for the details.

1 Out of these relations, currencyOf refers to the connection between a state and its cur-
rency, locatedIn associates a city or town with the country where it is located, while
headquarteredIn gives for a company the city of its central office.

8.3 Web People Search 119

Figure 8.2: Searching for a person name may result in web pages belonging to
different persons because several person may have the same name.

8.3 Web People Search

Suppose we are searching for information about a person on the web. Common
web search engines, such as Google or Yahoo, support keyword-based search, i.e.,
we can type the name of the person as keyword and the search engine returns a
list of pages containing that name. The list is usually ranked by relevance: the
most important web pages are shown first to the user.

Assuming that a person is uniquely identified by her or his name, the above
technique faithfully solves the task of finding information about a person. In
reality, however, often several persons have the same name. For example, if you are
searching for Krisztian Buza in Google, you will find a person riding horses, who
is surely different from me (see Figure 8.2). In such cases, presenting the search
results in a more structured way, in particular, clustering the results according to
persons, may be beneficial. These benefits are amplified in situations when one

120 Chapter 8: Some Related Applications

famous person dominates the web: due to the ranking, all the web pages shown at
the beginning of the list may refer to the dominant person that could be different
from the one that we are really searching for.

This problem was addressed in the Web People Search (WEPS) Workshop se-
ries.2 [6] Together with my collaborators, Lorenza Romano and Claudio Guiliano,
we participated at the 2nd WEPS Workshop and presented a possible solution
for the above-described task of web page clustering according to persons. Our
solution is similar to the technique for fusion of time series distance measures pre-
sented in Chapter 5: in the WEPS Workshop, we used a pairwise approach and
trained a regression model in order to recognize whether or not two web pages
refer to the same person. For a more details the Reader is referred to [152].

8.4 Clustering Images According to Events

Many web sites, e.g. Facebook, Flickr or Last.fm3 allow their users to upload and
browse images. These images are often associated with events, such as concerts,
marriages or birthdays. We are concerned with concrete events having a well-
defined location and time, such as the marriage of a given person on a particular
day at a well-defined location.

An interesting task is to find which pictures belong to the same event, i.e.,
clustering the images according to events. Together with Philipp Cimiano, Timo
Reuter and Lucas Drumond we worked on this problem. We enhanced the method
of Becker et al. [12] by using a model that is similar to the one introduced in
Chapter 5. We utilized the pairwise approach: we considered pairs of images and
constructed a machine learned distance measure. This construction was similar to
the training of the regression modelM in Chapter 5. Then, we used this distance
measure in the single linkage clustering algorithm. A detailed description of our
approach can be found in [150].

Methods similar to the ones we used to cluster web pages according to persons
and images according to events, i.e., methods based on machine learned distance
measures, have recently been applied in various other domains, e.g. the construc-
tion of a gold standard for a medical image retrieval task [66].

8.5 Ontology induction

The so called social tagging systems or folksonomies, that are web pages, where
users can label resources (pieces of music, video films, news articles, scientific
publications, etc.) with keywords they favor, have become popular in the last
decade.

2 http://nlp.uned.es/weps/index.php

3 http://www.facebook.com/ , http://www.flickr.com/ , http://www.lastfm.de/

8.6 Analysis of Aeroplane Engine Vibration 121

Figure 8.3: An excerpt of the induced ontology

Folksonomies may substantially contribute to more efficient search and in-
formation retrieval on the web because they provide a decentralized and shared
environment where ordinary users play the role of voluntary annotators. But
despite the compelling idea of folksonomies, its uncontrolled nature can bring
problems, such as: synonymy, homonymy, and polysemy, which lowers the effi-
ciency of content indexing and searching. Another problem is that folksonomy
users are heterogeneous and thus have different levels of knowledge about a do-
main, what can lead to very personal tag assignments, thus lowering the potential
for knowledge sharing. In this sense, folksonomies need some sort of expert in-
tervention in order to make the shared vocabulary converge to a well agreed and
therefore meaningful knowledge representation.

Together with Leandro Marinho we worked on the problem of inducing an
ontology that integrates users’ keywords into a domain expert taxonomy. We
introduced a process of several stages, one of the core components of this process
was build on frequent itemset mining techniques, that were similar to the ones
used in Chapter 7. The details of our approach are described in [8], an excerpt of
the induced ontology can be seen in Figure 8.3.

8.6 Analysis of Aeroplane Engine Vibration

An interesting recognition task regarding time series refers to the analysis of the
vibration of aeroplane engines.

122 Chapter 8: Some Related Applications

Figure 8.4: An illustrative
example for a Campbell dia-
gram

Vibration is the response of a system to an internal or external stimulus causing
it to oscillate. In the aerospace domain, components of a jet engine are exposed
to vibrations caused by unsteady forces, i.e., relative motions of rotating and non-
rotating parts. Resonance can damage the system or its components, see e.g. [64],
therefore, the analysis of vibration data is a fundamental issue in order to detect
dangerous vibrations and resolve the problem of possible damage by redesign.

During engine tests, sensors are placed on the components in order to record
vibration data. The vibration depends on the speed at which the engine currently
operates. Therefore, this measurement is performed at many different speeds in
order to obtain the vibration profile while the engine accelerates or decelerates.
The recordings are, therefore, time series.

In order to allow for the recognition of the relevant information, instead of the
raw representation of the data, a special representation, called Campbell diagram
is used. For each considered speed, it is examined how intensively different fre-
quencies are expressed in the vibration signal. The horizontal and vertical axes of
a Campbell diagram correspond the speed and frequency respectively, while the
color of a pixel encode the intensity of the vibration at the given speed and fre-
quency. As shown in the example in Figure 8.4, Campell diagrams are often noisy.
The data of the diagram in Figure 8.4 is fictive but imitates the characteristics of
real Campbell diagrams we worked with.

Regions of intensive vibration are not located at random, but they can be
described by parametric geometric curves, by lines in the most simple case. These
lines are relevant for detecting dangerous vibrations. Therefore, together with my
collaborators, Christine Preisach and Andre Busche, we aimed at identifying lines
in Campbell diagrams using Hough transformation [59]. I refer to [35] for a more
detailed description of our work.

Chapter 9

Conclusions and future work

The proceeding sections point out some pieces of the possible future work and
conclude this book.

9.1 Extensions of the proposed techniques

The proposed techniques — IQ estimation, instance selection, fusion of similarity
measures, the GRAMOFON ensemble framework and pattern mining — are not
limited to the application domains presented in the experiments, they can be
extended for other classification problems and algorithms.

