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ABSTRACT

On RDF datasets, the truth values of triples are known when
they are either explicitly stated or can be inferred using log-
ical entailment. Due to the open world semantics of RDF,
nothing can be said about the truth values of triples that are
neither in the dataset nor can be logically inferred. By es-
timating the truth values of such triples, one could discover
new information from the database thus enabling to broaden
the scope of queries to an RDF base that can be answered,
support knowledge engineers in maintaining such knowledge
bases or recommend users resources worth looking into for
instance. In this paper, we present a new approach to pre-
dict the truth values of any RDF triple. Our approach uses
a 3-dimensional tensor representation of the RDF knowl-
edge base and applies tensor factorization techniques that
take open world semantics into account to predict new true
triples given already observed ones. We report results of
experiments on real world datasets comparing different ten-
sor factorization models. Our empirical results indicate that
our approach is highly successful in estimating triple truth
values on incomplete RDF datasets.

1. INTRODUCTION

The Semantic Web and its goal of representing the knowl-
edge contained in Web pages in a machine readable way has
generated different standards for this task. RDF is one of
such standards and also a W3C recommendation. However,
just representing data with RDF is not enough without effec-
tive means to access and retrieve this data. Moreover, given
the open world semantics of RDF, it is expected that RDF
bases are incomplete, thus mining such data for new infor-
mation is an important task. For instance, many success-
ful approaches for accessing RDF data have been proposed
[7][10][19] but they have one limitation in common: they
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are not able to answer queries whichs answer are not ex-
plicitly encoded in the data nor captured by inference rules.
One way to answer such queries is to predict which missing
RDF triples related to the query are true given the observed
triples. In this paper we propose to go beyond the stored
triples and predict new ones given the data, thus being able
to answer queries when their answers are not explicit given
in the knowledge base. Besides extending the capabilities of
existing query mechanisms, such techniques can also be used
to aid RDF bases maintainers or support user navigation.

RDF triples are composed by a subject, a predicate and
an object. In [5], the Semantic Web data is represented as
a 3-dimensional tensor where one dimension represents the
subjects, one the objects and the last one the predicates.
Each entry in the tensor has a value 1 for the triples in the
database and 0 otherwise. PARAFAC analysis aka Canon-
ical Decomposition [2] is then used for deriving authority
and hub scores for RDF resources. Here, however, we are
interested in predicting the truth value of unobserved triples
and hence we argue that, in contrast to [5], one should use
a sparse tensor representation, where the positions in the
tensor corresponding to triples not in the database are con-
sidered to be not observed instead of having a zero value.
The task is then to predict the unobserved part of the ten-
sor given the observed one. Methodologically, this scenario
is similar (but not equal) to the recommender systems one,
where matrix and tensor factorization models have proven
to be the best performing models up to this date [13][12]. In
this work we formalize the problem of discovering new RDF
triples given already existing ones and investigate how two
state-of-the-art tensor factorization models, namely Canon-
ical Decomposition [2] and Pairwise Interaction Tensor Fac-
torization (PITF) [13], perform on this problem.

The contributions of this work are as follows:

1. We propose to provide probabilistic estimates of the
truth values of RDF triples that are neither explicitly
stated in the knowledge base nor can be inferred from
logical entailment.

2. We approach the problem of triple prediction with ten-
sor factorization models and argue that entries corre-
sponding to triples not in the database should be re-
garded as unobserved entries rather than having value
Zero.

3. Our experiments show that the tensor factorization
models can achieve good performance on the task ap-
proached here and show that representing RDF data as



a sparse tensor yields better results than dense repre-
sentations proposed in previous work. Also we observe
that, by using an appropriate factorization model, fil-
tering the results with basic RDF reasoning does not
imply in a significant performance improvement.

2. RELATED WORK

There is a vast literature on approaches for querying RDF
data. Many of them express RDF data in another formalism
such as Frame-Logic [3][19] and Horn Logic [14] and then ex-
ploit the query capabilities of such formalisms. Another set
of approaches propose RDF query languages like RQL [7]
and SPARQL [10] and propose ways to evaluate queries in
such languages as in [9]. Elbassuoni et al [4] proposed to
augment RDF queries with keywords and use statistical in-
formation retrieval models to rank query results. Although
these are relevant and successful ideas, they have one lim-
itation in common: they do not exploit facts that are not
explicitly encoded in the data and cannot be captured by in-
ference rules. The approach proposed here relies on machine
learning techniques to predict the truth value of such RDF
triples. Work has been done on introducing uncertainty in
RDF by attaching probabilities to triples [16] and on how to
query such probabilistic RDF databases [6]. The approach
proposed in this paper, however, discovers new information
in traditional RDF bases.

