
What is Happening Right Now ... That Interests Me?
Online Topic Discovery and Recommendation in Twitter

Ernesto Diaz-Aviles1, Lucas Drumond2, Zeno Gantner2,
Lars Schmidt-Thieme2, and Wolfgang Nejdl1

1L3S Research Center / University of Hannover, Germany
{diaz, nejdl}@L3S.de

2Information Systems and Machine Learning Lab / University of Hildesheim, Germany
{ldrumond, gantner, schmidt-thieme}@ISMLL.de

ABSTRACT
Users engaged in the Social Web increasingly rely upon con-
tinuous streams of Twitter messages (tweets) for real-time
access to information and fresh knowledge about current af-
fairs. However, given the deluge of tweets, it is a challenge
for individuals to find relevant and appropriately ranked in-
formation. We propose to address this knowledge manage-
ment problem by going beyond the general perspective of
information finding in Twitter, that asks: “What is happen-
ing right now?”, towards an individual user perspective, and
ask: “What is interesting to me right now?” In this paper,
we consider collaborative filtering as an online ranking prob-
lem and present RMFO, a method that creates, in real-time,
user-specific rankings for a set of tweets based on individ-
ual preferences that are inferred from the user’s past sys-
tem interactions. Experiments on the 476 million Twitter
tweets dataset show that our online approach largely out-
performs recommendations based on Twitter’s global trend
and Weighted Regularized Matrix Factorization (WRMF),
a highly competitive state-of-the-art Collaborative Filtering
technique, demonstrating the efficacy of our approach.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]—Information Filtering
General Terms: Algorithms, Experimentation, Measurement

Keywords: Collaborative Filtering; Online Ranking; Twitter

1. INTRODUCTION
The Social Web has been successfully established and is

poised for continued growth. Real-time microblogging ser-
vices, such as Twitter (twitter.com), have experienced an
explosion in global user adoption over the past years [12].

Despite the recent amount of research dedicated to Twit-
ter, online collaborative filtering and online ranking in Twit-
ter have not yet been extensively addressed.

Given a continuous stream of incoming tweets, we are in-
terested in the task of filtering and recommending topics
that meet users’ personal information needs. In particular,
we use hashtags as surrogates for topics, and learn, online,
a personalized ranking model based on low-rank matrix fac-
torization for collaborative prediction.

Collaborative filtering (CF) is a successful approach at the
core of recommender systems. CF algorithms analyze past

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

interactions between users and items to produce personal-
ized recommendations that are tailored to users’ preferences.

In the presence of a continuous stream of incoming tweets
arriving at a high rate, our objective is to process the in-
coming data in bounded space and time, and recommend
a short list of interesting topics that meet users’ individual
taste. Furthermore, our online CF algorithm should quickly
learn the best Top-N recommendations based on real-time
user interactions and prevent repeatedly suggesting highly
relevant, but old information. In the absence of high qual-
ity explicit feedback (e.g., ratings), we infer user preferences
about items using implicit feedback. For example, in Twit-
ter, if user Alice has been tagging her tweets lately with the
hashtag #Olympics2012 ; and, so far, she has never used the
hashtag #fashion, we exploit this information, and use it as
a good indicator for her up-to-date preferences. We can infer
that currently, Alice is more interested in Olympic Games
than, for instance, in fashion. Thus the task can be cast as
that of recommending hashtags to users.

The high rate makes it harder to: (i) capture the infor-
mation transmitted; (ii) compute sophisticated models on
large pieces of the input; and (iii) store the amount of input
data, which we consider significantly larger than the mem-
ory available to the algorithm [8]. In this paper, we present
our Online Matrix Factorization approach – RMFO – for ad-
dressing these research challenges.

To the best of our knowledge this work is the first empiri-
cal study demonstrating the viability of online collaborative
filtering for Twitter. The main contributions of this work
are:

1. We introduce a novel framework for online collaborative
filtering based on a pairwise ranking approach for matrix
factorization, in the presence of streaming data.

2. We propose RMFO, an online learning algorithm for col-
laborative filtering. We explore different variations of the
algorithm and show that it achieves state-of-the-art perfor-
mance when recommending a short list of interesting and rel-
evant topics to users from a continuous high volume stream
of tweets, under the constraints of bounded space and time.

3. Personalized and unpersonalized offline learning to rank
have been previously studied in the literature. This paper
proposes an innovative perspective to the problem, directed
to social media streams and based on online learning and
matrix factorization techniques.

