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ABSTRACT
Multi-matrix factorization models provide a scalable and ef-
fective approach for multi-relational learning tasks such as
link prediction, Linked Open Data (LOD) mining, recom-
mender systems and social network analysis. Such models
are learned by optimizing the sum of the losses on all rela-
tions in the data. Early models address the problem where
there is only one target relation for which predictions should
be made. More recent models address the multi-target vari-
ant of the problem and use the same set of parameters to
make predictions for all target relations. In this paper, we
argue that a model optimized for each target relation indi-
vidually has better predictive performance than models op-
timized for a compromise on the performance on all target
relations. We introduce specific parameters for each tar-
get but, instead of learning them independently from each
other, we couple them through a set of shared auxiliary
parameters, which has a regularizing effect on the target
specific ones. Experiments on large Web datasets derived
from DBpedia, Wikipedia and BlogCatalog show the per-
formance improvement obtained by using target specific pa-
rameters and that our approach outperforms competitive
state-of-the-art methods while being able to scale gracefully
to big data.
Categories and Subject Descriptors: H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval–Information
filtering; I.2.6 [Artificial Intelligence]: Learning–Parameter learn-
ing
General Terms: Algorithms; Experimentation; Measurement.
Keywords: Statistical inference; Relational learning; Factoriza-
tion Models.
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1. INTRODUCTION
A lot of work has been devoted to analyzing and learning

from data in a table format where instances are represented
as a feature vector and have a label associated with them.
Although such approaches have been quite sucessful, new
models able to cope with richer structures in the data are
needed. Most data available on the Web have a complex
graph structure comprising different relations (e.g., edge
types). Thus, mining multi-relational data with noise, par-
tial inconsistencies, ambiguities, or duplicate entities, has
gained relevance in the last years and found applications in
a number of tasks such as link prediction [14], Resource De-
scription Framework (RDF) mining [6], entity linking [18],
recommender systems [10], and natural language process-
ing [9]. However, new paradigms are still needed for statis-
tical and computational inference based on multi-relational
data.

Recently, multi-relational factorization models have shown
to scale well while providing good predictive performance
and are currently considered the state-of-the-art for Statis-
tical Relational Learning (SRL) tasks [13, 19]. Factoriza-
tion models for multi-relational data associate entities and
relations with latent feature vectors and define predictions
about new relationships through operations on these vec-
tors (e.g., dot products). A number of factorization models
define one single relation for which predictions should be
made, called the target relation, while the other relations
are used as side information (auxiliary relations) [10, 12,
19, 22]. Consider for instance the scenario of online social
networks (OSNs), such as Facebook, YouTube, or Flickr,
which encourage users to create connections between them-
selves or to interesting items (e.g., songs, videos, or news
items). The social information (connection between users)
can be exploited by recommender systems to provide better
recommendations of items of interest (connections between
users and items) [10].

In order to illustrate how multi-relational factorization
models work, we introduce a running example used across
the paper. Consider a social media website where users can
follow other users (much like in Twitter), be friends with
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Figure 1: In this Multi-Relation and Multi-Target ex-
ample there are three relations: follows F, social S and
consumes C, between two entities users () and news
items (). This example shows the corresponding three
cases for which each relation is acting as a target and the
rest ones as auxiliary.

other users (forming a social graph) and consume products,
e.g., read news items. In this example there are two entity
types, namely users U and news items N , and three rela-
tions: (i) follows F := U × U , (ii) the social relationship
S := U ×U and (iii) the product consumption (e.g. reading
of news items) C := U ×N , as depicted in Figure 1.

Historically, the first multi-relational learning factoriza-
tion models were concerned with making predictions for a
single target relation based on information provided by a set
of other relations which we refer to as auxiliary. However, in
domains with many potential target relations, a more inter-
esting model class is required in order to make predictions
for all targets, e.g., in the context of recommender systems,
one is not only interested in recommending news items to
a user but also recommending other users whom she might
want to follow, or be friends with.

Another example of a task where this is important is the
mining of Linked Open Data bases like DBPedia, for in-
stance supporting probabilistic queries on such databases
and providing estimates of facts that are neither explicitly
stated in the knowledge base nor can be inferred from logical
entailment [6, 14]. Optimizing the predictions for a number
of relations can be seen as a prediction task with multiple
target variables. State-of-the-art factorization models ap-
proach the problem by sharing the parameters used for pre-
dicting all target relations. Instances of such approaches are
RESCAL [13, 14], MOF-SRP [9] and SME [3], which share
entity specific parameters among all relations in the data.
This way, the best solution for the optimization problem is
a compromise of the performance on all relations. Although
most of these models have been evaluated on multi-target
settings, none of them have explicitly investigated the prob-
lem of how to optimize each target relation individually in-
stead of learning the optimal performance compromise on
all relations.