Tensor Factorization models have been studied and ap-
plied for many years in many different fields. One prominent
and general approach is Tucker decomposition [15]. A spe-
cial case of Tucker decomposition (TD) is the Canonical De-
composition (CD) [2]. A special case of CD, the Pairwise In-
teraction Tensor Factorization (PITF) model has been pro-
posed in [13], which is capable of capturing pairwise inter-
actions between entities in the data. In [5], a tensor based
representation of the Semantic Web is proposed. They have
shown that making predictions over RDF triples can be cast
as a tensor factorization task. In their work they used CD to
derive authority and hub scores for RDF resources in order
to rank them. Here instead, we are interested in predicting
the truth values of triples that do not appear in the dataset.
Nickel et al. [8] also propose a tensor factorization model
for relational data. Both [8] and [5] implicitly assume that
triples not appearing in the dataset are false. In the context
of this work, the truth values of triples which are not in the
dataset are considered to be unobserved and the goal of the
models proposed here is to predict which triples are most
likely to be true. Here we apply the PITF model optimized
for the Bayesian Personalized Ranking (BPR) criterion (as
in [13]) and analyze how the pairwise interactions modeled
by this approach capture the interactions among subjects,
predicates and objects of RDF triples.

3. PREDICTING RDF TRIPLES

According to the W3C RDF specification [18], an RDF
dataset is a set of statements, each one of them consisting
of a subject, a predicate and an object. Let S be the set
of all subjects, P the set of all predicates and O the set
of all objects. An RDF dataset is denoted by T C S X
P x O. Also, some ontological information can be encoded
in the dataset through RDF Schema (RDFS) [17]. RDFS
is a basic knowledge representation language intended to
structure RDF resources. Through RDFS one can define a

class hierarchy, class membership relations (to which class
each RDF resource belongs to) and the domain and range
of RDF properties, which means that a given triple (s, p, 0)
can be true iff the subject s belongs to the domain of the
property p, i.e. s € Domain(p) and the object o belongs to
the range of p, i.e. 0 € Range(p).

We define the task of RDF triple prediction as generat-
ing a list of objects that, together with a given a subject
predicate pair, constitute a true triple. One approach to
this problem would be to generate a list with all the objects
that meet the range restriction of the property in the query.
However, in real world datasets, some (or most) of the in-
formation about properties ranges and domains and class
membership may be missing. Furthermore, not all objects
will form a true triple with the given pair. Thus it makes
sense to deliver a list of objects O ranked according to the
likelihood that (s,p,0) is true. If some information about
the range of the property in the pair is available, the objects
0 ¢ Range(p) can be excluded from the ranked list. There-
fore this can be formulated as a ranking problem, where the
goal is to predict a total order >, ,C O x O over objects
given (s,p). One way to derive a total order is to predict a
scoring function Y : § x P x O — R and rank the objects
according to their scores. If two objects have the same score
for the same pair, one is placed randomly before the other.

4. PREDICTING RDF TRIPLES BY TEN-
SOR FACTORIZATION

As already shown in [5], RDF data can be represented
as a tensor where the triples in T are the positive observa-
tions. Tensor factorization models approximate the original
tensor by a set of low-rank matrices and differ in the num-
ber of such matrices and in the way they are combined to
reconstruct the tensor. The low-rank matrices used are the
ones that are optimal according to some loss function (e.g.
the reconstruction error or some other optimization criterion
suited for the task at hand). In the following we discuss the
optimization criterion and the factorization models applied
for predicting RDF triples.

4.1 Factorization Models

Next, we show how factorization can model the latent de-
pendencies in RDF graphs. We discuss the Canonical de-
composition (CD) or PARAFAC analysis, which has already
been applied for analyzing Semantic Web data [5], as well
as the more recent Pairwise Interaction Tensor Factorization
(PITF) model [13]. We investigate also what the underly-
ing assumption of each model means for representing RDF
triples.