2. OUR MODEL: RMFO
In this section, we formally define the problem, introduce

our approach RMFO and describe three variations of the al-

gorithm, namely, Single Pass, User Buffer, and Reservoir
Sampling.

Background and Notation
First we introduce some notation that will be useful in our
setting. Let U = {u1, . . . , un} and I = {i1, . . . , im} be the
sets of all users and all items, respectively. We reserve special
indexing letters to distinguish users from items: for users u,
v, and for items i, j. Suppose we have interactions between
these two entities, and for some user u ∈ U and item i ∈ I,
we observe a relational score xui. Thus, each instance of
the data is a tuple (u, i, xui). Typical CF algorithms orga-
nize these tuples into a sparse matrix X of size |U | × |I|,
using (u, i) as index and xui as entry value. The task of
the recommender system is to estimate the score for the
missing entries. We assume a total order between the pos-
sible score values. We distinguish predicted scores from the
known ones, by using x̂ui. The set of all observed scores is
S := {(u, i, xui) | (u, i, xui) ∈ U×I×N}. For convenience, we
also define for each user the set of all items with an observed
score: B+

u := {i ∈ I | (u, i, xui) ∈ S}.
Low dimensional linear factor models based on matrix

factorization (MF) are popular collaborative filtering ap-
proaches [7]. These models consider that only a small num-
ber of latent factors can influence the preferences. Their pre-
diction is a real number, x̂ui, per user item pair (u, i). In its

basic form, matrix factorization estimates a matrix X̂ : U×I
by the product of two low-rank matrices W : |U | × k and

H : |I| × k as follows: X̂ := WHᵀ, where k is a parameter
corresponding to the rank of the approximation. Each row,
wu in W and hi in H can be considered as a feature vector
describing a user, u, and an item, i, correspondingly. Thus
the final prediction is the linear combination of the factors:
x̂ui = 〈wu,hi〉 =

∑k
f=1 wuf · hif .

Problem Definition
We focus on learning a matrix factorization model for collab-
orative filtering in presence of streaming data. To this end,
we will follow a pairwise approach to minimize an ordinal
loss. Our formalization extends the work of Sculley [11] for
unpersonalized learning to rank, to an online collaborative
filtering setting.

With slight abuse of notation, we also use S to represent
the input stream s1, s2, . . . that arrives sequentially, instance
by instance. Let pt = ((u, i), (u, j))t denote a pair of train-
ing instances sampled at time t, where (u, i) ∈ S has been
observed in the stream and (u, j) /∈ S has not.

Formally, we define the set P as the set of tuples p =
((u, i), (u, j)) selected from the data stream S, as follows:
P := {((u, i), (u, j)) | i ∈ B+

u ∧ j /∈ B+
u } .

We require pairs that create a contrast in the preferences
for a given user u over items i and j. Since we are dealing
with implicit, positive only feedback data (i.e. the user never
explicitly states a negative preference for an item) we follow
the rationale from Rendle et al. [9] and assume that user
u prefers item i over item j. We will restrict the study to
a binary set of preferences xui = {+1,−1}, e.g., observed
and not-observed, represented numerically with +1 and −1,
respectively. For example, if a user u in Twitter posts a
message containing hashtag i, then we consider it as a pos-
itive feedback and assign a score xui = +1. More formally,
xui = +1 ⇐⇒ i ∈ B+

u . In future work we plan to explore

how repeated feedback can be exploited to establish a total
order for items in B+

u .
With P defined, we find θ = (W,H) that minimizes the

pairwise objective function:

argmin
θ=(W,H)

L(P,W,H) +
λW
2
||W||22 +

λH
2
||H||22 . (1)

In this paper, we explore the use of the SVM loss, or hinge-
loss, used by RankSVM for the learning to rank task [6].
Given the predicted scores x̂ui and x̂uj , the ranking task is
reduced to a pairwise classification task by checking whether
the model is able to correctly rank a pair p ∈ P or not. Thus,
L(P,W,H) is defined as follows:

L(P,W,H) =
1

|P |
∑
p∈P

h(yuij · 〈wu,hi − hj〉) , (2)

where h(z) = max(0, 1−z) is the hinge-loss; yuij = sign(xui−
xuj) is the sign(z) function, which returns +1 if z > 0,
i.e., xui > xuj , and −1 if z < 0. The prediction function
〈wu,hi − hj〉 = 〈wu,hi〉 − 〈wu,hj〉 corresponds to the
difference of predictor values x̂ui − x̂uj . To conclude this
section, we compute the gradient of the pairwise loss at in-
stance pt ∈ P with non-zero loss, and model parameters
θt = (wu,hi,hj), as follows:

−∇h(pt, θt) =


yuij · (hi − hj) if θt = wu,

yuij ·wu if θt = hi,

yuij · (−wu) if θt = hj ,

0 otherwise.