In particular, one of the generic features of the proposed IQ estimation mech-
anism (Chapter 3) is that, in context of the k-NN classifier, IQ estimation can be
employed for learning other parameters than k, such as parameters of the distance
measure. More importantly, IQ estimation is not limited for the problem of k-NN
classification of time series and regression problems over vector data (Section 3.5),
since it can be used in combination with other classification algorithms and data
types, whenever the complexity of the data requires an individualized approach.
Therefore, future work involves the examination of IQ estimation in more general
contexts, such as classification of structured data, texts, images or videos, and
classification of multivariate and/or unevenly sampled time series.

Out of the above-mentioned domains and problems, in cases when the data
is complex and therefore calculations are computationally expensive, e.g. recog-
nition problems related to images and videos, instance selection is of major rel-
evance. As future work, INSIGHT (Chapter 4) can be extended for these cases.
Another promising direction is to combine instance selection with IQ estimation
in order to achieve fast and accurate classification.

Fusion of distance measures (Chapter 5) could also be combined with IQ es-
timations: one could, for example, construct several fused distance measures and
select the one to be used individually, i.e., dependent of the current time series.

The method presented for fusion of distance measures (Chapter 5) is not lim-
ited to time-series classification. As future work, one can examine fusion of dis-

124 Chapter 9: Conclusions and future work

tance measures in other contexts (e.g. more complex, structured data) or use
a fused distance measure for clustering of time series. As the presented fusion
approach works on data instance pairs, for large datasets, it may be beneficial to
develop sampling strategies with special focus on the possibly imbalanced nature
of the pair indicators. It would also be worth to examine in more depth, whether
all the distance measures are worth to be fused or one should rather select a
subset of them, because many of them could do better and faster than all [205].

As future work, one could use the GRAMOFON framework (Chapter 6) for the
above-mentioned selection of a subset of distance measures as well as for deploying
ensemble methods other than the presented ones.

Regarding pattern-based classification, one of the most challenging questions
refers to the selection of patterns. When searching frequent patterns in time series,
usually, a large number of patterns can be found. Many of them, however, are
irrelevant for classification and/or their occurrences strongly correlate (as they are
very similar patterns). The selection of a representative set of patterns – which
can be used for classification – is a challenging task. While I focused on frequent
patterns being correlated with one of the classes, in other applications, salient or
unusual patterns (outliers) may be relevant. [190]

9.2 Some Open Questions

The presence of hubs, the phenomenon I described in Section 2.4.3 and exploited
for speeding-up time-series classification in Chapter 4, was previously observed in
scale-free networks [9]. In order to make use of hubs for recognition problems (such
as time-series classification), one has to take the class labels into account. Based
on the labels, Radovanovic et al. [140], [141], [142] defined good and bad hubs
and made classification more accurate, while Tomasev et al. [174] explored hub-
based clustering in case of conventional vector data. In Chapter 4, I used hubness
in order to speed up time-series classification by instance selection. Research
questions that directly arise are:

1. Besides the ones already explored, are there other, better ways of exploiting
hubness for classification or clustering of time series?

2. Can hubness be exploited for other time-series classification problems, e.g. clas-
sification of multivariate or unevenly sampled time series or early classification?

The theory of complex networks has been studied intensively in the last decade,
see e.g. [9], [50], and, aside from the presence of hubs, various other properties of
natural and artificially created real-world networks have been identified, such as
(i) the small-world property which states that two objects are likely to be con-
nected via short paths, (ii) the clique or clustering property, according to which
the neighbors of an object are likely to be directly linked, and (iii) properties de-
scribing dynamic behavior or evolution of complex networks. These observations

9.3 Conclusions 125

suggest the research question whether other concepts of complex network theory
can constitute foundations for new time-series classification problems:

3. Can characteristic properties of complex networks (beyond the presence of hubs)
motivate new time-series classification methods either for conventional time-series
classification or for its variants, such as the ones listed in the previous question?

Distributions similar to the ones in complex networks have been found to be
characteristic for many phenomena of nature and social behavior [10], [53], [179].
Especially the presence of bursts [10] seems to be quite generic as it characterizes
the dynamics of natural and artificial processes. Often, time series are generated
by exactly these processes (in a time series, the value of a feature of such a process
is recorded in consecutive moments of time). Therefore, one question is how bursts
affect time series:

4. How do bursts influence the resulting time series? Do they generate charac-
teristic patterns that could be used to identify classes, or do burst generate noise
that should be eliminated in order to allow for more accurate classification?

Optimization of resource and energy consumption, reduction of waste-production
and pollution are some of the most important challenges of the upcoming cen-
tury. Based on graph theory, we are able to find e.g. the most environmental
friendly route (the one with minimal fuel consumption and CO2-emission) be-
tween to cities. Besides slowly changing structures (such as the road network)
many processes are characterized by some kind of a temporal behavior and many
parameters of static structures could change quickly (e.g. a the capacity of road
could be limited due to weather conditions, traffic jam or an unforeseen acci-
dent). Therefore, time series theory in combination with graph theory, taking
into account the recently observed properties of realistic networks, such as the
ones mentioned above, as well as theoretical results, e.g. [91], could potentially
contribute to the alleviation of the aforementioned problems.

The applications envisioned above require substantial extensions of the conven-
tional time-series classification framework. At the same time, the currently exist-
ing technologies have not been fully exploited yet: reducing the braking distance
of cars through the analysis of the drivers’ brain waves (electroencephalography
signals or EEG) is just one of the many emerging applications [82]. Furthermore,
considerable effort has been devoted to the generation of natural language sum-
maries from time series [164], and the usage of temporal features for various tasks
such as web spam filtering [63].

9.3 Conclusions

In this book, I focused on the time-series classification problem that is the com-
mon theoretical background of many real-life recognition tasks. I successfully
addressed two basic challenges of the problem: accuracy and execution time. Out

126 Chapter 9: Conclusions and future work

of the proposed techniques, individual quality (IQ) estimation, fusion of distance
measures, the GRAMOFON framework and motif-based classification aimed at
making time-series classification more accurate while the proposed instance selec-
tion algorithm can substantially reduce recognition time. The proposed techniques
are orthogonal to each other, i.e., in real recognition systems, they can be applied
together in combination in order to achieve fast and accurate recognition.

In Chapter 3, I proposed a mechanism for individual quality (IQ) estimation.
This considers a set of models (e.g. k-NN classifiers with different k values) and
uses meta-level regression models that estimate the quality of each such model.
In the framework of IQ estimation, I proposed three approaches: IQ-MAX, IQ-
WV and IQ-Reg. My first proposed approach, IQ-MAX, selects separately for
each time series the classifier with the maximum estimated quality. My second
approach, IQ-WV combines the results of the primary-level classifiers according
to the weighted voting schema, for which I used the estimated qualities as weights.
I developed IQ-Reg for regression problem over vector data. All these approaches
allow for adapting to characteristics that vary among the different regions in a
dataset and therefore make the classification more accurate while adding only a
small overhead in execution time.