4.1.1 Canonical Decomposition

The CD model (Canonical Decomposition) decomposes a
tensor T € RISXIPIXIOl into three matrices. Such matrices
are S € RISIX* P e RIPIXE and O € RIO1*F and constitute
the parameters of the model. Through CD, each subject,
predicate and object is represented as a vector of k latent
features and the scoring function is given by:

k
O-C ~ ~ N
Yipo =2 8ss bps - Oos (1)
f=1



In [5] the CD model is used for analyzing Semantic Web
data. Since their aim was to derive authority and hub scores
for RDF resources, their approach is not suitable for triple
prediction, as shown in Section 5, since it lacks an appro-
priate optimization criterion. Another shortcoming of this
approach when predicting RDF triples (as observed in the
experiments in Section 5) is that it considers that the whole
tensor is observed (i.e. triples not on the data are considered
to be zeros on the tensor). Thus we call it CD-Dense.

A more appropriate optimization is to use the ranking
interpretation (see section 3) which leads to pairwise logistic
regression (see section 4.2) and [11]). Also, due to open
world assumption, it makes sense to consider that only one
portion of the tensor is observed (i.e. triples that are not in
the dataset are considered as unobserved data) thus making
use of a sparse representation of the tensor. We will follow
[11] and refer to the pairwise ranking optimization as BPR
—i.e. a CD model optimized for BPR is called CD-BPR.

412 PITF

One problem with CD is that it considers only the three-
wise interaction among subjects, predicates and objects. In
the problem definition, however, it was stated that prop-
erties are related to subjects through their domain and to
objects through their range. Interactions between subjects
and objects are also relevant. For instance, musicians are
more likely to be related to songs, bands and musical in-
struments than to birds, or touristic destinations. Thus it
makes sense to use a factorization model that explicitly takes
into account those pairwise interactions.

PITF decomposes a tensor T € RISXIPIXIOl ingo six ma-
trices, namely SC € RISIXF GP ¢ RISIXk PSS ¢ RIPIXF
PO e RIPIXE O3 ¢ RIOI¥F "and OF € RIC** where k is
the number of latent features. Each matrix contains the la-
tent features involved in each pairwise interaction between
subjects and objects (SO and OAS)7 subjects and predicates
(87 and P®) and predicates and objects (P° and OF).

This way, PITF explicitly models the two-way interactions
between subjects, predicates and objects by factorizing each
of the three relationships:

k k k
Vipo =Y 8010004 PosOos+ Y ey Doy
f=1 f=1 f=1
2
It is important to state that the subject-predicate inter-
action vanishes for predicting rankings of objects for a given
(subject, predicate) pair. Indeed, when computing the rank
of an object o for a given pair (s,p), the subject and the
predicate of the triple are known in advance. Therefore we
want to predict only the object, thus being interested only in
the interactions between s and o and between p and o. This
way the matrices S” and P are no longer needed. Thus,
the final model parameters are 5 € RISIXF P ¢ RIPIXF
0% € RI°* and OF € RI®1** and the final model equa-
tion for PITF is:

k k
Vigel = 8ep-05+ Y bpy- 0oy 3)
=1 f=1

As shown in [13], this is exactly what happens when op-
timizing PITF for the BPR-Opt criterion (see Section 4.2).

4.2 Dealing with the open world assumption
through the BPR Framework

One crucial difference between the approaches from [5]
and [8] and the one proposed here is that we consider the
missing triples as unobserved data rather as negative ex-
amples. One reason for this is that, according to the RDF
specification [18], open world semantics is assumed, i.e. the
truth values of triples that are not in the dataset are con-
sidered to be unobserved instead of being false.