Online Learning Algorithm for CF
Our goal is to develop an algorithm to efficiently optimize
the objective function (1). Based on the stochastic gradient
descent concepts [1], we present the framework of our algo-
rithm in Figure 1. The main components of this framework
are: (i) a sampling procedure done on the streaming data,
and (ii) a model update based on the sample.

The model update procedure performed by RMFO is shown
in Figure 2, which includes three regularization constants:
λW , λH+ , and λH− , one for the user factors, the other two
for the positive and negative item factors updates. Moreover,
we include a learning rate η and a learning rate schedule α
that adjusts the step size of the updates at each iteration.

In the rest of the section we explore three variations of our
online algorithm based on how the sampling is performed.

Sampling Techniques for Twitter Stream
In this work, we explore the following three variations of our
approach based on different stream sampling techniques:

(1) Single Pass (RMFO-SP) takes a single pair from the
stream and performs an update of the model at every iter-
ation. This approach does not “remember” previously seen
instances. That is, we sample a pair pt ∈ P at iteration t,
and execute procedure updateModel(pt, λW , λH+ , λH− , η0,
α, Tθ = 1) (Figure 2).

(2) User Buffer (RMFO-UB) retains the most recent b in-
stances per user in the system. In this way, we retain certain
amount of history so that the algorithm will run in constant
space. For each user, we restrict the maximum number of
her items to be kept and denote it by b. More precisely, af-
ter receiving the training instance (u, i, xui)t at time t, the
user buffer |B+

u | for u, is updated as follows:

if |B+
u | < b then B+

u ∪ {i}
else

Delete the oldest instance from B+
u

B+
u ∪ {i}

end if

We update the model selecting pairs, pt ∈ P , from the
candidate pairs implied by the collection of all user buffers
B, which is defined by the function B := u→ B+

u .
(3) Reservoir Sampling (RMFO-RSV) involves retaining

a fixed size of observed instances in a reservoir. The reser-
voir should capture an accurate“sketch”of history under the
constraint of fixed space. The technique of random sampling
with a reservoir [13] is widely used in data streaming, and re-
cently has been also proposed for online AUC maximization
in the context of binary classification [15]. We represent the
reservoir as a list R := [s1, s2 . . . , s|R|] that “remembers” |R|
random instances from stream S. Instances can occur more
than once in the reservoir, reflecting the distribution of the
observed data. We note that this approach also bounds the
space available for the algorithm, but in contrast to the user
buffer technique, we do not restrict the space per user, but
instead randomly choose |R| samples from the stream and
update the model using this history.

RMFO Framework

Input: Stream representative sample at time t: St; Regu-
larization parameters λW , λH+ , and λH− ; Learning rate
η0; Learning rate η0; Learning rate schedule α; Number
of iterations TS , and Tθ; Parameter c to control how
often to perform the model updates

Output: θ = (W,H)
1: initialize W0 and H0

2: initialize sample stream S′ ← ∅
3: counter ← 0
4: for t = 1 to TS do
5: S′ ← updateSample(St)
6: counter ← counter + 1
7: if c = counter then
8: θ ← updateModel(St, λW , λH+ , λH− , η, α, Tθ)
9: counter ← 0

10: end if
11: end for
12: return θT = (WT ,HT)

Figure 1: RMFO Framework for Online CF.

RMFO Model Update based on SGD for MF

Input: Stream representative sample at time t: St; Regu-
larization parameters λW , λH+ , and λH− ; Learning rate
η0; Learning rate schedule α; Number of iterations Tθ

Output: θ = (W,H)
1: procedure updateModel(St, λW , λH+ , λH− , η0, α, Tθ)
2: for t = 1 to Tθ do
3: ((u, i), (u, j))← randomPair(St) ∈ P
4: yuij ← sign(xui − xuj)
5: wu ← wu + η yuij (hi − hj)− η λW wu

6: hi ← hi + η yuij wu − η λH+ hi
7: hj ← hj + η yuij (−wu)− η λH− hj
8: η = α · η
9: end for

10: return θ = (WTθ ,HTθ)
11: end procedure

Figure 2: RMFO Model Update

3. EXPERIMENTAL STUDY
In this section, we demonstrate our approach by analyzing

real-world data consisting of millions of tweets.