In Chapter 4, I examined the problem of instance selection for speeding-up
time-series classification. I introduced a principled framework for instance selec-
tion based on coverage graphs and the recently observed phenomenon of hubness.
I proposed INSIGHT, a novel instance selection method for time series.

In Chapter 5, I focused on distance measures for time-series classification. I
discussed which aspects of similarity they capture. As in complex applications
several of these similarity aspects may be relevant simultaneously, I developed a
generic framework which allowed fusion of various similarity measures in a prin-
cipled way.

In Chapter 6, I proposed GRAMOFON, the General Model-selection Frame-
work based on Networks. GRAMOFON supports stacking-based ensembles with
appropriate model selection in case if large number of models are present. While
doing so, special attention was paid to the selection of those models that compen-
sate each other’s errors.

In Chapter 7, I defined a novel motif type, which I named generalized semi-
continuous motifs. I proposed efficient algorithms to discover them, and showed
that motifs may improve the accuracy of time-series classification.

Besides time-series classification that includes various domains on its own, the
proposed techniques (or their variants) can contribute to a wide variety of further
applications. The interested Reader is referred to [8], [150] and [152].

Besides extensions of the proposed techniques, directions of future work could
potentially include emerging domains such as integration of the presented results
with complex network theory or reduction of braking distance of cars through the
analysis of the drivers brain waves.

Bibliography

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in se-
quence databases. In Foundations of Data Organization and Algorithms,
volume 730 of Lecture Notes in Computer Science (LNCS), pages 69–84.
Springer, 1993.

[2] R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search
in the presence of noise, scaling, and translation in time-series databases.
In Proceedings of 21th International Conference on Very Large Data Bases
(VLDB), pages 490–501, 1995.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases (VLDB), pages 478–499. Morgan Kaufmann, 1994.

[4] D.W. Aha, D. Kibler, and M.K. Albert. Instance-Based Learning Algo-
rithms. Machine Learning, 6(1):37–66, 1991.

[5] S. Arlot and A. Celisse. A Survey of Cross-Validation Procedures for Model
Selection. Statistics Surveys, 4:40–79, 2010.

[6] J. Artiles, J. Gonzalo, and S. Sekine. The Semeval-2007 WEPS Evaluation:
Establishing a Benchmark for the Web People Search Task. In Proceedings of
the 4th International Workshop on Semantic Evaluations (Semeval), 2007.

[7] M. Bacauskiene, A. Verikas, A. Gelzinis, and D. Valincius. A feature selec-
tion technique for generation of classification committees and its applica-
tion to categorization of laryngeal images. Pattern Recognition, 42:645–654,
2009.

[8] L. Balby Marinho, K. Buza, and L. Schmidt-Thieme. Folksonomy-based
collabulary learning. In The Semantic Web - ISWC 2008, volume 5318
of Lecture Notes in Computer Science (LNCS), pages 261–276. Springer,
Berlin/Heidelberg, 2008.

[9] A.L. Barabási. Linked: How Everything Is Connected to Everything Else
and What It Means for Business, Science, and Everyday Life. Plume, 2003.

128 Bibliography

[10] A.L. Barabási. Bursts: The Hidden Pattern Behind Everything We Do. EP
Dutton, 2010.

[11] E. Bauer and R. Kohavi. An Empirical Comparison of Voting Classifi-
cation Algorithms: Bagging, Boosting, and Variants. Machine Learning,
36(1):105–139, 1999.

[12] H. Becker, M. Naaman, and L. Gravano. Learning Similarity Metrics for
Event Identification in Social Media. In Proceedings of the 3rd ACM Inter-
national Conference on Web Search and Data Mining, pages 291–300. ACM,
2010.

[13] J. Bennett and S. Lanning. The Netflix Prize. In Proceedings of KDD Cup
and Workshop, 2007.

[14] D. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns in
Time Series. In AAAI-94 Workshop on Knowledge Discovery in Databases,
pages 229–248, 1994.

[15] S. Blohm. Large-Scale Pattern-Based Information Extraction from the
World Wide Web. PhD thesis, Karlsruhe Institute of Technology (KIT),
2010.

[16] S. Blohm, K. Buza, P. Cimiano, and L. Schmidt-Thieme. Relation Extrac-
tion for the Semantic Web with Taxonomic Sequential Patterns. In Vijayan
Sugumaran and Jon Atle Gulla, editors, Applied Semantic Web Technolo-
gies. Auerbach Publishers Inc., 2011.

[17] F. Bodon. A fast apriori implementation. In Proceedings of the 1st IEEE
ICDM Workshop on Frequent Item Set Mining Implementations (FIMI),
volume 90 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[18] F. Bodon. A trie-based apriori implementation for mining frequent item
sequences. In Proceedings of the 1st International Workshop on Open
Source Data Mining: Frequent Pattern Mining Implementations, pages 56–
65. ACM, 2005.

[19] C. Borgelt. Efficient implementations of apriori and eclat. In Proceedings of
the 1st IEEE ICDM Workshop on Frequent Item Set Mining Implementa-
tions (FIMI), volume 90 of CEUR Workshop Proceedings. CEUR-WS.org,
2003.

[20] C. Borgelt. Recursion pruning for the apriori algorithm. In Proceedings of the
2nd IEEE ICDM Workshop on Frequent Item Set Mining Implementations
(FIMI), volume 126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

Bibliography 129

[21] G. Bortolan and J.L. Willems. Diagnostic ECG Classification Based on
Neural Networks. Journal of Electrocardiology, 26:75, 1993.

[22] M.F. Botsch. Machine Learning Techniques for Time Series Classification.
Cuvillier, 2009.

[23] H. Brighton and C. Mellish. Advances in Instance Selection for Instance-
Based Learning Algorithms. Data Mining and Knowledge Discovery,
6(2):153–172, 2002.

[24] R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: Improving
accuracy of classifier ensembles by using random feature subsets. Pattern
Recognition, 36(6):1291–1302, 2003.

[25] J. Buhler and M. Tompa. Finding Motifs Using Random Projections. Jour-
nal of Computational Biology, 9(2):225–242, 2002.

[26] D. I. Buza. Mozgásminta felismerése számı́tógép seǵıtségével. In Ifjú Kutatók
Nemzetközi Konferenciája (magyarországi forduló), 2008.

[27] K. Buza, A. Nanopoulos, T. Horváth, and L. Schmidt-Thieme. GRAMO-
FON: General Model-Selection Framework Based on Networks. Neurocom-
puting, 2011.