Since there are no negative examples we use the approach
presented in [12] to generate training examples. Like in [13],
we assume that, given a pair (s, p), an object 04 is more rel-
evant than another object op iff (s, p, 04) has been observed
and (s,p,op) has not been observed. This can be seen as
a ranking constraint, i.e. the object o4 should be ranked
higher than the object og. The training data Dr is a set of
such pairwise constraints and is defined as:

Dr:={(s,p,04,08) : (s,p,04) €T A(s,p,08) ¢ T}

In Section 3, the triple prediction problem was formulated
as a ranking problem. Thus, in order to obtain good results
on this task, one should use parameters that are optimal
according to a ranking criterion. Thus, both PITF and the
sparse version of CD are optimized here for the Bayesian Per-
sonalized Ranking optimization criterion (BPR-Opt) [11],
shown in equation 4. In order to get better rankings, BPR-
Opt should be maximized, i.e. one should search for the
model parameters that deliver its highest value.

o (Vipos—Yepon)—AellOlF

(4)
In equation 4, o is the logistic function o(x) := H%,
© are the model parameters and Ae is the regularization
constant. In the experiments performed in this work, the
latent factor matrices of both CD-BPR and PITF are the
ones that maximize BPR-Opt in the training data. They
are learned using a stochastic gradient descent algorithm.
For the complete derivation of this optimization criterion
and the learning algorithm for optimizing the parameters
for BPR-Opt, the reader is referred to [13][11].

BPR-OPT := Z

(s;p,04,0B)EDT

4.3 Filtering the Results of Tensor Factoriza-
tion Models

In order to improve the performance of the approach pro-
posed here, we propose to filter out unreasonable results
using range and class membership information. The filter
works as follows. Given a pair (s,p), a tensor factorization
model can derive a total order over the objects in O. The
filter takes this order and returns an ordered list containing
only the objects that belong to the range of property p, i.e.
o € Range(p). This is done by changing the scoring function
of the models as follows:

N —oo if o ¢ Range
Yispo=1¢ # 9 ®) (5)
Y p,o otherwise.

where Y; ., is the scoring function of the unfiltered model.
If no information about Range(p) is given, the results re-
main as they are, i.e. Y50 = Ys po-



Table 1: Dataset characteristics in terms of subjects,
predicates, objects and triples

dataset IS | |P] 9] |T|
Beatles2 158 | 279 | 5771 | 11728
James 21 | 112 851 1335
Properties 200 | 194 9524 | 11363
SWChallenge | 1010 | 130 | 31180 | 43753

5. EVALUATION

In our evaluation, we study the prediction quality of the
proposed approaches for the problem of predicting RDF
triples. We investigate empirically whether Tensor Factor-
ization models alone are able to provide reasonable predic-
tions and whether taking the open world assumption into
account translates in better results. Then, we evaluate the
impact the of proposed filter on the overall performance of
the best factorization models.

5.1 Datasets

We used four datasets for evaluation:

e Beatles2 - the same dataset as used in [5]. It was
extracted from dbpedia.org by crawling other resources
starting from The Beatles;

e James - the same as used in [5]. It was extracted from
dbpedia.org by crawling other resources starting from
James Bond. Both Beatles?2 and James datasets are
available for download®;

e Properties - triples containing the properties of the In-
fobox Ontology?. It can be downloaded at the DBPe-
dia website?;

o SWChallenge - contains the first 1 million triples of
the dataset used in the ISWC Billion Triples Challenge
2009".

For the Properties and SWChallenge datasets we removed
the triples with subjects appearing on less than 50 triples.
For the Beatles2 and James datasets, this threshold was set
to 10, since these datasets are smaller. The characteristics
of the preprocessed datasets can be found in table 1.

5.2 Methods

The methods used in the evaluation were the following:

e Most Frequent - suggest the objects that appear in the
highest number of triples on the training data;

e Most Frequent per Predicate - for a given pair (s,p),
suggest the objects that co-occur most frequently with
the predicate p on the training data;

e CD-Dense - Canonical decomposition on a dense ten-
sor, i.e. triples that are not on the dataset are consid-
ered to be false. This is an application of the method
in [5] to the task of triple prediction. We used the
same approach for factorizing the tensor as in [5] but
we used the scoring function from equation 1 instead;

http://isweb.uni-koblenz.de/Research/DataSets
2http://wiki.dbpedia.org/Ontology
3http://wiki.dbpedia.org/Downloads
“http://challenge.semanticweb.org/

e CD-BPR - sparse Canonical decomposition optimized
for BPR;

e PITF-BPR - PITF model optimized for BPR.
5.3 Evaluation Methodology

We split the data into training and test set as follows: for
each subject, one subject-predicate pair is randomly chosen
and all the triples containing it are put into the test set. The
triples containing the other pairs with the same subject are
put into the training set. What we want to verify with this
evaluation protocol is whether the proposed method is able
to predict correctly the triples that were hidden from it (i.e.
the ones on the test set).