476 million Twitter tweets Dataset
The dataset corresponds to the 476 million Twitter
tweets [14]. For our evaluation we computed a 5-core of the
dataset, i.e., every user has used at least 5 different hashtags,
and every hashtag has been used by least by 5 different users.
The 5-core consists of 35,350,508 tweets (i.e., user-item
interactions), 413,987 users and 37,297 hashtags.

Evaluation Methodology
Evaluation of a recommender in the presence of stream data
requires a time sensitive split. We split the dataset S into
training Strain and a testing set Stest according to a times-
tamp tsplit: the individual training examples (tweets) with
timestamps less that tsplit are put into Strain, whereas the
others go into Stest. Note that given the dynamics in Twit-
ter, there might be users in Strain not present in Stest.

To evaluate the recommenders we followed the leave-one-
out protocol. In particular, a similar schema as the one de-
scribed in [2]. For each user u ∈ |Utest| we rank her items in
the test set, Stest, according to their frequencies and choose
one item i at random from the top-10. The goal of a rec-
ommender system is to help users to discover new items of
interest, therefore we impose the additional restriction that
the hidden item has to be novel for the user, and there-
fore we remove from the training set all occurrences of the
pair (u, i). In total, we have |Utest| = 260, 246 hidden items.
Then, for each hidden item i, we randomly select 1000 ad-
ditional items from the test set Stest. Notice that most of
those items selected are probably not interesting to user u.
We predict the scores for the hidden item i and for the ad-
ditional 1000 items, forming a ranking by ordering the 1001
items according to their scores. The best expected result is
that the interesting item iu to user u will precede the rest
1000 random items.

Finally, for each user, we generate a Top-Nu recommen-
dation list by selecting the N items with the highest score.
If the test item iu is in the Top-Nu, then we have a hit,
otherwise we have a miss.

Evaluation Metric: Recall
We measure Top-N recommendation performance by look-
ing at the recall metric, also known as hit rate, which is
widely used for evaluating Top-N recommender systems
(e.g., [2]). In our recommender systems setting, recall at top-
N lists is defined as follows:

recall@N :=

∑
u∈Utest 1[iu∈Top-Nu]

|Utest|
, (3)

where 1[z] is the indicator function that returns 1 if condition
z holds, and 0 otherwise. A recall value of 1.0 indicates that
the system was able to always recommend the hidden item,
whereas a recall of 0.0 indicates that the system was not able
to recommend any of the hidden items. Since the precision
is forced by taking into account only a restricted number N
of recommendations, there is no need to evaluate precision
or F1 measures, i.e., for this kind of scenario, precision is
just the same as recall up to a multiplicative constant.

recall@10 Reservoir
Size

RMFO-RSV RankMF-
UB-512

Trending
Topics

(previous
month)

WRMF
(Batch)

0.5 0.0621339040754 0.1555 0.0780177217 0.2573138492
1 0.1143406622964 0.1555 0.0780177217 0.2573138492
2 0.1845008184564 0.1555 0.0780177217 0.2573138492
4 0.2611452241341 0.1555 0.0780177217 0.2573138492
8 0.3215161808443 0.1555 0.0780177217 0.2573138492

Recall@10
Test Set Size (= n test
users; leave one out)

260246

128 factors

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.5 2 3.5 5 6.5 8

Top-10: recall vs Reservoir Size

re
ca

ll

Reservoir Size (Millions)

RMFO-RSV
RMFO-UB-512
WRMF (Batch)
Trending Topics (previous month)

(a)

TT (previous month)
WRMF
RankMF-SP
RankMF-UB
RankMF-RSV

Recall@1 Recall@5 Recall@10 Recall@15 Recall@20 Recall@30 Recall@40 Recall@50
0.0226 0.0522 0.0780 0.0929 0.0943 0.1061 0.1132 0.1210
0.0885 0.1896 0.2573 0.3045 0.3406 0.3943 0.4331 0.4637
0.0357 0.1003 0.1469 0.1807 0.2078 0.2510 0.2859 0.3165
0.0377 0.1070 0.1555 0.1897 0.2169 0.2605 0.2955 0.3258
0.1040 0.2458 0.3215 0.3694 0.4048 0.4562 0.4942 0.5247

0

0.1

0.2

0.3

0.4

0.5

0.6

Top-1 Top-5 Top-10 Top-15 Top-20 Top-30 Top-40 Top-50

recall @ N

re
ca

ll

TT (previous month) WRMF RMFO-SP RMFO-UB RMFO-RSV

(b)

Figure 3: Recommendation performance for (a) different sizes of the reservoir and (b) different Top-N recommendation lists.