[28] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. Graph-Based Model-
Selection Framework for Large Ensembles. In Proceedings of the 5th Inter-
national Conference on Hybrid Artificial Intelligence Systems, volume 6076
of Lecture Notes in Computer Science/Lecture Notes in Artificial Intelli-
gence (LNCS/LNAI), pages 557–564, Berlin/Heidelberg, 2010. Springer.

[29] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. Time-Series Classification
Based on Individualised Error Prediction (Best Paper Award). In Int’l.
Conf. on Computational Science and Engineering (CSE). IEEE, 2010.

[30] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. Fusion of Similarity
Measures for Time Series Classification. In Proceedings of the 6th Interna-
tional Conference on Hybrid Artificial Intelligence Systems, volume 6679 of
Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence
(LNCS/LNAI), pages 253–261, Berlin/Heidelberg, 2011. Springer.

[31] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. INSIGHT: Efficient and
Effective Instance Selection for Time-Series Classification. In 15th Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), vol-
ume 6635 of Lecture Notes in Computer Science/Lecture Notes in Artificial
Intelligence (LNCS/LNAI), pages 149–160. Springer, 2011.

130 Bibliography

[32] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. IQ Estimation for Ac-
curate Time-Series Classification. In Symposium Series on Computational
Intelligence, Symposium on Computational Intelligence and Data Mining
(CIDM). IEEE, 2011.

[33] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. Individualized Error Esti-
mation for Classification and Regression Models. In 34nd Annual Conference
of the Gesellschaft für Klassifikation (GfKl 2010). Springer, to appear.

[34] K. Buza, A. Nanopoulos, L. Schmidt-Thieme, and J. Koller. Fast Clas-
sification of Electrocardiograph Signals via Instance Selection. In First
IEEE Conference on Healthcare Informatics, Imaging, and Systems Biol-
ogy (HISB), 2011.

[35] K. Buza, C. Preisach, A. Busche, L. Schmidt-Thieme, W.H. Leong, and
M. Walters. Eigenmode identification in campbell diagrams. In International
Workshop on Machine Learning for Aerospace, 2009.

[36] K. Buza and L. Schmidt-Thieme. Motif-Based Classification of Time Series
with Bayesian Networks and SVMs. In 32nd Annual Conference of the
Gesellschaft für Klassifikation, Studies in Classification, Data Analysis, and
Knowledge Organization, Advances in Data Analysis, Data Handling and
Business Intelligence, pages 105–114. Springer, 2010.

[37] J. Caiado. Classification and clustering of time series. LAP Lambert Aca-
demic Publishing, 2010.

[38] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally Adap-
tive Dimensionality Reduction for Indexing Large Time Series Databases.
Transactions on Database Systems (TODS), 27(2):188–228, 2002.

[39] K.P. Chan and W.C. Fu. Efficient Time Series Matching by Wavelets.
In Proceedings of the 15th International Conference on Data Engineering
(ICDE), pages 126–133. IEEE Computer Society, 1999.

[40] L. Chen and R. Ng. On the Marriage of lp-Norms and Edit Distance. In
Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB), pages 792–803, 2004.

[41] L. Chen, M.T. Özsu, and V. Oria. Robust and Fast Similarity Search for
Moving Object Trajectories. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 491–502. ACM, 2005.

[42] Y. Chen, M.A. Nascimento, B.C. Ooi, and A.K.H. Tung. Spade: On Shape-
Based Pattern Detection in Streaming Time Series. In 23rd International
Conference on Data Engineering, pages 786–795. IEEE, 2007.

Bibliography 131

[43] D.-Y. Chiu, Y.-H. Wu, and A.L.P. Chen. An efficient algorithm for mining
frequent sequences by a new strategy without support counting. page 375.
IEEE Computer Society, 2004.

[44] P. Christen. Automatic Record Linkage Using Seeded Nearest Neighbor and
Support Vector Machine Classification. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 151–159. ACM, 2008.

[45] F. Cismondi, A.S. Fialho, S.M. Vieira, J.M.C. Sousa, S.R. Reti, M.D. How-
ell, and S.N. Finkelstein. Computational Intelligence Methods for Process-
ing Misaligned, Unevenly Sampled Time Series Containing Missing Data.
In Symposium Series on Computational Intelligence, Symposium on Com-
putational Intelligence and Data Mining (CIDM). IEEE, 2011.

[46] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2001.

[47] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2011.

[48] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Sup-
port Systems, 47(4):547–553, 2009.

[49] B. Csatári and Z. Prekopcsák. Class-Based Attribute Weighting for Time
Series Classification. In Proceedings of the 14th International Student Con-
ference on Electrical Engineering, 2010.

[50] P. Csermely. Weak links: Stabilizers of Complex Systems from Proteins to
Social Networks. Springer, 2006.

[51] I. Daubechies. Ten Lectures on Wavelets. Society for industrial and applied
mathematics, 2004.

[52] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer Verlag, 1996.

[53] Z. Dezso, E. Almaas, A. Lukacs, B. Racz, I. Szakadat, and A.L. Barabasi.
The Dynamics of Information Access in the Online Media. Bulletin of the
American Physical Society, 2005.

[54] T.G. Dietterich. An Experimental Comparison of Three Methods for Con-
structing Ensembles of Decision Trees: Bagging, Boosting, and Randomiza-
tion. Machine Learning, 40(2):139–157, 2000.

132 Bibliography

[55] T.G. Dietterich. Ensemble methods in machine learning. In Multiple Clas-
sifier Systems, volume 1857 of Lecture Notes in Computer Science, pages
1–15. Springer Berlin / Heidelberg, 2000.

[56] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Query-
ing and Mining of Time Series Data: Experimental Comparison of Repre-
sentations and Distance Measures. Proceedings of the VLDB Endowment,
1(2):1542–1552, 2008.

[57] C. Domeniconi and D. Gunopulos. Adaptive Nearest Neighbor Classification
Using Support Vector Machines. Neural Information Processing Systems
(NIPS), 2001.

[58] C. Domeniconi, J. Peng, and D. Gunopulos. Locally Adaptive Metric
Nearest-Neighbor Classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2002.

[59] R.O. Duda and P.E. Hart. Use of the Hough Transformation to Detect Lines
and Curves in Pictures. Communications of the ACM, 15(1):11–15, 1972.

[60] N. Duffy and D. Helmbold. Boosting Methods for Regression. Machine
Learning, 47(2):153–200, 2002.

[61] S. Dzeroski, I. Slavkov, V. Gjorgjioski, and J. Struyf. Analysis of Time se-
ries Data with Predictive Clustering Trees. In Proceedings of the 5th Inter-
national Workshop on Knowledge Discovery in Inductive Databases, pages
47–58, 2006.