When optimizing a model for one specific relation (so
called target relation), neglecting the information on the
other relations leads to suboptimal results. Thus state-of-
the-art models downweight the contribution of the auxiliary
relations to the overall loss function. Thus, the model ex-
ploits all the relational information available but it is still op-
timized for the target. When optimizing for multiple target

relations, we propose to learn a set of single target models
each one optimized for one relation while downweighting the
other ones. We call this approach Decoupled Target Specific
Features Multi-Target Factorization (DMF).

One drawback of this approach is that the number of pa-
rameters to be learned grows too fast with the number of
relations. However, when learning a model with DMF, a
number of parameters are used only for auxiliary relations
and never for predicting the targets. By sharing such param-
eters among the models for different targets, one can reduce
significantly the amount of memory required by the model.
This second approach we call Coupled Auxiliary and Tar-
get Specific Features Multi-Target Factorization (CATSMF).
This is the first work to specifically investigate how to op-
timize multi-relational factorization models for each target
relation individually. In summary, the main contributions
of this work are:

1. We propose a new factorization approach that opti-
mizes directly for multiple target relations. The nov-
elty of our approach lies in the fact that for the same
entities we use different parameters when making pre-
dictions for different target relations, thus allowing the
model to be optimized for each target relation specifi-
cally;

2. We also show that coupling the models for different
target relations, by introducing shared parameters for
reconstructing relations when they play an auxiliary
role, leads to a more memory efficient method and even
to better predictive accuracy;

3. We empirically show the advantage of having specific
predictive parameters on different relations to the over-
all loss. Our experiments on real world Web datasets
from DBpedia, Wikipedia and BlogCatalog demon-
strate that CATSMF outperforms state-of-the-art fac-
torization models and has lower runtime. Furthermore
they also provide empirical evidence that taking into
account entity type information can have a positive
impact on predictive performance.

2. PROBLEM FORMULATION
Relational data comprise a set of R ∈ N relations among a

set of entities E . The data for a given relation r ∈ {1, . . . , R}
can be described as Dr := {(er, yr)|er ∈ Er ∧yr ∈ R} where
Er ⊆ Enr is called the extension of relation r, nr denotes
its arity, and yr is a value associated with each observation.
In this paper we assume all the relations to be binary, i.e.
nr = 2.

Let Xr := Er,Yr := R be sets called predictor and tar-
get spaces of relation r, respectively, for r = 1, . . . , R. The
training data for a relation r can be written as Dtrain

r ⊆
Xr × Yr. Many times yr denotes the truth value of a given
observation and can be encoded as yr ∈ {0, 1}. As an exam-
ple, imagine a binary relation relating countries to their cap-
itals. Possible observations could be (Germany,Berlin, 1)
and (Germany,Hamburg, 0).

Let Yr = {ŷr : Xr → Yr} be the space of all possible
prediction models considered and Lr : P(Xr×Yr)×Yr → R+

0

be a loss function, where P denotes the power set. Given the
training data, the multi-relational multi-target prediction
problem is to find R models ŷr : Xr → Yr s.t. for some test
data Dtest

r ⊆ Xr × Yr (r = 1, . . . , R) stemming from the



same data generating process as the training data and not
being used for learning the models ŷr, the test error

error((Dtest
r )r=1,...,R, (ŷr)r=1,...,R) :=

1

R

R∑
r=1

Lr(D
test
r , ŷr)

is minimal.
For regression and classification problems, losses Lr usu-

ally are defined as a sum of pointwise losses
ℓr : Yr × Yr → R+

0 :

Lr(D
test
r , ŷr) :=

1

|Dtest
r |

∑
(x,y)∈Dtest

r

ℓr(y, ŷr(x)).