Experimental Setting
We implemented the three variations of our model RMFO-SP,
RMFO-UB and RMFO-SRV, and evaluated them against two
other competing models:

(1) Trending Topics (TT). This model sorts all hash-
tags based on their popularity, so that the top recommended
hashtags are the most popular ones, which represent the
trending topics overall. This naive baseline is surprisingly
powerful, as crowds tend to heavily concentrate on few of
the many thousands available topics in a given time frame.
We evaluate the TT from the whole training set and the
ones from the last four weeks before the evaluation.

(2) Weighted Regularized Matrix Factorization
(WRMF). This is a state-of-the-art matrix factorization
model for item prediction introduced by Hu et al. [5]. WRMF
is formulated as a regularized Least-Squares problem, in
which a weighting matrix is used to differentiate the contri-
butions from observed interactions (i.e., positive feedback)
and unobserved ones. WRMF outperforms neighborhood
based (item-item) models in the task of item prediction for
implicit feedback datasets, and therefore is considered as a
more robust contender. Please note that this reference model
is computed in batch mode, i.e., assuming that the whole
stream is stored and available for training. WRMF setup is
as follows: λWRMF = 0.015, C = 1, epochs = 15, which cor-
responds to a regularization parameter, a confidence weight
that is put on positive observations, and to the number of
passes over all observed data, respectively1 [5].

For all variations of RMFO we simulate the stream receiving
one instance at the time based on the tweets’ publication
dates. Tweets without hashtags were ignored.

For RMFO-UB, we want to explore the effect of the user’s
buffer size b on the recommendation performance, we vary
b ∈ {2m | m ∈ N, 1 ≤ m ≤ 9}, i.e., from 2 to 512.

For RMFO-SRV, we vary the reservoir size |R| ∈ {0.5, 1, 2, 4, 8}
million, and compute the model using 15 epochs over the
reservoir only. We set regularization constants λW = λH+ =
λH− = 0.1, learning rate η0 = 0.1, and a learning rate sched-
ule α = 1, and find that the setting gives good performance.
We are currently investigating how to efficiently perform a
grid search on stream data to tune-up the hyperparameters
dynamically.

We divide the seven-month Twitter activity of our dataset
by choosing the first six months for training. We use the re-

1
We have observed that WRMF is not so sensitive to changes in the hyperpa-

rameters, the most important aspect is the number of iterations before early
stopping, i.e., epochs=15

recall@10 User Buffer RankMF-UB RankMF-Reservoir 8M Trending Topics
(previous 6 months)

Trending Topics
(previous month)

WRMF RankMF-SP

1 RankMF-SP 0.1469 0.3215 0.0677 0.0780 0.2573 0.1469
2 0.1486 0.3215 0.0677 0.0780 0.2573 0
4 0.1497 0.3215 0.0677 0.0780 0.2573 0
8 0.1513 0.3215 0.0677 0.0780 0.2573 0

16 0.1526 0.3215 0.0677 0.0780 0.2573 0
32 0.1530 0.3215 0.0677 0.0780 0.2573 0
64 0.1550 0.3215 0.0677 0.0780 0.2573 0

128 0.1553 0.3215 0.0677 0.0780 0.2573 0
256 0.1553 0.3215 0.0677 0.0780 0.2573 0
512 0.1555 0.3215 0.0677 0.0780 0.2573 0

N test users 260246
M Items 36681

Test Set Size (= n test users;
leave one out)

260246

RMFO-UB

RMFO-SP 2 4 8 16 32 64 128 256 512

0.15550.15530.15530.1550
0.15300.15260.1513

0.14970.1486
0.1469

recall@10

Figure 4: RMFO-SP and RMFO-UB Top-10 performance for different
sizes of user buffer.

maining month, i.e., December, to build 10 independent test
sets following the evaluation protocol described previously
in this section. We compute the recall metric for Top-N rec-
ommendations, where N ∈ {1, 5, 10, 15, 20, 30, 40, 50}. The
performance is evaluated on the test set only, and the re-
ported results are the average over 10 runs.

