STADE: Standard Deviation as a Pruning Metric

Diego Coello de Portugal Mecke', Haya Alyoussef', Maximilian Stubbemann, Ilia Koloiarov'~,
Tom Hanika', Lars Schmidt-Thieme'-

"' ISMLL, University of Hildesheim
2 VWFS DARC

Abstract

Recently, Large Language Models (LLMs) have become very
widespread and are used to solve a wide variety of tasks. To
successfully handle many of these tasks, LLMs require longer
training times and larger model sizes. This makes LLMs ideal
candidates for pruning methods that reduce computational
demands while maintaining performance. Previous methods
require a retraining phase after pruning to maintain the orig-
inal model’s performance. However, state-of-the-art pruning
methods, such as Wanda, prune the model without retraining,
making the pruning process faster and more efficient. Build-
ing upon Wanda’s work, this study provides a theoretical ex-
planation of why the method is effective and leverages these
insights to enhance the pruning process. Specifically, a theo-
retical analysis of the pruning problem reveals a common sce-
nario in Machine Learning where Wanda is the optimal prun-
ing method. Furthermore, this analysis reveals cases where
Wanda is no longer optimal. To tackle those cases, we develop
anew method, STADE, based on the standard deviation of the
input. From a theoretical and empirical standpoint, STADE
demonstrates better generality across different scenarios. Fi-
nally, extensive experiments on Qwen, Llama and Open Pre-
trained Transformers (OPT) models validate these theoretical
findings, showing that depending on the training conditions,
Wanda’s optimal performance varies as predicted by the theo-
retical framework. These insights contribute to a more robust
understanding of pruning strategies and their practical impli-
cations.

Code — https://github.com/Coello-dev/STADE/tree/main

Introduction

Large Language Models (LLMs) (Radford et al. 2018, 2019;
Brown et al. 2020) have revolutionized not only the field
of Natural Language Processing (NLP) but also numerous
real-world applications that affect everyday life. Their abil-
ity to generate coherent text, perform complex reasoning,
and support a variety of conversational and decision-making
tasks has led to widespread adoption in both research and
industry. With the advent of increasingly autonomous sys-
tems (Durante et al. 2024; junyou li et al. 2024; Wu et al.
2024), these models now assist with tasks ranging from con-
tent creation and translation to automated customer support
and strategic decision making.

Despite these impressive capabilities, LLMs are notori-
ous for their substantial computational requirements (Ka-

plan et al. 2020a). The high memory footprint, extensive
processing power, and significant energy consumption often
limits their deployment on devices with limited resources,
such as mobile phones or embedded edge devices. In ad-
dition, the large-scale training of these models contributes
to increased operational costs and a non-negligible environ-
mental impact. Consequently, the drive to reduce the compu-
tational and storage demands of LLMs has become a central
focus in the field (Sevilla et al. 2022).

To mitigate these computational challenges, a variety of
approaches have been explored. One prominent strategy in-
volves reducing the storage requirements of model weights
through quantization (Ma et al. 2024; Wu et al. 2020). Quan-
tization techniques lower the numerical precision of weights
and activations, resulting in reduced memory usage and ac-
celerated inference speeds, often with minimal degradation
in performance. Another effective approach is to remove
unimportant weight parameters through pruning (LeCun,
Denker, and Solla 1989). Pruning methods seek to eliminate
redundancies in the network by removing weights that con-
tribute little to overall model performance, thereby decreas-
ing both the computational load and the inference latency.

Pruning techniques can be applied during training (Sanh,
Wolf, and Rush 2020) or after the model has been fully
trained, in what is known as post-training pruning (Ashk-
boos et al. 2024). The latter approach is particularly appeal-
ing when the goal is to adapt a pre-trained model for deploy-
ment on resource-constrained devices, as the main challenge
is not the training process but rather fitting the model into a
limited hardware environment. Although some post-training
pruning strategies involve costly retraining steps (Agarwal
etal. 2024; Xu et al. 2024), previous studies (Sun et al. 2024;
Frantar and Alistarh 2023) have demonstrated that a model
can maintain a large fraction of its original performance even
when up to 50% of its weights are pruned without any re-
training.

A notable pruning method is Wanda (Sun et al. 2024),
which employs a simple yet effective strategy based on the
Ls-loss to guide weight removal. Despite its empirical suc-
cess, the fundamental reason for the superior performance
of the Ly-loss over alternative norms (e.g., L1 or L) was
neither formally analyzed or fully understood. As noted in
the original paper: ”"We find that lo norm tends to work bet-
ter than other norm functions (e.g., 1 and l,) in measuring

activation magnitudes. This is possibly because lo norm is
generally a smoother metric” (Sun et al. 2024). Such obser-
vations have motivated deeper theoretical investigations into
pruning criteria.

This work aims to provide a comprehensive analysis of
the pruning problem. The contributions are as follows:

e A theoretical analysis of the pruning problem is pre-
sented, revealing a characterization of machine learning
scenarios where Wanda emerges as the optimal pruning
method.

e The analysis is extended to cases where Wanda’s ap-
proach is suboptimal, thereby motivating the develop-
ment of a new method, STADE.

* Multiple experiments with different LLM model families
validate empirically the theoretical analysis.

¢ Additionally, an ablation of layer-specific characteristics
demonstrates that different pruning metrics can yield bet-
ter performance when applied selectively across different
layers of a model. To the best of our current knowledge,
this is the first work to apply distinct pruning metrics to
different layers, resulting in improved overall pruning ef-
fectiveness.

Extensive experiments have been performed across mul-
tiple models and configurations to validate the theoretical
insights and assess the performance of the proposed STADE
method. The experiments evaluate perplexity, on different
pruning metrics and on different layers for various models,
and reveal that the impact of pruning is highly dependent
on the statistical properties of the input at each layer. These
findings offer valuable guidance for future research in model
compression and the efficient deployment of LLMs on con-
sumer devices.

Related Work

The study of sparse subnetworks within large neural net-
works has been an area of intense investigation, particularly
following the introduction of the Lottery Ticket Hypothesis
(Frankle and Carbin 2019). This hypothesis proposes that
within a randomly initialized neural network there exist sub-
networks (or "winning tickets”) that, when trained in isola-
tion, can achieve performance on par with the full network.
Subsequent investigations (Morcos et al. 2019; Frankle et al.
2020) have further elucidated the generalization capabilities
and connectivity properties of these subnetworks, providing
a theoretical basis for pruning methods.

Pruning strategies have evolved significantly over the past
decade. Early methods relied on simple heuristics such as
magnitude-based pruning (Zhu and Gupta 2017), which re-
moves weights with the smallest absolute values under the
assumption that these contribute least to network perfor-
mance. This basic approach laid the groundwork for more
sophisticated techniques that consider additional informa-
tion about the network. For instance, the work in (Han
et al. 2015) utilized the Lo norm to evaluate the importance
of weights, demonstrating that many redundant parameters
could be pruned without significant loss in accuracy.

Advancements in pruning have also led to the develop-
ment of methods that incorporate second-order information.
The Optimal Brain Surgeon (OBS) algorithm (Dong, Chen,
and Pan 2017), for example, leverages the Hessian matrix of
the loss function to estimate the impact of removing individ-
ual weights. Although OBS provides more refined pruning
decisions, its high computational complexity has restricted
its practical application in large-scale models.