[62] D.R. Eads, D. Hill, S. Davis, S.J. Perkins, J. Ma, R.B. Porter, and J.P.
Theiler. Genetic Algorithms and Support Vector Machines for Time Se-
ries Classification. In Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 4787, pages 74–85, 2002.

[63] M. Erdélyi and A.A. Benczúr. Temporal analysis for web spam detec-
tion: An overview. In 1st International Temporal Web Analytics Work-
shop (TWAW) in conjunction with the 20th International World Wide Web
Conference in Hyderabad, India, 2011.

[64] D.J. Ewins. Modal Testing: Theory, Practice and Application. Research
Studies Press, Ltd., 2000.

[65] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence
Matching in Time-Series Databases. ACM SIGMOD Record, 23(2):419–429,
1994.

Bibliography 133

[66] J.S. Faruque, C.F. Beaulieu D.L. Rubin, and G. Tye S. Napel R.M. Sum-
mers J. Rosenberg, A. Kamaya. A Scalable Reference Standard of Visual
Similarity for a Content-Based Image Retrieval System. In First IEEE Con-
ference on Healthcare Informatics, Imaging, and Systems Biology (HISB),
2011.

[67] P. Ferreira and P. Azevedo. Protein Sequence Classification Through Rel-
evant Sequence Mining and Bayes Classifiers. Progress in Artificial Intelli-
gence, pages 236–247, 2005.

[68] P.G. Ferreira, P.J. Azevedo, C.G. Silva, and R.M.M. Brito. Mining Ap-
proximate Motifs in Time Series. In Proceedings of the 9th International
Conference on Discovery Science, 2006.

[69] A. Frank and A. Asuncion. UCI machine learning repository,
http://archive.ics.uci.edu/ml , 2010.

[70] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-Based Most Similar
Trajectory Search. In Proceedings of the 23rd International Conference on
Data Engineering (ICDE), pages 816–825. IEEE, 2007.

[71] M.E. Futschik and B. Carlisle. Noise-Robust Soft Clustering of Gene Ex-
pression Time-Course Data. Journal of Bioinformatics and Computational
Biology, 3(4):965–988, 2005.

[72] D. Garrett, D.A. Peterson, C.W. Anderson, and M.H. Thaut. Compari-
son of Linear, Nonlinear, and Feature Selection Methods for EEG Signal
Classification. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 11(2):141–144, 2003.

[73] W. Gaul and L. Schmidt-Thieme. Mining Generalized Association Rules for
Sequential and Path Data. In Proceedings of the International Conference
on Data Mining (ICDM), pages 593–596. IEEE, 2001.

[74] P. Geurts. Pattern Extraction for Time Series Classification. In Principles
of Data Mining and Knowledge Discovery, pages 115–127. Springer, 2001.

[75] M.P. Griffin and J.R. Moorman. Toward the Early Diagnosis of Neonatal
Sepsis and Sepsis-like Illness Using Novel Heart Rate Analysis. Pediatrics,
107(1):97, 2001.

[76] M. Grochowski and N. Jankowski. Comparison of Instance Selection Algo-
rithms II. Results and Comments. volume 3070 of Lecture Notes in Com-
puter Science/Lecture Notes in Artificial Intelligence (LNCS/LNAI), pages
580–585, Berlin/Heidelberg, 2004. Springer-Verlag.

134 Bibliography

[77] C. Gruber, M. Coduro, and B. Sick. Signature Verification with Dynamic
RBF Networks and Time Series Motifs. In 10th International Workshop on
Frontiers in Handwriting Recognition, 2006.

[78] D. Gunopulos and G. Das. Time Series Similarity Measures and Time Series
Indexing. SIGMOD Record, 30(2):624, 2001.

[79] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 1–12. ACM, 2000.

[80] T. Hastie and R. Tibshirani. Discriminant Adaptive Nearest Neighbor Clas-
sification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(6), 1996.

[81] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 5th Chapter. Springer
Verlag, 2009.

[82] S. Haufe, M.S. Treder, M.F. Gugler, M. Sagebaum, G. Curio, and
B. Blankertz. EEG potentials predict upcoming emergency brakings during
simulated driving. Journal of Neural Engineering, 8:056001, 2011.

[83] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1994.

[84] J. Hipp, A. Myka, R. Wirth, and U. Güntzer. A New Algorithm for Faster
Mining of Generalized Association Rules. In Proceedings of the 2nd European
Symposium on Principles of Data Mining and Knowledge Discovery, pages
74–82. Springer-Verlag, 1998.

[85] T.K. Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

[86] F. Itakura. Minimum Prediction Residual Principle Applied to Speech
Recognition. Transactions on Acoustics, Speech and Signal Processing,
23(1):67–72, 1975.

[87] M. Jahrer, A. Töscher, and R. Legenstein. Combining Predictions for Ac-
curate Recommender Systems. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and Data Mining, pages
693–702. ACM, 2010.

[88] A.K. Jain, R.C. Dubes, and C.C. Chen. Bootstrap Techniques for Error Es-
timation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(5):628–633, 2009.

Bibliography 135

[89] N. Jankowski and M. Grochowski. Comparison of Instance Selection Algo-
rithms I. Algorithms Survey, 2004.

[90] K.L. Jensen, M.P. Styczynski, I. Rigoutsos, and G.N. Stephanopoulos. A
Generic Motif Discovery Algorithm for Sequential Data. Bioinformatics,
22(1):21, 2005.

[91] Z. Kása. Hamiltonian cycles in de bruijn graphs. In 7th Joint Conference
on Mathematics and Computer Science, 2008.

[92] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Im-
provements to platt’s smo algorithm for svm classifier design. Neural Com-
putation, 13(3):637–649, 2001.

[93] A. Kehagias and V. Petridis. Predictive Modular Neural Networks for Time
Series Classification. Neural Networks, 10(1):31–49, 1997.

[94] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases. ACM
SIGMOD Record, 30(2):151–162, 2001.

[95] E. Keogh and S. Kasetty. On the Need for Time Series Data Mining Bench-
marks: A Survey and Empirical Demonstration. Data Mining and Knowl-
edge Discovery, 7(4):349–371, 2003.

[96] E. Keogh, J. Lin, A. Fu, and H. Van Herle. Finding the Unusual Medical
Time Series: Algorithms and applications. Transactions on Information
Technology in Biomedicine, Special Post-conference Issue ”Mining Biomed-
ical Data/CBMS2005”, 2005.

[97] E. Keogh and M. Pazzani. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback.
In Proceedings of the 4th International Conference of Knowledge Discovery
and Data Mining, pages 239–241. AAAI Press, 1998.