Once the splits were generated, the models were trained
on the training set and the prediction quality on the test set
was measured. This way we can evaluate if the models are
able to answer the queries in the test set by predicting the
triples that were actually asserted by the developer of the
RDF dataset (i.e. the triples in the test set). The evaluation
measures used here were the Precision and Recall in TopN-
lists. Each experiment was repeated 10 times by sampling
new train and test sets and applying the algorithms to them.
The results reported here are the averages over the 10 runs.

The CD-BPR and PITF models were learned using the
LEARNBPR algorithm [13] and CD-Dense was trained us-
ing the alternating least squares algorithm implementation
from the MATLAB tensor toolbox® [1]. The hyperparam-
eters were searched on the first five training splits of the
Beatles2 dataset. According to these results, the learn rate
was set to 0.05 and the regularization constant to 0.001 for
both PITF and CD-BPR. The number of dimensions used
was 64 for PITF, 45 for CD-BPR and 32 for CD-Dense.
PITF ran for 500 iterations, while CD-BPR for 1000. We
observed that, for CD-Dense, using higher dimensions leads
to a deterioration of the prediction quality, since the model
assumes that unobserved triples have value 0 on the ten-
sor. This way, the prediction for all the test triples also gets
closer to 0.

5.4 Reaults

Figure 1 shows the Precision-Recall curves on all datasets
for TopN-lists varying from 1 to 10. There one can see that
PITF achieves a higher prediction quality on all datasets.
For both the smaller and larger datasets PITF outperformed
CD-BPR and the other baselines. This result constitutes an
evidence that the subject-object and predicate-object pair-
wise interactions captured by PITF do play an important
role when determining new triples. The results also show
that the CD-Dense is not appropriate for this task. One
reason for this is the implicit assumption that triples not
on the dataset are false. The values for such triples on the
tensor are set to zero and the learned model tends to pre-
dict low scores for any triple that was not on the training
data. Please note that in [5], this approach was developed
for a different task. The results here show that using a dense
tensor representation is not suitable for our scenario.

5.5 Post Filter Evaluation

This filter was evaluated on the Beatles2 dataset. In this
experiment we compare plain PITF-BPR and plain CD-

PPlease note that this toolbox has also been used by [5] for
deriving authorities and hub scores for RDF resources.
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Figure 1: Precision Recall Curves for all datasets

BPR —i.e. without the filter, as in the previous experiment
— against their filtered versions. The first conclusion drawn
from the experiments is that the performance improvement
is not significant. The main reason for this is that on this
dataset (as well as on the others considered in this work)
most of the information about property ranges and class
membership was missing. Thus, this dataset was manually
completed with the missing information (a time demanding
and tedious task with huge costs, especially if one consid-
ers the size of datasets available on the Web today) and the
filter was applied using the new manually added informa-
tion. The results are shown in Figure 2, where three per-
formance curves are shown: one for the plain tensor factor-
ization model (PITF-BPR or CD-BPR), one for the factor-
ization model plus the filter version on the original dataset
and finally one for the method with filter on the manually
enriched version of the dataset.

6. CONCLUSIONS

We have proposed an approach for mining RDF datasets.
Our approach exploits the open world semantics of RDF
data and predicts new RDF triples based on the already ex-

isting ones, thus being able to provide answers with triples
that are not on the original dataset but still are true. We for-
malized the problem of predicting new RDF triples and ap-
proached it with tensor factorization models. We have also
provided empirical evidence that, due to the open world se-
mantics of RDF, using sparse tensors for representing RDF
data (where nothing can be said about the truth value of
triples not in the dataset) is a more appropriate approach
for this task than using dense ones (where triples not in the
dataset are considered to be false). We have shown that the
PITF and CD models, when optimized for BPR, are able
to provide reasonable predictions of triples that are true in
the real world. It can be seen from the experiments that
the quality of the results of those models can be improved
by completing the datasets with some additional informa-
tion with which some RDF reasoning can be made. How-
ever, the improvement (especially for the PITF model) was
not significant compared to the cost of manually completing
the datasets. This suggests that the pairwise interactions
explicitly modeled by PITF do play an important role on
RDF triple truth value prediction.
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