More recent approaches have shifted focus to dynamic
pruning strategies that are integrated into the training pro-
cess (Sanh, Wolf, and Rush 2020; Chen et al. 2021). These
methods progressively reduce the number of active parame-
ters during training, often resulting in models that are sparser
and more computationally efficient. However, such strate-
gies may conflict with the scaling laws observed for LLMs
(Kaplan et al. 2020b), where performance improvements
are closely tied to increases in model size, computational
resources, and data availability. As a consequence, post-
training pruning techniques have emerged as a pragmatic
solution for adapting large pre-trained models to resource-
limited environments.

A wide range of post-training pruning techniques has
been proposed in recent years. Some methods, such as
LoRA-based pruning (Zhou et al. 2024), incorporate low-
rank adaptations to guide the pruning process. However,
retraining the pruned model often incurs significant com-
putational overhead. Others, like SparseGPT (Frantar and
Alistarh 2023), use Hessian-based metrics to carefully se-
lect which weights to remove, and adjusting the remaining
parameters accordingly, thereby preserving critical network
functionality. Additionally, strategies that minimize local re-
construction errors within individual blocks (Agarwal et al.
2024; Bai et al. 2024) or layers (Hubara et al. 2021b) of
Transformer-based architectures have been investigated, un-
derscoring the notion that different layers may require tai-
lored pruning criteria. Some layer-wise pruning techniques
employ structured sparsity, assigning a learned importance
weight to each matrix, thereby determining its optimal spar-
sity level (Li et al. 2024). Others adopt a block-wise group-
ing strategy, optimizing sets of layers collectively (Xu et al.
2024) to balance sparsity and accuracy.

A central aspect of all pruning methodologies is the selec-
tion of an appropriate pruning metric that accurately distin-
guishes between essential and redundant weights. The met-
ric adopted in Wanda (Sun et al. 2024)—which involves
computing the Lo norm of the input and multiplying it by the
absolute value of the corresponding weight—has garnered
considerable attention for its simplicity and effectiveness.
This approach provides a smooth, continuous measure that
captures the contribution of each weight to the overall acti-
vations. In contrast, more elaborate metrics, including those
based on second-order derivatives or layer-specific statistical
properties, may offer theoretical advantages but often come
at the cost of increased computational overhead.

Overall, the evolution of pruning methods reflects a
broader trend in machine learning towards achieving a bal-
ance between model efficiency and predictive performance.
Early heuristic methods have given way to more principled
approaches that take into account the underlying statistics

and structure of the network. The continued development of
these techniques is critical for the deployment of large-scale
neural networks on platforms with limited computational
resources. The insights provided by previous studies serve
as a valuable foundation for the enhancements presented in
this work, including the development of the STADE method,
which refines pruning strategies by incorporating the statis-
tical characteristics of layer inputs.

Methodology

Consider a data matrix X € RV*M and a weight matrix
W e RMXH where N is the number of instances in the
dataset, M represents the number of features and H repre-
sents the number of output features. In Wanda (Sun et al.
2024), the pruning of each column W. ; € R is performed
according to the criterion:

minll X, oW, m

where || X ;|2 is the Ly-norm of feature j in the dataset.
In the following section, the pruning problem is formalized
and it is demonstrated that Wanda selection criterion is op-
timal for layers with a centered inputs, i.e., inputs whose
expected value in each coordinate is 0. With this insight, a
generalization to layers with uncentered inputs is derived,
leading to the proposed method STADE.

Problem definition

Let X € RM be a random multivariate variable with z; =
E[X;] and 0; = Var[X;], and consider a linear layer with
a weight matrix W € RM>H and a bias term B € R,
The pruning process for the m-th column will be focused
on the weight matrix (denoted by W = W. ,,, RM)Y and
the corresponding bias (denoted by B = B,,, € R). In this
setting, the pruning problem aims to find the optimal W* €
RM and B* € R such that:

W=, B* — —~
s.t.Vie {1,..., MI\{j}, W =W;, W =0

Note that the objective is to select the pruning weight W;
so that the output remains almost unchanged, while allowing
the bias term to be updated.

STADE derivation

Starting from the formulation in Eq. 9, the objective function
can be reformulated as follows:

M M 2
min]E[<(B + ZXsz) - (B + ZXiWi*)>])

M M 2
E[((B 3 XaW) - (B + quwi*)) 1

—E[((B — B*) + X; W;)’]

=E[(B — B")* + 2(B — B")(X;W;) + (X;W;)?
=(B — B*)* +2(B — B")E[X;W;] + E[(X;W;)?]
=(B—B*)*+2(B — B)w;Wj + (0 + u5)W?

3

To determine the optimal solution of the convex problem
(with respect to B*) in Eq. 3, the derivative is computed to
obtain the stationary and minimum point:

d M M 2
- [E[((B £ XW) - (B Z&-Wi))]
i=1 i=1

d * *
= 5 (B = B")? +2(B = B")p;W; + (07 + 1) W]

=-2(B-DB")-2u;W; =0& B*=1,;W; + B

“4)

Substituting the optimal bias in Eq. 3 yields the solution
for W*:

M M 2
min E[((B + ZX’W’) —(B*+ ZXsz*)>]

w5 i=1 i=1
=min(B — B")* + 2(B = B");W; + (07 + 1) Wy
by . A

= min(B — (u;W; + B))?* + 2(B — (1;W; + B))u; W

J

+ (07 + pHW? = rnjin(ujo)2 — 2(p;W;) ;W

+ (02 + ,Lﬁ)VV2 = mino2W? ~ min 7||X:’j — 'u}ngVV2
J A 503 j N _1 J

1 1 & ’
~ N_1 (HljinHX:,j - N;Xn,jﬂﬂwj)
3)

Since the our goal is to find the optimal j that minimizes
the loss (arg minj), the factor ﬁ and the squaring opera-
tion can be omitted.

Wanda derivation

Many modern Transformers (Touvron et al. 2023a,b; Dubey
et al. 2024) employ normalization layers. These design
choices simplify the original problem by enforcing that the
input X is normalized (¢; = E[X;] = 0). Incorporating
these conditions to the previous derivations (Egs. 4 and 5)
leads to:

B*:/Ljo+B:O*Wj+B:B

(6)
minl X = a2V = min| X, o W)

This derivation results in the Wanda criterion, where the
bias term doesn’t need to get updated. Please notice that
Wanda is optimal under the previous assumptions, i.e., it is
only optimal for layers with centered inputs.

STADE-W: Using different metrics for different
layers

Based on the previous theoretical insight we introduce
STADE-W, a pruning strategy that employs different prun-
ing criterions depending on whether the input is normalized.

Weight Centered . o
Method Update Tnput Pruning criterion
Magnitude (Zhu and Gupta 2017) X Any [W; 5]

Wanda (Sun et al. 2024) X Any [1X.5]12|Wi ;1
Sparsegpt (Frantar and Alistarh 2023) v Any [(W|?/diag[(XTX + A1)~1]];
STADE XAy X = o X Xogllel Wil

STADE-W X Yes IJX : ’j]|v|2 Wil
X No 1X:5 = % 2n=1 Xn,jll2| Wi

Table 1: Comparison of pruning weight metrics across different methods. The column Centered Input indicates whether the
pruning method distinguishes between inputs with zero mean (Yes), without zero mean (No), or treats them equivalently (Any).