Results and Discussion
We found that recent topics are more valuable for recom-
mendations: trending topics from the previous four weeks
achieve a recall@10 of 7.8%, compared to 6.77% from the
ones corresponding to the whole training period (6 months).
The performance exhibited by this recommender, based on
the crowd behavior in Twitter, largely outperforms a ran-
dom model, whose recall@10 is under 1%. In the rest of the
discussion we focus only on the recent trending topics.

Figure 4 shows the recommendation quality in terms of
recall@10 for RMFO-SP, and RMFO-UB with varied user buffer
sizes. We can see that recall@10 for RMFO-SP is 14.69%,
88.3% better than the overall trend.

We also observed that having a per-user buffer improves
the performance. However if the buffer is small (e.g., 2 or 4),
RMFO-UB achieves low recall. Although increasing the buffer
size boosts the recommendation quality, we found that as
the quality reaches a plateau (see Figure 4), the buffer size
provides limited improvements.

Figure 3a shows that RMFO-SRV achieves the best perfor-
mance over all methods evaluated when the reservoir size is
greater than 4 million, which corresponds to 11.32% of the
entire number of transactions in the dataset. We summarize
in Figure 3b the best performance achieved by the methods
evaluated for different Top-N recommendations.

With a fixed reservoir size of 8M, we also explored the
impact of model dimensionality over the recommendation
quality for RMFO-RSV. The results are presented in Figure 5.
From the figure, we see that the 16-factor low-rank approx-
imation given by RMFO-RSV exhibits a better recall@10 than
WRMF computed in batch mode using 128 factors.

RMFO-RSV 8M

8
16
32
64
128
WRMF-128

RMFO-RSV-8
RMFO-RSV-16
RMFO-RSV-32
RMFO-RSV-64
RMFO-RSV-128

Recall@1 Recall@5 Recall@10 Recall@15 Recall@20 Recall@30 Recall@40 Recall@50

0.0468 0.1529 0.2289 0.2811 0.3207 0.3787 0.4216 0.4557
0.0624 0.1830 0.2627 0.3146 0.3529 0.4080 0.4483 0.4803
0.0793 0.2118 0.2912 0.3407 0.3771 0.4297 0.4683 0.4988
0.0913 0.2284 0.3076 0.3570 0.3924 0.4431 0.4804 0.5101
0.1040 0.2458 0.3215 0.3694 0.4048 0.4562 0.4942 0.5247
0.0885 0.1896 0.2573 0.3045 0.3406 0.3943 0.4331 0.4637

8 0.2289 0.2573 0.07801772
16 0.2627 0.2573 0.07801772
32 0.2912 0.2573 0.07801772
64 0.3076 0.2573 0.07801772

128 0.3215 0.2573 0.07801772

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8 20 32 44 56 68 80 92 104 116 128

Top-10: Recall vs Number of Factors

re
ca

ll

Number of Factors

RMFO-RSV
WRMF-128
TT

Figure 5: Performance for different number of factors.

Time, Space and Performance Gains
We report in this section the CPU training times and space
required for the best performing variation of our online ap-
proach: RMFO-RSV, and the ones for the strongest baseline:
WRMF. Please remember that running times heavily de-
pend on platform and implementation, so they should be
only taken as relative indicators.

All variations of RMFO were implemented in Python. RMFO
ran on a Intel Xeon 1.87GHz machine. For WRMF, we used
the C# implementation provided by MyMediaLite library [4].
The baseline WRMF was run on a machine with a slightly
faster CPU (Intel Xeon 2.27GHz). None of the methods was
parallelized and therefore used a single CPU for computa-
tions. GNU/Linux 64-bit was used as OS.

In Table 1, we can observe the gains in speed of our ap-
proach over the baseline for all the evaluated reservoir sizes.
For reservoir sizes of 4M and 8M, RMFO-RSV is not only faster
and space efficient, but also exhibits a better recommen-
dation performance with respect to WRMF, for example,
RMFO-RSV with a reservoir size 8M is over 36 times faster
and uses 77% less space than WRMF, and yet it delivers a
recommendation performance almost 25% better than the
state-of-the-art baseline. As a reference, we also include the
performance of RMFO-RSV INF, which uses an infinite reser-
voir, e.g., one that is able to remember all observed trans-
actions.