[98] E. Keogh and C.A. Ratanamahatana. Exact Indexing of Dynamic Time
Warping. Knowledge and Information Systems, 7(3):358–386, 2005.

[99] E. Keogh, C. Shelton, and F. Moerchen. Workshop and challenge on time
series classification, 2007.

[100] E. Keogh, L. Wei, X. Xi, S.H. Lee, and M. Vlachos. LB Keogh Supports
Exact Indexing of Shapes Under Rotation Invariance with Arbitrary Repre-
sentations and Distance Measures. In Proceedings of the 32nd International
Conference on Very Large Data bases (VLDB), pages 882–893. VLDB En-
dowment, 2006.

136 Bibliography

[101] E.J. Keogh and M.J. Pazzani. Scaling up Dynamic Time Warping for
Datamining Applications. In 6th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 285–289. ACM, 2000.

[102] E.J. Keogh and M.J. Pazzani. Derivative Dynamic Time Warping. In Pro-
ceedings of the 1st SIAM International Conference on Data Mining (SDM).
SIAM, 2001.

[103] S. Kim and P. Smyth. Segmental hidden markov models with random effects
for waveform modeling. The Journal of Machine Learning Research, 7:945–
969, 2006.

[104] S.W. Kim, S. Park, and W.W. Chu. An Index-Based Approach for Similarity
Search Supporting Time Warping in Large Sequence Databases. In Interna-
tional Conference on Computer Communications and Networks (ICCCN),
page 0607. IEEE Computer Society, 2001.

[105] T. Knorr. Identifying patients at risk: Mining dialysis treatment data. In
2nd German Japanese Symposium on Classification, Berlin, 2006.

[106] T. Knorr. Motif discovery in multivariate time series and application to
hemodialysis treatment data, 2006.

[107] F. Korn, H.V. Jagadish, and C. Faloutsos. Efficiently Supporting Ad Hoc
Queries in Large Datasets of Time Sequences. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), pages 289–300.
ACM, 1997.

[108] V. Kunik, Z. Solan, S. Edelman, E. Ruppin, and D. Horn. Motif Extraction
and Protein Classification. In Proceedings of the Computational Systems
Bioinformatics Conference (CSB), pages 80–85. IEEE Computer Society,
2005.

[109] V.I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966.

[110] G.-Z. Li and T.-Y. Liu. Feature selection for bagging of support vector ma-
chines. In Pacific Rim International Conferences on Artificial Intelligence
(PRICAI), volume 4099 of LNCS, pages 271–277. Springer, 2006.

[111] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A Symbolic Representation of
Time Series, with Implications for Streaming Algorithms. In Proceedings of
the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery. ACM, 2003.

Bibliography 137

[112] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a Novel Sym-
bolic Representation of Time Series. Data Mining and Knowledge Discovery,
15(2):107–144, 2007.

[113] H. Liu and H. Motoda. On issues of Instance Selection. Data Mining and
Knowledge Discovery, 6(2):115–130, 2002.

[114] I.L. MacDonald and W. Zucchini. Hidden Markov and Other Models for
Discrete-Valued Time Series. Chapman & Hall London, 1997.

[115] S.G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[116] S. Marcel and J.R. Millan. Person Authentication using Brainwaves (EEG)
and Maximum a Posteriori Model Adaptation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29:743–752, 2007.

[117] D.D. Margineantu and T.G. Dierrerich. Pruning adaptive boosting. In
Proceedings of the International Conference on Machine Learning (ICML).

[118] R. Martens and L. Claesen. On-line Signature Verification by Dynamic
Time-Warping. In Proceedings of the 13th International Conference on Pat-
tern Recognition, volume 3, pages 38–42. IEEE, 1996.

[119] F. Melgani and Y. Bazi. Classification of electrocardiogram signals with sup-
port vector machines and particle swarm optimization. IEEE Transactions
on Information Technology in Biomedicine, 12(5):667–677, 2008.

[120] A.M. Molinaro, R. Simon, and R.M. Pfeiffer. Prediction Error Estimation:
a Comparison of Resampling Methods. Bioinformatics, 21(15):3301, 2005.

[121] F. Mörchen. Time series feature extraction for data mining using dwt and
dft. Technical report, 2003.

[122] M.D. Morse and J.M. Patel. An Efficient and Accurate Method for Evalu-
ating Time Series Similarity. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 569–580. ACM, 2007.

[123] A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classifica-
tion of time-series data. In Information Processing and Technology, pages
49–61. Nova Science Publishers, Inc., 2001.

[124] R. Niels. Dynamic Time Warping: an Intuitive Way of Handwriting Recog-
nition? Master Thesis, Radboud University Nijmegen, The Netherlands,
2004.

[125] R.T. Olszewski. Generalized Feature Extraction for Structural Pattern
Recognition in Time-Series data. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2001.

138 Bibliography

[126] S. Ougiaroglou, A. Nanopoulos, A. Papadopoulos, Y. Manolopoulos, and
T. Welzer-Druzovec. Adaptive k-Nearest-Neighbor Classification Using a
Dynamic Number of Nearest Neighbors. In Advances in Databases and
Information Systems, pages 66–82. Springer, 2007.

[127] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining Motifs in Massive Time
Series Databases. In Proceedings of the International Conference on Data
Mining (ICDM), pages 370–377. IEEE, 2002.

[128] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and
M.C. Hsu. Mining Sequential Patterns by Pattern-Growth: The Prefixspan
Approach. Transactions on Knowledge and Data Engineering, pages 1424–
1440, 2004.

[129] Y. Peng. A novel ensemble machine learning for robust microarray data
classification. Computers in Biology and Medicine, 36(6):553–573, 2006.

[130] V. Petridis and A. Kehagias. Predictive modular neural networks: appli-
cations to time series, volume 466 of The Springer International Series in
Engineering and Computer Science. Springer Netherlands, 1998.

[131] R. Plamondon and S.N. Srihari. Online and Off-line Handwriting Recogni-
tion: a Comprehensive Survey. Pattern Analysis and Machine Intelligence,
22(1):63–84, 2002.

[132] J. Platt. Fast training of support vector machines using sequential minimal
optimization. Advances in Kernel Methods - Support Vector Learning, 1998.

[133] I. Pramudiono and M. Kitsuregawa. FP-tax: Tree Structure Based Gener-
alized Association Rule Mining. In Proceedings of the 9th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery,
pages 60–63. ACM, 2004.

[134] C. Preisach. Relational Semi-Supervised Classification Using Multiple Rela-
tions. PhD thesis, University of Hildesheim, Germany, 2010.

[135] C. Preisach and L. Schmidt-Thieme. Ensembles of relational classifiers.
Knowl. Inf. Syst., 14:249–272, 2008.