The pruning metrics derived from the previous analysis are
as follows:

Wanda criterion: || X ;||2|W; 7

N
1
STADE criterion: [X.; — — > Xojll2Wisl ®

n=1

STADE-W applies the STADE metric for biased inputs
(such as the second layer of an MLP or the output layer in
multi-head attention) and the Wanda metric for unbiased in-
puts (such as the first layer of an MLP or the queries, keys,
and values in multi-head attention). In theory, STADE should
be able to identify that the mean is O and return the same
output as Wanda. However, in practice the dataset used for
calibration might lead to a slightly different mean estimation
and therefore, STADE ends up underperforming.

Optimal pruning metric
In order to clarify which pruning metric to use in which lin-
ear layer we make the following distinctions:

* Centered inputs: When the input distribution is cen-
tered the optimal method is Wanda. This would be the
case when the previous layer is a Batchnorm (loffe and
Szegedy 2015), Groupnorm (Wu and He 2018) or Layer-
norm layer (Ba 2016), but not in the case of a RMSnorm
layer (Zhang and Sennrich 2019).

* Uncentered inputs: In this case, the input mean is no
longer O and therefore Wanda is no longer optimal.
Therefore STADE should be use since it takes into ac-
count the non-zero mean.

This protocol will be used throughout the paper unless
specified otherwise. Notice that within the same model, dif-
ferent layers could belong to different scenarios as men-
tioned before with STADE-W.

Experiments

Models and Evaluation. Most experiments are conducted
using the Llama (Touvron et al. 2023a,b; Dubey et al. 2024)
and Qwen (Bai et al. 2023; Yang et al. 2024; Qwen et al.
2025; Yang et al. 2025) models. In addition, the OPT family

(Zhang et al. 2023) is also evaluated due to its architectural
differences such as the usage of a bias term in the linear lay-
ers, the usage of Layernorm (Ba 2016) and the incorporation
of positional embeddings instead of rotary position embed-
dings (Su et al. 2024).

Following previous research (Sun et al. 2024), C4 dataset
(Raffel et al. 2019) is used for calibration, while raw-
WikiText2 dataset (Merity et al. 2022) is employed to eval-
uate model perplexity. Moreover, the zero-shot capabili-
ties of the pruning methods are assessed using nine tasks
from the EleutherAlI LM Harness Benchmark (Gao et al.
2024). These tasks include: Boolg (Clark et al. 2019), a
yes/no question answering dataset containing 15,942 ex-
amples; the Recognizing Textual Entailment (RTE) suite,
which combines RTE-1 (Dagan, Glickman, and Magnini
2006), RTE-2 (Dagan, Glickman, and Magnini 2005), RTE-
3 (Delmonte et al. 2007), and RTE-5 (Bentivogli et al. 2009)
challenges constructed from news and Wikipedia text; Hel-
laSwag (Zellers et al. 2019), a challenging dataset for eval-
uating commonsense,; WinoGrande (Keisuke et al. 2019),
a binary fill-in-the-blank task that requires commonsense
reasoning; Arc-Easy and Arc-Challenge (Clark et al. 2018),
which consist of multiple-choice science questions target-
ing grade-school level content and are split into easy and
challenging subsets, OpenBookQA (Mihaylov et al. 2018),
a dataset that involves questions requiring multi-step rea-
soning, additional commonsense knowledge, and compre-
hensive text comprehension; and MMLU (Hendrycks et al.
2021), a multitask test consisting of multiple-choice ques-
tions from various branches of knowledge.

Baselines. The main experiments employ pruning meth-
ods that do not involve weight updates to corroborate
our theoretical analysis. These methods include Magnitude
pruning (Zhu and Gupta 2017) and Wanda (Sun et al. 2024).
Furthermore, we also do an ablation on methods with weight
updates (SparseGPT (Frantar and Alistarh 2023)) for further
insights.

Pruning. The pruning strategy follows a layer-wise ap-
proach, which can be easily augmented with more complex
procedures that assign different weights to each layer (Xu
et al. 2024; Agarwal et al. 2024). The main focus is on un-
structured pruning, where any weight in a matrix may be

Methods Sparsity Llama-1 Llama-2 Llama-3 Qwen3

7B 7B 13B 3.0-8B 3.1-8B 1.7B 4B 8B 14B 32B

Dense 0% 5.68 547 4.88 6.14 6.24 16.67 13.64 9.72 8.64 7.6
Magnitude 2:4 42.53 37.76 8.89 2401.18 792.83 1808.24 1970.45 29448 38.58 29.89
Wanda 2:4 11.52 12.12 8.98 24.31 22.87 61.63 30.17 1641 13.14 10.33
STADE 2:4 11.38 10.82 8.42 22.30 20.52 46.90 133.17 1520 12.52 10.13
Magnitude 4:8 16.83 1591 7.32 18147 21246 614.71 150.43 11548 21.18 36.49
Wanda 4:8 8.57 8.60 7.00 14.61 13.78 32.62 22.25 1324 11.12 9.46
STADE 4:8 8.63 8.29 6.86 13.69 12.93 27.76 51.13 12.62 10.69 9.29
Magnitude 50% 17.29 16.03 6.83 20545 13428 174.10 111.22 5456 1522 49.09
Wanda 50% 7.26 6.92 597 9.83 9.65 20.63 16.39 11.35 10.00 8.63
STADE 50% 7.43 6.97 5.95 9.63 9.47 18.67 16.90 11.19 9.60 8.65

Table 2: Perplexity on Wikitext2 for different Llama and Qwen models. C4 dataset is used as the calibration dataset during
the pruning process. 2:4 and 4:8 sparsity refers to a structure pruning approach where 2/4 weights are pruned out of every 4/8

weights (Mishra et al. 2021)

pruned. Additionally, the structured N:M pruning scenario
will also be evaluated. In N:M structure pruning, out of ev-
ery M weights N must be pruned (Hubara et al. 2021a). In
particular, the 2:4 and 4:8 structured pruning schemes pro-
posed by Nvidia (Mishra et al. 2021) for faster inference are
adopted.

Large Language Modeling pruning

Table 2 reports the perplexity of Llama and Qwen models
with various pruning methods. Notice that STADE outper-
forms the other methods consistently across the different
pruning scenarios. These results follow our formal analy-
sis, validating our theoretical understanding. Notice that the
LLMs in Table 2 use RMSNorm (Zhang and Sennrich 2019)
and therefore we do not use STADE-W. Since no layer re-
ceives a normalized input, it is no different from standard
STADE.

OPT-125m : mip.f1 OPT-125m : mlp.f2
STADE STADE
—— Wanda 36 —— Wanda

3
3
®

Perplexity
Perplexity
N

_— 28 /

0.7 0.4

30—

0.4 0.7

0.5 0.6 0.5 0.6
Sparsity Sparsity

(a) Centered input
(mlp.f1 layer)

(b) Not centered input
(mlp.f2 layer)

Figure 1: Perplexity comparison on OPT-125m when
pruning only the specified layer type.

Pruning requirements of different layers

In order to see the effect of normalization layer, we inves-
tigate OPT models which use Layernorm (Ba 2016) instead
of RMSNorm (Zhang and Sennrich 2019). Since the linear
layers that receive the input after a Layernorm would be cen-
tered, a small ablation is done on the difference when prun-
ing a layer with a centered input vs an uncentered input in
Figure 1.