A number of multi-relational datasets consist of positive
instances only, e.g., the tuples of entities E in a subset of the
extension of the relation. This means that we only observe
a subset of the tuples of the type (x, y) where y = 1. In
this case we are interested in solving a ranking task where
prediction functions Yr = {ŷr : Xr → R} deliver ranking
scores and the losses Lr usually are defined pairwise:

Lr(D
test
r , ŷr) := (1)

1

|Dtest
r ||Xr × {1} \ (Dtrain

r ∪Dtest
r )|

∑
(x,1)∈Dtest

r∑
(x′,1)∈Xr×{1}\(Dtrain

r ∪Dtest
r )

ℓr(ŷr(x), ŷr(x
′))

with pair ranking score losses ℓr : R × R → R+
0 . Finally,

problems with additional entity type information can be
modeled by choosing Xr := E(1)r × E(2)r with E(1)r ⊆ E and
E(2)r ⊆ E being subsets of entities that can possibly be
related through relation r as subjects and objects respec-
tively.

3. RELATED WORK ON
MULTI-TARGET FACTORIZATION

In this section we discuss related works on Multi-Target
Factorization. We introduce the state-of-the-art methods in
this field and position our model.

Early work on Statistical Relational Learning (SRL) aims
at statistically modeling relational data [7]. SRL combines
graphical models such as Bayesian and Markov networks,
with knowledge representation formalisms such as first or-
der logic for an accurate modeling of the relationships [17].
Another approach to SRL is multi-relational factorization
models, which embed entities into a latent space and recon-
struct the relations through operations on this space. These
embeddings are shared across the relations.

In order to discuss existing work, we make use of the run-
ning example of a social media website introduced in Sec-
tion 1, where users can follow other users (much like in Twit-
ter), be friends with other users (forming a social graph) and
consume products, e.g., read news items.

Early factorization approaches for multi-relational learn-
ing were concerned with making predictions for a single tar-
get relation based on information provided by a set of other
relations which we refer to as auxiliary. These approaches
learn the model parameters by optimizing the sum over the
losses on each relation. In this way, the minimization of the
loss on the auxiliary relations acts as a regularization term

for the parameters. The overall loss is then a weighted sum
of losses and the parameters are learned by optimizing the
following loss function:

f(Θ) :=

R∑
r=1

αrLr(Dr, ŷr(Dr; Θ)) + λ||Θ||22 (2)

where αr ∈ R+
0 is a hyperparameter for the contribution of

the reconstruction of r to the overall loss and λ is the regu-
larization constant for the model parameters Θ. As already
observed in previous work [10, 19], if there is a single target
relation t, better results are achieved by having a weighted
sum over the losses. The idea behind this is that differ-
ent relations contain useful information about the others.
For instance knowing which other users a given user follows
might give some indication of which kind of news she is in-
terested in. Each weight αr models how much each relation
contributes for the prediction of the target one.

However, in real world scenarios one is often interested
in a model that is optimized for making predictions for all
the relations. In our social media scenario one is not only
interested in recommending news items to a user but also
recommending other users whom she might want to follow,
or be friends with. The differences between various multi-
target approaches lie in (i) their parametrization, (ii) the
prediction function ŷ and (iii) the loss function Lr for which
each relation is optimized. Singh and Gordon provide a
unified view of such approaches in a model class they call
Collective Matrix Factorization (CMF) [19]. CMF uses the
following prediction function:

ŷr(x1, x2) := φ(x1)
⊤φ(x2) (3)

where φ : E → Rk associates latent features with every en-
tity x ∈ E , with k ∈ N being the number of latent features.
Approaches like the Coupled Matrix and Tensor Factoriza-
tion (CMTF) [1] and MetaFac [11] extended such models to
deal with higher arity relations (i.e. relations between more
than two entities). For the purposes of this work, we restrict
ourselves to relations of arity two, in which case the predic-
tion model of CMTF reduces to the same as in Equation 3.
MetaFac on its turn introduces a set of global features which
for the arity two case can be described as Φ ∈ Rk×k, a diag-
onal matrix which is the same across the predictions for all
the relations. The MetaFac prediction function for relations
of arity two can be given as:

ŷr(x1, x2) := φ(x1)
⊤Φφ(x2) (4)

Such models have the advantage of computational ease
but can poorly handle relations with a signature clash, i.e.,
different relations between the same entity types like the
friends and follows relation from our example. For instance
such a model would predict that every user who follows
Barack Obama is also a friend of his.