[136] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986. 10.1023/A:1022643204877.

[137] J.R. Quinlan. Combining instance-based and model-based learning. In Pro-
ceedings of the International Conference on Machine Learning (ICML), page
236, 1993.

Bibliography 139

[138] J.R. Quinlan. Bagging, Boosting, and C4.5. In Proceedings of the National
Conference on Artificial Intelligence, pages 725–730, 1996.

[139] L. Rabiner and B. Juang. An Introduction to Hidden Markov Models. ASSP
Magazine, 3(1):4–16, 1986.

[140] M. Radovanović, A. Nanopoulos, and M. Ivanović. Nearest Neighbors in
High-Dimensional Data: The Emergence and Influence of Hubs. In Proceed-
ings of the 26rd International Conference on Machine Learning (ICML),
pages 865–872. ACM, 2009.

[141] M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in Space: Popu-
lar Nearest Neighbors in High-Dimensional Data. The Journal of Machine
Learning Research (JMLR), 11:2487–2531, 2010.

[142] M. Radovanović, A. Nanopoulos, and M. Ivanović. Time-Series Classifi-
cation in Many Intrinsic Dimensions. In Proceedings of the 10th SIAM
International Conference on Data Mining (SDM), pages 677–688, 2010.

[143] C.A. Ratanamahatana and E. Keogh. Everything You Know about Dynamic
Time Warping is Wrong. In SIGKDD International Workshop on Mining
Temporal and Sequential Data, 2004.

[144] C.A. Ratanamahatana and E. Keogh. Making Time-Series Classification
More Accurate using Learned Constraints. In SIAM International Confer-
ence on Data Mining, pages 11–22, 2004.

[145] C.A. Ratanamahatana and E. Keogh. Three Myths about Dynamic Time
Warping Data Mining. In Proceedings of SIAM International Conference on
Data Mining (SDM). SIAM, 2005.

[146] T.M. Rath and R. Manmatha. Word Image Matching using Dynamic Time
Warping. In Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages II–521. IEEE, 2003.

[147] M.A. Redmond and A. Baveja. A data-driven software tool for enabling co-
operative information sharing among police departments. European Journal
of Operational Research, 141:660–678, 2002.

[148] B. Reiz and L. Csató. Bayesian network classifier for medical data analysis.
International Journal of Computers Communications & Control, 4(1):65–
72, 2009.

[149] S. Rendle and L. Schmidt-Thieme. Object Identification with Constraints.
In Proceedings of the 6th International Conference on Data Mining (ICDM),
pages 1026–1031. IEEE Computer Society, 2006.

140 Bibliography

[150] T. Reuter, P. Cimiano, L. Drumond, K. Buza, and L. Schmidt-Thieme.
Scalable event-based clustering of social media via record linkage techniques.
In Fifth International AAAI Conference on Weblogs and Social Media, 2011.

[151] I. Rish. An Empirical Study of the Naive Bayes classifier. In 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), Workshop on
Empirical Methods in Artificial Intelligence, 2001.

[152] L. Romano, K. Buza, C. Giuliano, and L. Schmidt-Thieme. XMedia: Web
People Search by Clustering with Machinely Learned Similarity Measures.
In 2nd Web People Search Evaluation Workshop (WePS-2), 18th World
Wide Web Conference (WWW), 2009.

[153] H. Sakoe and S. Chiba. Dynamic Programming Algorithm Optimization
for Spoken Word Recognition. Acoustics, Speech and Signal Processing,
26(1):43–49, 1978.

[154] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: Fast Similarity Search
under the Time Warping Distance. In Proceedings of the 24th SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages
326–337. ACM, 2005.

[155] S. Salvador and P. Chan. Toward Accurate Dynamic Time Warping in
Linear Time and Space. Intelligent Data Analysis, 11(5):561–580, 2007.

[156] L. Schmidt-Thieme. Assoziationsregel-Algorithmen für Daten mit komplexer
Struktur. Peter Lang Verlag, 2003.

[157] B. Schuller, S. Reiter, R. Muller, M. Al-Hames, M. Lang, and G. Rigoll.
Speaker Independent Speech Emotion Recognition by Ensemble Classifica-
tion, 2005.

[158] J. Shieh and E. Keogh. iSAX: Indexing and Mining Terabyte Sized Time
Series. In Proceeding of the 14th International Conference on Knowledge
Discovery and Data Mining (KDD), pages 623–631. ACM, 2008.

[159] D.L. Shrestha and D.P. Solomatine. Experiments with AdaBoost.RT, an Im-
proved Boosting Scheme for Regression. Neural Computation, 18(7):1678–
1710, 2006.

[160] J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-Weighted Linear Stacking.
arXiv (http://arxiv.org/abs/0911.0460), 911.

[161] A.J. Smola and B. Scholkopf. A tutorial on support vector regression, 1998.

[162] S. Sonnenburg, G. Ratsch, C. Schafer, and B. Scholkopf. Large Scale Mul-
tiple Kernel Learning. The Journal of Machine Learning Research, 7:1531–
1565, 2006.

Bibliography 141

[163] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In Proceedings of the 5th International
Conference on Extending Database Technology (EDBT), pages 3–17, 1996.

[164] Somayajulu G. Sripada, Ehud Reiter, Jim Hunter, and Jin Yu. Generating
english summaries of time series data using the gricean maxims. In Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’03, pages 187–196, New York, NY, USA,
2003. ACM.

[165] K. Sriphaew and T. Theeramunkong. A New Method for Finding General-
ized Frequent Itemsets in Generalized Association Rule Mining. In Proceed-
ings of the 7th International Symposium on Computers and Communications
(ISCC), pages 1040–1045. IEEE Computer Society, 2002.

[166] K. Sriphaew and T. Theeramunkong. Fast Algorithms for Mining General-
ized Frequent Patterns of Generalized Association Rules. Transactions on
Information and Systems, E87–D(3):761–770, 2004.

[167] Z. Syed and C.-C. Chia. Computationally generated cardiac biomarkers:
Heart rate patterns to predict death following coronary attacks. In SIAM
International Conference on Data Mining. 2011.

[168] P. Sykacek and S. Roberts. Bayesian Time Series Classification. Advances
in Neural Information Processing Systems, 2:937–944, 2002.

[169] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Matrix Factorization and
Neighbor Based Algorithms for the Netflix Prize Problem. In Proceedings of
the 2008 ACM Conference on Recommender systems, pages 267–274. ACM,
2008.

[170] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable Collaborative Filter-
ing Approaches for Large Recommender Systems. The Journal of Machine
Learning Research (JMLR), 10:623–656, 2009.

[171] A.C. Tan and D. Gilbert. Ensemble machine learning on gene expression
data for cancer classification, 2003.