The experiment show that different layers benefit from
different pruning methods. In particular, when a layer re-
ceives a centered input (first layer of the MLP block), Wanda
performs better since it already assumes this scenario while
STADE approximates the mean with the inputs. However,
whenever the input is not centered Wanda is not able to keep
up with STADE (second layer of the MLP block). This re-
sult is in line with our theoretical analysis and validates our
characterization of the pruning problem. With these find-
ing we propose STADE-W, a method that combines both
STADE and Wanda. 1t uses Wanda when the input is cen-
tered and STADE otherwise. The results in Table 3 show
that STADE-W improves model performance over STADE
or Wanda when used individually on the OPT family.

Zero-shot comparison

While model perplexity serves as an important evaluation of
pruning strategies, measuring prediction accuracy is equally
crucial for large language models and their pruned variants.
To test the impact of the different pruning methods on model
accuracy, we evaluate on multiple zero-shot tasks across dif-
ferent datasets. The results are reported in Table 5.

The results on the zero-shot task align with those ob-
served when evaluating perplexity (Table 2). STADE method
demonstrates competitive performance across a range of
models and tasks.

Method Sparsity opt-125m opt-350m

opt-1.3b opt-2.7b opt-6.7b

opt-13b opt-30b

Dense 0% 27.65 22.00 14.62 12.47 10.86 10.13 9.56
Magnitude 2:4 341.46 417.01 427.09 115292 264.04 484.64 1981.10
Wanda 2:4 80.24 113.54 28.23 21.20 15.89 15.52 13.44
STADE 2:4 109.68 100.16 27.19 24.08 16.44 17.61 15.35
STADE-W 2:4 76.08 99.82 27.55 20.68 15.64 15.57 12.40
Magnitude 4:8 169.09 160.73 240.13 166.93 196.15 450.06 564.03
Wanda 4:8 53.18 58.49 22.15 16.77 13.56 13.37 10.88
STADE 4:8 68.19 57.62 21.34 17.38 13.79 14.98 11.42
STADE-W 4:8 52.64 56.69 21.93 16.66 13.41 13.34 10.85
Magnitude 50% 193.35 97.78 1713.49 265.17 968.77 11609.08 168.09
Wanda 50% 38.94 36.21 18.42 14.22 11.98 11.92 10.03
STADE 50% 49.04 37.51 17.75 14.36 11.87 13.10 10.19
STADE-W 50% 39.22 36.15 18.38 14.20 11.97 11.96 10.05

Table 3: Perplexity on Wikitext2 with C4 as the calibration dataset.

Weight . Qwen3 Qwen3
Method 1y e SPASIY 7 7p 3B
Dense X 0% 16.67 9.72
Magnitude X 2:4 1808.24 294.48
Wanda X 2:4 61.63 16.41
SparseGPT v 2:4 31.74 14.48
SparseGPT .
(wlo update) X 2:4 51.75 14.99
STADE X 2:4 46.90 15.20
Magnitude X 4:8 614.71 115.48
Wanda X 4:8 32.62 13.24
SparseGPT v 4:8 25.38 12.65
SparseGPT .
(wio update) X 4:8 28.80 13.02
STADE X 4:8 27.76 12.62
Magnitude X 50% 174.10 54.56
Wanda X 50% 20.63 11.35
SparseGPT v 50% 23.73 11.49
SparseGPT
(wio update) X 50% 22.89 11.80
STADE X 50% 18.67 11.19

Table 4: Perplexity comparison with pruning methods that
update weights (SparseGPT).

Weight update importance

SparseGPT is a pruning criterion that despite being compa-
rable to Wanda and in some cases even outperforming it, it
is known to be slower and more computationally demanding
than other baselines. In this section, we compare the perfor-
mance of SparseGPT against STADE, with a particular focus
on the critical importance of its weight update mechanism.
Table 4 shows that even though SparseGPT is competi-
tive, it is not always the best performing method. In particu-
lar, it is a competitive for scenarios where the weight selec-

tion is more restricted, i.e., it gets better with smaller mod-
els and with more constrained scenarios such as 2:4 prun-
ing. Nevertheless, when pruning bigger models in more un-
structured scenarios, STADE is able to show SOTA perfor-
mance. Moreover, the efficacy of SparseGPT comes from
the weight update and not from the weight selection crite-
rion as shown with the SparseGPT (w/o update) ablation.

Notice that our theoretical analysis of the pruning prob-
lem presented focuses exclusively on cases without weight
updates. The experimental findings corroborate that the per-
formance of pruning methods can be improved by applying
weight updates to the remaining parameters after pruning.
These updates help to counterbalance the negative effects
associated with the removal of weights, thereby better pre-
serving the model’s predictive capability. This suggests that
beyond the initial selection of weights to prune, the adjust-
ment of the unpruned weights is a crucial factor in achieving
optimal performance.

Bias usage ablation

STADE method updates the bias term when pruning the
models. In models like OPT which already have bias, this is
reasonable. However, Llama and Qwen models do not have
originally a bias term and therefore, this would results in
adding a new bias term which could be considered as adding
some extra weight variables. This could be considered an
unfair advantage when compared to the other methods. To
investigate this, a small ablation is done where we do not
update the bias term.

The results shown in Tab. 6 demonstrate that there is lit-
tle to no difference when adding the bias term and if one
wants to remove this term the results are almost identical.
Empirically we observe that for any layer, the sum of the ab-
solute terms of the bias is always smaller than 10~2, which
explains why removing it has little to no impact.

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 45.73% 56.42% 63.52% 66.63% 69.48%
Magnitude 50% 32.91% 33.63% 35.40% 41.11% 60.65%
Wanda 50% 40.25% 49.85% 57.66 % 62.48% 67.23%
STADE 50% 40.36 % 50.38% 57.10% 62.99 % 67.64%
Magnitude 2:4 30.21% 33.09% 33.11% 33.62% 48.54%
Wanda 2:4 33.28% 38.57% 47.28 % 54.71% 59.81%
STADE 2:4 33.85% 39.72% 43.79% 56.62% 59.94%
Magnitude 4:8 31.17% 33.75% 35.43% 34.26% 54.53%
Wanda 4:8 35.49% 43.21% 53.85% 60.17% 63.33%
STADE 4:8 34.89% 43.26 % 47.99% 60.52 % 63.69 %

Table 5: Zero shot accuracy averaged over 9 individual tasks (Arc-Challenge, Arc-Easy, Boolg, HellaSwag, OpenBookQA, RTE-
3, WinoGrande and MMLU. The results for each individual tasks can be found in the Appendix.

Model Sparsity STADE (Vi;i)Ag a];:s)

Llama-7B 0.5 11.38 11.38
Llama2-7B 0.5 10.82 10.82
Llama2-13B 0.5 8.42 8.42
Llama3-8B 0.5 22.30 22.37
Llama3.1-8B 0.5 20.52 20.52
Qwen3-1.7B 0.5 46.90 46.90

Qwen3-4B 0.5 133.17 131.50
Qwen3-8B 0.5 15.20 15.20
Qwen3-14B 0.5 12.52 12.51
Qwen3-32B 0.5 10.13 10.13

Table 6: Ablation on the importance of the bias update in
STADE algorithm.