Method Time recall@10 Space Gain Gain in
(128 factors) (seconds) in speed recall

WRMF (Baseline) 23127.34 0.2573 100.00% – –

RMFO-RSV 0.5 M 47.97 0.0621 1.41% 482.16 -75.85%

RMFO-RSV 1 M 89.15 0.1143 2.83% 259.42 -55.56%

RMFO-RSV 2 M 171.18 0.1845 5.66% 135.11 -28.30%

RMFO-RSV 4 M 329.60 0.2611 11.32% 70.17 +1.49%

RMFO-RSV 8 M 633.85 0.3215 22.63% 36.49 +24.95%

RMFO-RSV INF 1654.52 0.3521 100.00% 13.98 +36.84%

Table 1: Time, Space and Performance Gains.

4. RELATED WORK
Online learning of matrix factorization methods for rating

prediction have been investigated by Rendle and Schmidt-
Thieme in [10]. They propose online update rules on a stochas-
tic gradient descent style based on the last example ob-
served. However, the best performing variant of our ap-
proach, RMFO-RSV, maintains a reservoir with a represen-
tative set of previously seen data points from the stream,
which provides a significant boost in performance compared
to the one obtained when only the last example is considered
(e.g., RMFO-SP). The technique of random sampling with a

reservoir is widely used in data streaming [13], and recently
has also been exploited by Zhao et al. in the context of bi-
nary classification [15].

5. CONCLUSIONS AND FUTURE WORK
This paper provides an example of integrating large-scale

collaborative filtering with the real-time nature of Twitter.
We proposed RMFO, an approach for recommending topics

to users in presence of streaming data. Our online setting
for collaborative filtering captures “What is interesting to
me right now?” in the social media stream.
RMFO receives instances from a microblog stream, and up-

dates a matrix factorization model following a pairwise learn-
ing to rank approach for dyadic data. At the core of RMFO is
stochastic gradient descent which makes our algorithm easy
to implement and efficiently scalable to large-scale datasets.
From the RMFO’s variants explored in this work, we found
that the one using reservoir sampling technique performed
the best.

Our empirical study used Twitter as test bed and showed
that our approach worked well relative to matrix factoriza-
tion models computed in batch mode, in terms of recom-
mendation quality, speed and space efficiency.

Currently, we are investigating alternative sampling tech-
niques, for example, based on active learning principles that
select the instances based on their gradients, thus keeping
the most informative ones in the reservoir. Initial promising
results towards this direction can be found in [3].

Acknowledgments This work was funded, in part, by the European
Commission FP7/2007-2013 under grant agreement No.247829 for the
M-Eco Project and the DFG project Multi-relational Factorization
Models. Lucas Drumond is sponsored by a scholarship from CNPq, a
Brazilian government institution for scientific development.

6. REFERENCES
[1] L. Bottou. Large-scale machine learning with stochastic

gradient descent. In COMPSTAT’2010, 2010.

[2] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks. In
ACM RecSys Conference, 2010.

[3] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and
W. Nejdl. Real-Time Top-N Recommendation in Social
Streams. In ACM RecSys Conference, 2012.

[4] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. MyMediaLite: A free recommender system
library. In ACM RecSys Conference, 2011.

[5] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In Proc. of the 8th IEEE
International Conference on Data Mining, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society.

[6] T. Joachims. ”optimizing search engines using clickthrough
data”. In ACM Conference KDD, 2002.

[7] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, August 2009.

[8] S. Muthukrishnan. Data streams: algorithms and applications.
Now Publishers, 2005.

[9] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian Personalized Ranking from
Implicit Feedback. In UAI Conference, 2009.

[10] S. Rendle and L. Schmidt-Thieme. Online-updating regularized
kernel matrix factorization models for large-scale recommender
systems. In ACM RecSys Conference, 2008.

[11] D. Sculley. Combined regression and ranking. In ACM
Conference KDD, 2010.

[12] Semiocast. Countries on Twitter. http://goo.gl/RfxZw, 2012.

[13] J. S. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11:37–57, March 1985.

[14] J. Yang and J. Leskovec. ”patterns of temporal variation in
online media”. In ACM Conference WSDM, 2011.

[15] P. Zhao, S. Hoi, R. Jin, and T. Yang. ”online auc
maximization”. In ICML, 2011.