One way to cope with this issue is to associate feature
matrices Φr ∈ Rk×k with each relation:

ŷr(x1, x2) := φ(x1)
⊤Φrφ(x2) (5)

If the relation features Φr are diagonal matrices, this model
is equivalent to a PARAFAC tensor decomposition [8]. The
Semantic Matching Energy (SME) model [3] also uses this
approach although with a slightly different prediction func-
tion. This solves the signature clash issue but another lim-



itation remains. One can easily see that, for the models
from Equation 3, Equation 4 and Equation 5 (with diag-
onal Φ matrices), ŷr(x1, x2) = ŷr(x2, x1). This is an issue
when dealing with asymmetric relations, i.e., relations where
y(x1, x2) ̸= y(x2, x1) like the follows relation in our example.

In this case the model would predict that Shakira is in-
terested in following every user that follows her, which is
not necessarily true. Using full instead of diagonal matrices
for Φr yields a model capable of dealing with this problem.
This is the prediction model used by RESCAL [13]. The dis-
advantage of this model is that it comes at the expense of
computational cost, both from processing time and memory
standpoints. Another model which we will refer to as Mul-
tiple Order Factorization with Shared Relation Parameters
(MOF-SRP)1 [9] aims at reducing the memory requirements
by defining relation features as outer products of feature vec-
tors.

None of the aforementioned state-of-the-art approaches
make any distinction between target and auxiliary relations,
and all of them use the same parameters for predicting all
the targets, so that the learned parameters are a compromise
for the performance over all targets, but not for each specific
one. In our work, however, we propose to combine the idea of
shared parameters and learn individual entity embeddings
for different target relations which in turn leads to better
predictive performance.

4. OPTIMIZING MODELS FOR
MULTIPLE TARGET RELATIONS

In state-of-the-art methods, the parameters are learned
in such a way that they are optimized for the best perfor-
mance compromise over all relations and not for the best
performance on each relation individually (cf. Section 3).
To see how this is suboptimal for a general model class, we
first present an approach that we call Decoupled Target Spe-
cific Features Multi-Target Factorization or DMF as a step-
ping stone and introduction to our core contribution in this
paper, namely: the Coupled Auxiliary and Target Specific
Features Multi-Target Factorization (CATSMF) model.

DMF
Let φ be the set of model parameters and yr(·;φ) a predic-
tion model for relation r parametrized with φ. Also, let the
set of parameters with the best prediction performance on
relation r be denoted by φ∗

r . Such parameters are defined
as:

φ∗
r := arg min

φ
Lr(Dr, ŷr(·;φ)).

Now, suppose the data comprise two distinct target rela-
tions, namely r and s. State-of-the-art models solve this
problem as follows:

φ∗ := arg min
φ

(Lr(Dr, ŷr(·;φ)) + Ls(Ds, ŷs(·;φ))) .

Now one would expect that φ∗
r ̸= φ∗

s . However, by opti-
mizing an objective function like in Equation 2 one is con-
strained to solutions of the form φr = φs = φ∗.
By definition,

Lr(Dr, ŷr(·;φ∗
r)) ≤ Lr(Dr, ŷr(·;φ∗))

1The authors refer to the model as a multiple order factor-
ization [9].

and

Ls(Ds, ŷs(·;φ∗
s)) ≤ Ls(Ds, ŷs(·;φ∗))

from which it follows that

Lr(Dr, ŷr(·;φ∗
r)) + Ls(Ds, ŷs(·;φ∗

s)) ≤
Lr(Dr, ŷr(·;φ∗)) + Ls(Ds, ŷs(·;φ∗)) .

This means that using parameters optimized specifically for
each target relation is, in the worst case, at least as good
as having one common set of parameters optimized for all
relations. Thus a more appropriate solution is to learn one
model for each target relation, an approach that we call De-
coupled Target Specific Features Multi-Target Factorization
(DMF):

φ∗
r := arg min

φr

Lr(Dr, ŷr,r(·;φr)) + αr,sLs(Ds, ŷr,s(·;φr))

φ∗
s := arg min

φs

Ls(Ds, ŷs,s(·;φs)) + αs,rLr(Dr, ŷs,r(·;φs))

with 0 ≤ αr,s ≤ 1 and 0 ≤ αs,r ≤ 1 and predict using
ŷr,r(·;φ∗

r) for relation r and ŷs,s(·;φ∗
s) for relation s.

More generally, let ŷt,r denote the prediction function for
a given relation r when another relation t is the target.
The loss function of multi-target factorization models can
be written as follows:

J({φt}t∈1,...,R) := (6)
R∑

t=1

(
R∑

r=1

αt,rLr(Dr, ŷt,r(Dr;φt)) + λt||φt||2
)

Predictions for unseen data points are done using
ŷt := ŷt,t . The functions ŷt,r for r ̸= t are called auxil-
iary reconstructions of relation r for the target relation t.
Lr is the loss on relation r, as defined in Section 2, and αt,r

is the importance of relation r when relation t is the target,
such that αt,t = 1 and 0 ≤ αt,r ≤ 1.