Future Work

The exploration of various pruning criterions has revealed
that no single method is universally optimal for every layer
within a deep neural network. Future research should aim to
deepen the understanding of how different layers and net-
work depths interact with distinct pruning criteria, poten-
tially leading to adaptive, layer-specific pruning strategies.
In addition, investigating the benefits of pruning each layer
with different sparsity ratios could further enhance model
efficiency and performance, representing another promis-
ing direction for future work. Furthermore, methods such as
SparseGPT demonstrate that incorporating weight updates
for unpruned parameters can significantly enhance perfor-
mance, suggesting that further investigation into efficient
weight update mechanisms may yield substantial benefits.

In our work we focus on medium to small model sizes,
as we are interested in their capabilities on many resource-
constrained scenarios. Nevertheless, evaluating these prun-
ing methods on larger models and other architectures (mix-
ture of experts (Jiang et al. 2024)) would help to assess the
scalability and effectiveness of the proposed techniques in
on large-scale settings.

Conclusion

This work presents a comprehensive analysis of optimal
weight pruning in neural networks and provides a theoreti-
cal framework that explains why Wanda is effective in many
common deep learning scenarios. It demonstrates that while
Wanda performs optimally in layers with centered inputs, its
effectiveness diminishes in layers that receive uncentered in-
puts. In response to these observations, we propose a new
pruning criterion (STADE) that handles this scenario. We
demonstrate theoretically and empirically that STADE out-
performs Wanda for uncentered inputs.

We also observe that different layers have different input
statistics and therefore the optimal pruning criterion might
change between layers. Building upon these insights, we in-
troduce STADE-W, which dynamically combines Wanda and
STADE based on the input statistics of each layer, making it,
to the best of current knowledge, the first pruning method
that employs different pruning criterions for different lay-
ers. We do extensive experiments on Qwen, Llama and Open
Pre-trained Transformers models. We not only evaluate per-
plexity but also zero-shot performance. The results validate
our theoretical analysis and reveal that pruning effectiveness
varies according to the input characteristics of each layer.
Notably, our method achieves state-of-the-art performance
for the pruning problem. Moreover, our experiments demon-
strate that incorporating weight update mechanisms (as ex-
emplified by SparseGPT) can improve performance, further
highlighting the benefits of updating the unpruned weights
and a future research direction.

All together, these contributions not only advance the un-
derstanding of pruning strategies but also offer a new robust
method for reducing the computational demands of large
language models without significant performance loss. The
insights provided herein pave the way for more efficient de-
ployment of large-scale models in resource-constrained en-
vironments.

References

Agarwal, P.; Mathew, M.; Patel, K. R.; Tripathi, V.; and
Swami, P. 2024. Prune Efficiently by Soft Pruning. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2210-2217.

Ashkboos, S.; Croci, M. L.; Nascimento, M. G. d.; Hoefler,
T.; and Hensman, J. 2024. Slicegpt: Compress large lan-
guage models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Ba, J. L. 2016.
arXiv:1607.06450.

Bai, G.; Li, Y.; Ling, C.; Kim, K.; and Zhao, L. 2024.
SparseLLM: Towards global pruning of pre-trained lan-
guage models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Bai, J.; Bai, S.; Chu, Y.; Cui, Z.; Dang, K.; Deng, X.; Fan,
Y.; Ge, W.; Han, Y.; Huang, F.; et al. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.

Bentivogli, L.; Magnini, B.; Dagan, I.; Dang, H. T.; and Gi-
ampiccolo, D. 2009. The Fifth PASCAL Recognizing Tex-
tual Entailment Challenge. In Proceedings of the Second
Text Analysis Conference, TAC 2009, Gaithersburg, Mary-
land, USA, November 16-17, 2009. NIST.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; etal. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877—
1901.

Chen, T.; Cheng, Y.; Gan, Z.; Yuan, L.; Zhang, L.; and
Wang, Z. 2021. Chasing sparsity in vision transformers:
An end-to-end exploration. Advances in Neural Information
Processing Systems, 34: 19974—19988.

Clark, C.; Lee, K.; Chang, M.-W.; Kwiatkowski, T.; Collins,
M.; and Toutanova, K. 2019. BoolQ: Exploring the Surpris-
ing Difficulty of Natural Yes/No Questions. In NAACL.

Clark, P.; Cowhey, L.; Etzioni, O.; Khot, T.; Sabharwal, A.;
Schoenick, C.; and Tafjord, O. 2018. Think you have Solved
Question Answering? Try ARC, the AI2 Reasoning Chal-
lenge. arXiv:1803.05457v1.

Dagan, I.; Glickman, O.; and Magnini, B. 2005. The PAS-
CAL recognising textual entailment challenge. 177-190.
ISBN 978-3-540-33427-9.

Dagan, I.; Glickman, O.; and Magnini, B. 2006. The pascal
recognising textual entailment challenge, 177-190.

Delmonte, R.; Bristot, A.; Piccolino Boniforti, M. A.; and
Tonelli, S. 2007. Entailment and Anaphora Resolution in
RTES3. In Sekine, S.; Inui, K.; Dagan, I.; Dolan, B.; Giampic-
colo, D.; and Magnini, B., eds., Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphras-
ing, 48-53. Prague: Association for Computational Linguis-
tics.

Dong, X.; Chen, S.; and Pan, S. J. 2017. Learning to Prune
Deep Neural Networks via Layer-wise Optimal Brain Sur-
geon. arXiv:1705.07565.

Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.;
Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A

et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Layer normalization. arXiv preprint

Durante, Z.; Sarkar, B.; Gong, R.; Taori, R.; Noda, Y.; Tang,
P.; Adeli, E.; Lakshmikanth, S. K.; Schulman, K.; Milstein,
A.; etal. 2024. An interactive agent foundation model. arXiv
preprint arXiv:2402.05929.

Frankle, J.; and Carbin, M. 2019. The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks.
arXiv:1803.03635.

Frankle, J.; Dziugaite, G. K.; Roy, D. M.; and Carbin, M.
2020. Linear Mode Connectivity and the Lottery Ticket Hy-
pothesis. arXiv:1912.05671.

Frantar, E.; and Alistarh, D. 2023. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, 10323-10337.
PMLR.

Gao, L.; Tow, J.; Abbasi, B.; Biderman, S.; Black, S.; DiPofi,
A.; Foster, C.; Golding, L.; Hsu, J.; Le Noac’h, A.; Li,
H.; McDonell, K.; Muennighoff, N.; Ociepa, C.; Phang, J.;
Reynolds, L.; Schoelkopf, H.; Skowron, A.; Sutawika, L.;
Tang, E.; Thite, A.; Wang, B.; Wang, K.; and Zou, A. 2024.
A framework for few-shot language model evaluation.

Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learn-
ing both Weights and Connections for Efficient Neural Net-
works. arXiv:1506.02626.

Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;
Song, D.; and Steinhardt, J. 2021. Measuring Massive Mul-
titask Language Understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

Hubara, 1.; Chmiel, B.; Island, M.; Banner, R.; Naor, J.;
and Soudry, D. 2021a. Accelerated sparse neural training:
A provable and efficient method to find n: m transposable
masks. Advances in neural information processing systems,
34:21099-21111.