[172] D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, and U. Leser. A Comprehen-
sive Benchmark of Kernel Methods to Extract Protein-Protein Interactions
from Literature. PLoS Computational Biology, 6(7):2–8, 2010.

[173] K.M. Ting and I.H. Witten. Stacked Generalization: When Does it Work?
In 15th Intertnational Joint Conference on Artifical Intelligence-Vol. 2,
pages 866–871. Morgan Kaufmann, 1997.

142 Bibliography

[174] N. Tomasev and M. Ivanovic M. Radovanovic, D. Mladenic. The Role of
Hubness in Clustering High-Dimensional Data. In 15th Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD), volume 6634 of
Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence
(LNCS/LNAI), pages 183–195. Springer, 2011.

[175] G. Tsoumakas, L. Angelis, and I.P. Vlahavas. Selective fusion of heteroge-
neous classifiers. Intelligent Data Analysis, 9:511–525, 2005.

[176] G. Tsoumakas, I. Katakis, and I.P. Vlahavas. Effective voting of heteroge-
neous classifiers. In Proceedings of the 11th European Conference on Machine
Learning (ECML), volume 3201, pages 465–476, 2004.

[177] A. Tsymbal and D.W. Patterson S. Puuronen. Ensemble feature selection
with simple bayesian classification. Information Fusion, 4:87–100, 2003.

[178] K. Tuda, G. Rätsch, S. Mika, and K.R. Müller. Learning to Predict the
Leave-One-Out Error of Kernel Based Classifiers. volume 2130 of LNCS,
pages 331–338. Springer Verlag, 2001.

[179] A. Vazquez, B. Rácz, A. Lukács, and A.L. Barabási. Impact of Non-
Poissonian Activity Patterns on Spreading Processes. Physical review letters,
98(15):158702, 2007.

[180] E. Vidal, F. Casacuberta, J.M. Benedi, M.J. Lloret, and H. Rulot. On the
Verification of Triangle Inequality by Dynamic Time-Warping Dissimilarity
Measures. Speech Communication, 7(1):67–79, 1988.

[181] M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering Similar Multidi-
mensional Trajectories. In Proceedings of the International Conference on
Data Engineering (ICDE), page 0673. IEEE Computer Society, 2002.

[182] M. Vlachos, D. Gunopulos, and G. Das. Rotation Invariant Distance Mea-
sures for Trajectories. In Proceedings of the 10th International Conference
on Knowledge Discovery and Data Mining (KDD), pages 707–712.

[183] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing
Multi-Dimensional Time-Series with Support for Multiple Distance Mea-
sures. In Proceedings of the 9th International Conference on Knowledge
Discovery and Data Mining (KDD), pages 216–225. ACM, 2003.

[184] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing
Multidimensional Time-Series. The VLDB Journal, 15(1):1–20, 2006.

[185] X. Wang, L. Ye, E. Keogh, and C. Shelton. Annotating Historical Archives
of Images. In Proceedings of the 8th ACM/IEEE-CS Joint Conference on
Digital Libraries, pages 341–350. ACM, 2008.

Bibliography 143

[186] G.I. Webb, J.R. Boughton, and Z. Wang. Not so naive bayes: Aggregating
one-dependence estimators. Machine Learning, 58(1):5–24, 2005.

[187] D. Wettschereck and T.G. Dietterich. Locally Adaptive Nearest Neighbor
Algorithms. Advances in Neural Information Processing Systems, pages
184–184, 1994.

[188] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques. 2011.

[189] D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[190] J. Woodbridge, M. Lan, M. Sarrafzadeh, and A. Bui. Salient Segmentation
of Medical Time Series. In First IEEE Conference on Healthcare Informat-
ics, Imaging, and Systems Biology (HISB), 2011.

[191] M. Wozniak. A Hybrid Decision Tree Training Method Using Data Streams.
Knowledge and Information Systems, pages 1–13, 2010.

[192] M. Wozniak and M. Zmyslony. Designing Fusers on the Basis of Discrim-
inants – Evolutionary and Neural Methods of Training. Hybrid Artificial
Intelligence Systems (HAIS), pages 590–597, 2010.

[193] Y.L. Wu, D. Agrawal, and A. El Abbadi. A Comparison of DFT and DWT
Based Similarity Search in Time-Series Databases. In Proceedings of the
9th International Conference on Information and Knowledge Management,
pages 488–495. ACM, 2000.

[194] X. Xi, E. Keogh, C. Shelton, L. Wei, and C.A. Ratanamahatana. Fast Time
Series Classification Using Numerosity Reduction. In Proceedings of the 23rd
International Conference on Machine Learning (ICML), pages 1033–1040.
ACM, 2006.

[195] Z. Xing, J. Pei, P.S. Yu, and K. Wang. Extracting Interpretable Features
for Early Classification of Time Series. In SIAM International Conference
on Data Mining (SDM), 2011.

[196] Y. Yang, G.I. Webb, J. Cerquides, K.B. Korb, J. Boughton, and K.M. Ting.
To select or to weigh: A comparative study of linear combination schemes for
superparent-one-dependence estimators. IEEE Transactions on Knowledge
and Data Engineering, 19:1652–1665, 2007.

[197] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting Time
Series Motifs under Uniform Scaling. In Proceedings of the 13th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 844–
853. ACM, 2007.

144 Bibliography

[198] L. Ye and E. Keogh. Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. Data Mining and Knowledge
Discovery, 22:149–182, 2011. 10.1007/s10618-010-0179-5.

[199] B.K. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Lp
Norms. In Proceedings of the 26th International Conference on Very Large
Data Bases, pages 385–394, 2000.

[200] B.K. Yi, H.V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar Time
Sequences under Time Warping. In Proceedings of the 14th International
Conference on Data Engineering (ICDE), pages 201–208. IEEE, 1998.

[201] G.P. Zhang and V.L. Berardi. Time Series Forecasting with Neural Network
Ensembles: an Application for Exchange Rate Prediction. Journal of the
Operational Research Society, 52(6):652–664, 2001.

[202] Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identi-
fication based on artificial neural network ensembles. Artificial Intelligence
in Medicine, 24(1):25–36, 2002.

[203] Z.-H. Zhou and W. Tang. Selective ensemble of decision trees. In Rough
Sets, Fuzzy Sets, Data Mining and Granular Computing, pages 476–483.
Springer, 2003.

[204] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could
be better than all. Artificial Intelligence, 137(1–2):239–263, 2002.

[205] Z.H. Zhou, J. Wu, and W. Tang. Ensembling Neural Networks: Many Could
Be Better Than All. Artificial Intelligence, 137(1-2):239–263, 2002.