The DMF framework can be used with models with differ-
ent prediction functions ŷt,r. To illustrate this, let us have
a look into how a model like the one from Equation 5 can
be learned using this framework. DMF associates one latent
feature vector φr(x) with each instance x for each relation
r = 1, . . . , R. Accordingly, different feature matrices Φt,r

are associated with each relation r = 1, . . . , R, one per tar-
get t = 1, . . . , R. The prediction function in Equation 5 can
be rewritten under the DMF framework as in Equation 7.

ŷt,r(x1, x2) := φt(x1)
⊤Φt,rφt(x2) (7)

The DMF loss decomposes over t and each component can
be optimized independently of each other; this is equivalent
to R independent models, one for each target relation. An-
other point worth noting is that the αt,r relation weights
are crucial for this model, e.g., setting all of them to 1 is the
same as learning the same model R times (up to a random
initialization).

To make this argument more clear, let us revisit the social
media example. In that example there are two entity types,
namely users U and news items N and three relations: fol-
lows F := U×U , the social relationship S := U×U and the
product consumption (reading of news items) C := U×N . A
state-of-the-art multi-factorization model like, for instance
RESCAL, would define latent features for users φ(U), news



items φ(N) as well as for the relations ΦF , ΦS and ΦC and
learn them as in Equation 8 (regularization terms are omit-
ted here to avoid clutter).

(φ∗(U), φ∗(N),Φ∗
F ,Φ

∗
S ,Φ

∗
C) :=

arg min
φ(U),φ(N),ΦF ,ΦS ,ΦC

LF (DF , ŷF (·;φ(U),ΦF ))

+LS(DS , ŷS(·;φ(U),ΦS))

+LC(DC , ŷC(·;φ(U), φ(N),ΦC))

(8)

This way, the same user features φ∗(U) are used for mak-
ing predictions for all relations and thus we will refer to this
strategy as complete sharing. Now, suppose one uses differ-
ent latent features for different target relations and φF (U),
φS(U), φC(U) denote the user features used for making pre-
dictions for relations F , S and C respectively. Then, it
would be possible to learn features such that

φ∗
F (U) := arg min

φ(U)

LF (DF , ŷF (·;φ(U),ΦF ))

φ∗
S(U) := arg min

φ(U)

LS(DS , ŷS(·;φ(U),ΦS))

φ∗
C(U) := arg min

φ(U)

LC(DC , ŷC(·;φ(U), φ(N),ΦC))

while models that follow the complete sharing strategy and
learn parameters like in Equation 8 are constrained to solu-
tions of the form

φF (U) = φS(U) = φC(U) = φ∗(U).

However, when learning the parameters for a given relation,
it is important to exploit the information about the other
relations. Thus, we can reformulate the multi-target factor-
ization problem as a set of single target problems, one for
each target relation. This way, the parameters for relation
F acting as a target relation are learned as:

(φ∗
F (U),Φ∗

F ) :=

arg min
φF (U),ΦF

LF (DF , ŷF,F (·;φF (U),ΦF,F ))

+αF,SLS(DS , ŷF,S(·;φF (U),ΦF,S))

+αF,CLC(DC , ŷF,C(·;φF (U), φF (N),ΦF,C)) .

The same way, when relation S is the target, the model
looks like

(φ∗
S(U),Φ∗

S) :=

arg min
φS(U),ΦS

LS(DS , ŷS,S(·;φS(U),ΦS,S))

+αS,FLF (DF , ŷS,F (·;φS(U),ΦS,F ))

+αS,CLC(DC , ŷS,C(·;φS(U), φS(N),ΦS,C)) .

Analogously, the same is done for relation C. Since there
are three relations, each user u ∈ U and news item n ∈ N
is associated with three latent feature vectors, each corre-
sponding to the case where each relation acts as target. This
can be seen in Figure 2. There, one can see that when one
relation acts as a target the other ones are useful for regu-
larizing the parameters for predicting it.

Since the follows (F ) relation is a relation between users
and users, one does not need the feature vectors of news
items φF (n) for predicting it. However, these parameters
are useful when learning user features φF (u) since news item
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Figure 2: DMF parameters for the social media example.

features are needed to regularize user features using the con-
sumes (C) relation. Hence we dub such parameters auxiliary
parameters. In Figure 2, predictive parameters are depicted
in a darker blue color and the auxiliary ones in a lighter
gray.