Hubara, 1.; Chmiel, B.; Island, M.; Banner, R.; Naor, J.;
and Soudry, D. 2021b. Accelerated Sparse Neural Train-
ing: A Provable and Efficient Method to Find N:M Trans-
posable Masks. In Ranzato, M.; Beygelzimer, A.; Dauphin,
Y.; Liang, P.;; and Vaughan, J. W., eds., Advances in Neural
Information Processing Systems, volume 34, 21099-21111.
Curran Associates, Inc.

Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International conference on machine learning, 448—
456. pmlr.

Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A
Savary, B.; Bamford, C.; Chaplot, D. S.; de las Casas, D.;
Hanna, E. B.; Bressand, F.; Lengyel, G.; Bour, G.; Lample,
G.; Lavaud, L. R.; Saulnier, L.; Lachaux, M.-A.; Stock, P.;
Subramanian, S.; Yang, S.; Antoniak, S.; Scao, T. L.; Gervet,
T.; Lavril, T.; Wang, T.; Lacroix, T.; and Sayed, W. E. 2024.
Mixtral of Experts. arXiv:2401.04088.

junyou li; Zhang, Q.; Yu, Y.; FU, Q.; and Ye, D. 2024. More
Agents Is All You Need. Transactions on Machine Learning
Research.

Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020a. Scaling Laws for Neural Language Mod-
els. arXiv:2001.08361.

Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020b. Scaling Laws for Neural Language
Models. arXiv:2001.08361.

Keisuke, S.; Ronan, L. B.; Chandra, B.; and Yejin, C. 2019.
WinoGrande: An Adversarial Winograd Schema Challenge
at Scale.

LeCun, Y.; Denker, J.; and Solla, S. 1989. Optimal brain
damage. Advances in neural information processing sys-
tems, 2.

Li, L.; Dong, P.; Tang, Z.; Liu, X.; Wang, Q.; Luo, W.; Xue,
W.; Liu, Q.; Chu, X.; and Guo, Y. 2024. Discovering sparsity
allocation for layer-wise pruning of large language models.
In The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Ma, S.; Wang, H.; Ma, L.; Wang, L.; Wang, W.; Huang, S.;
Dong, L.; Wang, R.; Xue, J.; and Wei, F. 2024. The era of
1-bit llms: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764.

Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R. 2022.
Pointer Sentinel Mixture Models. In International Confer-
ence on Learning Representations.

Mihaylov, T.; Clark, P.; Khot, T.; and Sabharwal, A. 2018.
Can a Suit of Armor Conduct Electricity? A New Dataset
for Open Book Question Answering. In EMNLP.

Mishra, A.; Latorre, J. A.; Pool, J.; Stosic, D.; Stosic, D.;
Venkatesh, G.; Yu, C.; and Micikevicius, P. 2021. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378.

Morcos, A. S.; Yu, H.; Paganini, M.; and Tian, Y. 2019. One
ticket to win them all: generalizing lottery ticket initializa-
tions across datasets and optimizers. arXiv:1906.02773.
Qwen,; :; Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Li, C; Liu, D.; Huang, F.; Wei, H.; Lin, H.; Yang,
J.; Tu, J.; Zhang, J.; Yang, J.; Yang, J.; Zhou, J.; Lin, J.;
Dang, K.; Lu, K.; Bao, K.; Yang, K.; Yu, L.; Li, M.; Xue,
M.; Zhang, P.; Zhu, Q.; Men, R.; Lin, R.; Li, T.; Tang, T,;
Xia, T.; Ren, X.; Ren, X.; Fan, Y.; Su, Y.; Zhang, Y.; Wan,
Y.; Liu, Y.; Cui, Z.; Zhang, Z.; and Qiu, Z. 2025. Qwen2.5
Technical Report. arXiv:2412.15115.

Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving language understanding by generative
pre-training.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAl blog, 1(8): 9.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv e-prints.

Sanh, V.; Wolf, T.; and Rush, A. 2020. Movement pruning:
Adaptive sparsity by fine-tuning. Advances in neural infor-
mation processing systems, 33: 20378-20389.

Sevilla, J.; Heim, L.; Ho, A.; Besiroglu, T.; Hobbhahn, M.;
and Villalobos, P. 2022. Compute Trends Across Three Eras
of Machine Learning. In 2022 International Joint Confer-
ence on Neural Networks (IJCNN), 1-8. IEEE.

Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024.
Roformer: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568: 127063.

Sun, M.; Liu, Z.; Bair, A.; and Kolter, J. Z. 2024. A Simple
and Effective Pruning Approach for Large Language Mod-
els. In The Twelfth International Conference on Learning
Representations.

Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Roziere, B.; Goyal, N.; Hambro, E.;
Arzhar, F; et al. 2023a. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023b. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; and Micikevicius,
P. 2020. Integer Quantization for Deep Learning Inference:
Principles and Empirical Evaluation. arXiv:2004.09602.
Wu, Y.; and He, K. 2018. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), 3-19.

Wu, Z.; Han, C.; Ding, Z.; Weng, Z.; Liu, Z.; Yao, S.; Yu, T.;
and Kong, L. 2024. OS-Copilot: Towards Generalist Com-
puter Agents with Self-Improvement. In ICLR 2024 Work-
shop on Large Language Model (LLM) Agents.

Xu, P.; Shao, W.; Chen, M.; Tang, S.; Zhang, K.; Gao, P;
An, F; Qiao, Y.; and Luo, P. 2024. BESA: Pruning Large
Language Models with Blockwise Parameter-Efficient Spar-
sity Allocation. In The Twelfth International Conference on
Learning Representations.

Yang, A.; Li, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Gao, C.; Huang, C.; Lv, C.; et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.

Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.;
Li, C,; Li, C.; Liu, D.; Huang, F.; Dong, G.; Wei, H.; Lin,
H.; Tang, J.; Wang, J.; Yang, J.; Tu, J.; Zhang, J.; Ma, J.;
Yang, J.; Xu, J.; Zhou, J.; Bai, J.; He, J.; Lin, J.; Dang, K;
Lu, K.; Chen, K.; Yang, K.; Li, M.; Xue, M.; Ni, N.; Zhang,
P.; Wang, P.; Peng, R.; Men, R.; Gao, R.; Lin, R.; Wang, S.;
Bai, S.; Tan, S.; Zhu, T.; Li, T; Liu, T.; Ge, W.; Deng, X.;
Zhou, X.; Ren, X.; Zhang, X.; Wei, X.; Ren, X.; Liu, X.;
Fan, Y.; Yao, Y.; Zhang, Y.; Wan, Y.; Chu, Y.; Liu, Y.; Cui,
Z.; Zhang, Z.; Guo, Z.; and Fan, Z. 2024. Qwen?2 Technical
Report. arXiv:2407.10671.

Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; and Choi,
Y. 2019. HellaSwag: Can a Machine Really Finish Your
Sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

Zhang, B.; and Sennrich, R. 2019. Root Mean Square Layer
Normalization. arXiv:1910.07467.

Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al. 2023.
Opt: Open pre-trained transformer language models, 2022.
URL https://arxiv. org/abs/2205.01068, 3: 19-0.

Zhou, H.; Lu, X.; Xu, W.; Zhu, C.; Zhao, T.; and Yang, M.
2024. Lora-drop: Efficient lora parameter pruning based on
output evaluation. arXiv preprint arXiv:2402.07721.

Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878.

Appendix
Pruning time
Different pruning methods take different time to calculate
their corresponding pruning scores. We report in Table 7 the

pruning time for the different methods in different pruning
scenarios.

Sparsity \ Wanda STADE STADE-W SparseGPT

50% 72,89 72,02 74,55 22231
2:4 77,87 74,80 73,04 204,52
4:8 70,10 73,39 71,51 215,36

Table 7: Pruning time comparison in seconds for different
methods on Llama-3.2-1B.

Implementation details

When estimating the mean and the standard deviation,
loading the full data results in an Out-Of-Memory error
with our computational resources. Therefore, the mean and
standard deviation is calculated using a in a moving fashion.

Calculating the sum and square of sums to later approxi-
mate the final results, leads to too high values at which point
the new instances do not add any values to the value stored.
In order to avoid that, the mean and standard deviation is
calculated in each iteration as follows:

Algorithm 1: Mean and variance calculation
Input: dataloader D
Output: mean p, var V

I: Let N=0,u=0and V = 0.

2: for xpyicn, in D do

3: Npew = N+ len(Tpaten)

N _batch
4 fnew = fr o)
_ (N-1)xV Nxp? Nocw*hoew | Sum(Thaien)
Z' ;‘\’[— Nycu =T T M D T Nnew-T) T Npcwo1
: = IVpew
7: H = Hnew
8: end for
9: return pu, V
Training details

While the pruning methods shown don’t have hyperparam-
eter to tuned, there are some training details that we would
like to mention:

* C4 calibration dataset: Following Wanda, when
using C4 dataset only the file ’en/c4-train.00000-
of-01024.json.gz’ is used during pruning to speed
up the process. the full dataset can be fined in
"hitps://huggingface.co/datasets/allenai/c4/tree/main/en’.

* Sequence length: Some LLMs allow over 10k context
window. In order to run the models under our personal
hardware constrains, we reduce the sequence length to
2048 in order to test more models. This is both applied
during pruning and evaluation.

Intuitive explanation of STADE

In this section we formulate an easy and intuitive expla-
nation for STADE. We will assume that the input multi-
variate distribution X € RZ is normally distributed, i.e.,
X; ~ N (pi, ;). Notice that STADE does not require the
input to be normally distributed, this is just a simplifica-
tion for the sake of the explanation. In the same way as in the
Methodology section, we will consider the pruning problem
for one column. In this case the corresponding output of the
linear layer () can be calculated as:

=B+ x W) +2.Wo =
= B+ (1 + €101) Wi + (2 + €202)Ws)
= (B4 p1 + p2) + o1 Wier + 02 Waer

Notice that €1, €2 ~ N(0, 1) and therefore will affect the
same way when pruning the weight. However, when decid-
ing whether to prune W; or Wy, it’s not only about the value
of the weight but also about the standard deviation of the
corresponding input. This is due to the fact that the mean
of the input can be added to the bias and therefore omitted
when pruning the weights.

STADE®* variation derivation

Not all models use a bias term in their linear layers. There-
fore, we consider a variation of STADE without the possi-
bility of updating the bias (STADE¥), i.e., the linear layer
to prune has no bias term and the pruning method is not
allowed to add a bias term in order to keep the model struc-
ture. To do so we expand on the previous derivations from
the main paper as follows:

M M 2
min E[((B + ZXsz) —(B" + ZXiWi*)>]

w=,0 ‘ .
=1 1=1

= min(B — B*)? +2(B — B)u;Wj + (07 + pi3)W?

75
= min(o} + 45) W7

1 Y 1 Y
~ [|X:7j -~ E Xnjll5+(= E Xn,j)zl (Wi
N N
n=1 n=1
(10)

We originally wanted to include this in the main paper.
Nevertheless, standard STADE had better performance than
STADE* even when not updating the bias, i.e., the pruning
criterion even though locally optimal (optimal for the linear
layer pruning) is not optimal globally (for the model prun-
ing). This can be observed in the following tables. The only
cases, where it outperforms STADE is when STADE has a

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B
Dense 0% 20.95 16.67 13.64 9.72 8.64 7.60
Magnitude 2:4 85481.66 1808.24 1970.45 294.48 38.58 29.89
Wanda 2:4 190.03 61.63 30.17 16.41 13.14 10.33
STADE 2:4 13785.28 46.90 133.17 15.20 12.52 10.13
STADE (w/o bias) 2:4 13785.28 46.90 131.50 15.20 12.51 10.13
STADE* 2:4 193.29 60.66 30.25 16.41 13.10 -
STADE-W 2:4 171.60 47.24 32.37 15.54 12.57 -
SparseGPT 2:4 91.05 31.74 21.32 14.48 12.47 -
SparseGPT (no update) 2:4 6278.69 51.75 86.57 14.99 12.18 -
Magnitude 4:8 99815.32 614.71 150.43 115.48 21.18 36.49
Wanda 4:8 73.71 32.62 22.25 13.24 11.12 9.46
STADE 4:8 304.30 27.76 51.13 12.62 10.69 9.29
STADE (w/o bias) 4:8 304.30 27.79 52.95 12.63 10.68 9.29
STADE* 4:8 74.73 32.46 22.50 13.24 11.12 -
STADE-W 4:8 77.89 28.67 22.57 12.71 10.67 -
SparseGPT 4:8 60.55 25.38 18.64 12.65 11.16 -
SparseGPT (no update) 4:8 513.65 28.80 51.60 13.02 10.71 -
Magnitude 50% 1455.57 174.10 111.22 54.56 15.22 49.09
Wanda 50% 34.20 20.63 16.39 11.35 10.00 8.63
STADE 50% 34.01 18.67 16.90 11.19 9.60 8.65
STADE (w/o bias) 50% 34.04 18.66 16.90 11.19 9.60 8.65
STADE* 50% 34.06 20.57 16.39 11.35 10.01 -
STADE-W 50% 33.96 18.98 16.04 11.10 9.54 -
SparseGPT 50% 34.14 23.73 17.39 11.49 10.08 -
SparseGPT (no update) 50% 89.12 22.89 20.03 11.80 9.95 -

Table 8: Wikitext perplexity for the Qwen family. Notice that STADE-W here is applied after the RMSnorm layers. As explained
in the Methodology, Qwen3 uses RMSnorm which does not normalize the inputs and therefore it is not applicable as it was with
the OPT family. We observe huge spikes for Qwen3-0.6B and Qwen3-4B. To the best of our knowledge the only difference with
the other models is the usage of tie-embeddings. Nevertheless, Qwen3-1.7B also uses them and doesn’t exhibit those spikes.

We were not able to identify the source behind it. We will investigate it in our future work.

big spike/jump on the perplexity. It seems that it is perform-
ing worse in general, but it is always to have consistent re-
sults avoiding the huge spikes. We will investigate this phe-
nomena more in the future work.

Additional experiments

Tables 8 to 16 show experiments on more models and addi-
tional pruning metrics measuring both perplexity and zero-

shot performance.

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 31.40% 39.76% 50.77% 55.80% 58.62%
Magnitude 50% 20.90% 19.11% 22.70% 28.07% 48.81%
Wanda 50% 23.38% 30.46% 39.76% 50.85% 55.20%
STD (w/o bias) 50% 23.98% 33.53% 41.72% 51.88% 55.03%
Magnitude 2:4 20.65% 20.56% 22.44% 18.69% 37.12%
Wanda 2:4 19.71% 19.71% 32.17% 38.65% 42.24%
STD (w/o bias) 2:4 21.67% 20.90 % 29.86% 42.32% 44.54%
Magnitude 4:8 20.56% 21.50% 23.46% 19.45% 44.37%
Wanda 4:8 19.71% 24.91% 38.05% 46.16% 50.60%
STD (w/o bias) 4:8 21.25% 26.37% 33.11% 47.95% 51.96 %

Table 9: Zero-shot performance on Arc Challenge (Clark et al. 2018).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 60.90% 72.22% 80.51% 83.46% 84.22%
Magnitude 50% 28.75% 34.01% 47.94% 58.12% 76.47%
Wanda 50% 48.65% 62.12% 72.90 % 80.09% 81.31%
STD (w/o bias) 50% 48.70% 64.31% 72.39% 80.43% 81.94%
Magnitude 2:4 26.52% 28.91% 33.46% 36.57% 63.09%
Wanda 2:4 32.79% 47.35% 59.26 % 72.69% 72.47 %
STD (w/o bias) 2:4 27.86% 49.71% 50.17% 74.03 % 71.42%
Magnitude 4:8 27.48% 30.51% 42.63% 40.32% 72.35%
Wanda 4:8 40.74% 56.65% 67.89 % 77.23% 78.41%
STD (w/o bias) 4:8 31.65% 58.25% 57.58% 77.78 % 78.87 %

Table 10: Zero-shot performance on Arc Easy (Clark et al. 2018).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 64.53% 77.46% 85.11% 86.64% 89.33%
Magnitude 50% 46.36% 46.94% 38.32% 52.32% 79.60%
Wanda 50% 62.20% 73.61% 82.51% 84.86 % 88.07%
STD (w/o bias) 50% 62.08% 73.43% 80.52% 84.68% 88.20%
Magnitude 2:4 38.65% 50.28% 46.94% 43.33% 65.78%
Wanda 2:4 46.76% 63.85% 73.39% 82.17% 85.81%
STD (w/o bias) 2:4 52.75% 67.22% 70.18% 81.68% 86.64 %
Magnitude 4:8 42.51% 51.10% 42.08% 41.28% 68.59%
Wanda 4:8 48.44% 70.83% 78.41% 85.11% 87.43%
STD (w/o bias) 4:8 57.68 % 66.33% 74.50% 84.92% 87.43%

Table 11: Zero-shot performance on Boolq (Clark et al. 2019).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 37.55% 46.12% 52.27% 57.14% 60.97%
Magnitude 50% 26.07% 28.16% 29.79% 34.51% 49.76%
Wanda 50% 32.24% 38.56% 45.03% 50.08% 55.11%
STD (w/o bias) 50% 32.86% 40.26 % 45.92 % 51.65% 56.66 %
Magnitude 2:4 25.70% 26.56% 27.03% 26.98% 42.16%
Wanda 2:4 27.17% 29.90% 37.46% 42.35% 48.00%
STD (w/o bias) 2:4 26.51% 31.08 % 36.22% 43.76 % 49.53%
Magnitude 4:8 26.21% 26.89% 30.43% 28.04% 45.68%
Wanda 4:8 29.09 % 33.91% 41.22% 46.26% 51.69%
STD (w/o bias) 4:8 28.27% 35.16% 40.10% 47.91% 53.08%

Table 12: Zero-shot performance on HellaSwag (Zellers et al. 2019).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 21.00% 28.40% 29.20% 31.00% 35.00%
Magnitude 50% 15.00% 13.40% 13.80% 18.60% 30.40%
Wanda 50% 16.60% 21.20% 26.20% 28.60% 33.00%
STD (w/o bias) 50% 18.00 % 22.80% 26.80% 30.60% 33.60%
Magnitude 2:4 14.00% 13.80% 13.00% 14.80% 26.20%
Wanda 2:4 13.00% 13.60% 22.20% 23.00% 28.60%
STD (w/o bias) 2:4 15.40% 15.40 % 22.80% 23.20% 30.20%
Magnitude 4:8 13.20% 14.40% 14.20% 15.40% 28.20%
Wanda 4:8 15.60% 17.40% 24.80% 26.40% 31.40%
STD (w/o bias) 4:8 15.80% 17.80% 22.80% 28.40% 31.60%

Table 13: Zero-shot performance on OpenbookQA (Mihaylov et al. 2018).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 54.15% 70.76% 75.81% 78.34% 77.62%
Magnitude 50% 51.26% 52.71% 51.62% 52.71% 69.31%
Wanda 50% 54.15% 70.04 % 72.92% 70.04% 81.23%
STD (w/o bias) 50% 51.26% 67.15% 67.51% 70.76 % 82.31%
Magnitude 2:4 42.96% 49.46% 47.29% 52.71% 48.74%
Wanda 2:4 51.62% 52.35% 55.96 % 61.73% 70.40 %
STD (w/o bias) 2:4 53.07 % 52.71% 54.87% 69.31% 65.70%
Magnitude 4:8 46.21% 51.26% 52.71% 52.35% 54.87%
Wanda 4:8 53.07% 52.35% 71.12% 72.92% 70.04 %
STD (w/o bias) 4:8 47.65% 53.07 % 55.23% 70.76% 69.68%

Table 14: Zero-shot performance on RTE (Bentivogli et al. 2009).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 56.20% 60.93% 66.06% 67.72% 72.85%
Magnitude 50% 49.88% 51.62% 51.62% 55.09% 64.80%
Wanda 50% 54.06% 57.38% 62.12% 69.61% 72.77%
STD (w/o bias) 50% 55.41% 56.91% 62.19% 68.35% 71.82%
Magnitude 2:4 48.78% 52.09% 51.30% 51.78% 61.01%
Wanda 2:4 52.25% 53.67% 56.98 % 62.43% 68.27%
STD (w/o bias) 2:4 50.12% 52.33% 53.75% 63.85% 68.75%
Magnitude 4:8 49.80% 50.20% 51.38% 51.93% 64.33%
Wanda 4:8 52.80% 53.99% 61.01% 66.61% 69.85%
STD (w/o bias) 4:8 52.09% 53.75% 56.98% 65.43% 69.22%

Table 15: Zero-shot performance on Winogrande (Keisuke et al. 2019).

Method Sparsity Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Dense 0% 56.20% 60.93% 66.06% 67.72% 72.85%
Magnitude 50% 49.88% 51.62% 51.62% 55.09% 64.80%
Wanda 50% 54.06% 57.38% 62.12% 69.61% 72.77 %
STD (w/o bias) 50% 55.41% 56.91% 62.19% 68.35% 71.82%
Magnitude 2:4 48.78% 52.09% 51.30% 51.78% 61.01%
Wanda 2:4 52.25% 53.67 % 56.98 % 62.43% 68.27%
STD (w/o bias) 2:4 50.12% 52.33% 53.75% 63.85% 68.75 %
Magnitude 4:8 49.80% 50.20% 51.38% 51.93% 64.33%
Wanda 4:8 52.80% 53.99 % 61.01% 66.61% 69.85 %
STD (w/o bias) 4:8 52.09% 53.75% 56.98% 65.43% 69.22%

Table 16: Zero-shot performance on MMLU (Hendrycks et al. 2021).