CATSMF
One issue with DMF is that the number of parameters to
be learned grows by a factor R of the number of relations in
the dataset. When relation feature vectors are used, DMF
has in total R2k + R|E|k parameters. This is of course un-
desirable from the scalability point of view. Furthermore,
the fact that individual models are completely decoupled
from each other prevents that one benefits from the learn-
ing process of the other. To tackle both issues, we pro-
pose to couple the models by sharing the parameters used
for auxiliary relations. We call this approach the Coupled
Auxiliary and Target Specific Features Multi-target Factor-
ization (CATSMF) and it represents our core contribution.
The prediction model from Equation 5 written using the
CATSMF approach is as follows:

ŷt,r(x1, x2) :=φ
t·δ(x1∈E(1)

t )
(x1)

⊤Φr,δ(t=r)φt·δ(x2∈E(2)
t )

(x2)

(9)

where E(1)r ⊆ E and E(2)r ⊆ E are the sets of entities that
could possibly occur as the subjects and the objects of rela-
tion r, respectively, as defined in Section 2. This means that
entities occurring within the target relation t are associated
with target specific features φt, while entities that do not
occur within the target relation t are associated with aux-
iliary features φ0 (pooled over all target relations). Every
relation r has two feature matrices: one when used as target
Φr,1 and another one when used as auxiliary relation Φr,0.

While DMF defines a full set of parameters for each rela-
tion, CATSMF defines parameters needed to make the pre-
dictions for each target relation, plus one full set of auxiliary
ones. For example, if a given entity x does not occur in a
relation t, i.e., x /∈ E(1)t ∪ E(2)t , then ŷt,t is never computed
for x and thus φt(x) is never used and can be dropped. For
instance, if r is the relation father-of, E(1)r and E(2)r both
correspond to the subset of persons, but not, say, locations,
and if r′ is the relation capital-of, E(1)r′ corresponds to the
subset of cities while E(2)r′ corresponds to the subset of coun-
tries, but not persons. This means, that for two given enti-
ties, a person John and location Berlin, φcapital-of(John) and
φfather-of(Berlin) need not be computed. Besides leading to a
lower number of parameters, taking into consideration entity
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Figure 3: CATSMF parameters for the social media ex-
ample. Please note that the auxiliary parameters are
shared across the target relations.

types can lead to better predictive performance as observed
in Section 5 among the results of our experiments.

Figure 3 shows the CATSMF setup for the social media
example. Note how the number of parameters is reduced
in comparison to DMF by sharing auxiliary parameters. In
Figure 2 one can see that there is a lot of redundancy in
DMF regarding auxiliary parameters. There are two copies
of auxiliary parameters for item features and two copies of
each relation auxiliary features. What CATSMF does is es-
sentially to define one set of auxiliary parameters and share
them through the cases of different target relations.

CATSMF has two main advantages over DMF: (i) since
the auxiliary parameters are shared across the models for
different target relations, such models are coupled and can
profit from each other. (ii) CATSMF allows for a lower num-
ber of parameters. The number of latent features needed
by CATSMF is 2Rk +

∑R
r=1 |Er|k, where we define Er :=

E(1)r ∪ E(2)r to simplify the notation. The lower
∑R

r=1 |Er|,
the bigger the savings in the number of parameters. Even
in the worst case scenario, where there is no entity type in-
formation available, i.e., if Er = E for all r = 1, . . . , R, the
number of parameters required by CATSMF is 2Rk+R|E|k.
This means that, while the relationship between the number
of parameters and the amount of relations is quadratic for
DMF, for CATSMF it is linear.

CATSMF is learned through stochastic gradient descent
as shown in Algorithm 1. The algorithm starts by initial-
izing the parameters, drawing them from a 0-mean normal
distribution (lines 2–7). Then, a target relation t is uni-
formly sampled and a stochastic gradient descent update is
made in one observation of t (lines 9–10) according to Al-
gorithm 2. Finally, another relation r is uniformly sampled
and an update on this relation, acting as an auxiliary rela-
tion for t, is performed (lines 11–12). We do this oversam-
pling of target specific parameters to guarantee that they
are more often updated than the auxiliary ones, which leads
to faster empirical convergence.

The parameter update is described in Algorithm 2. The
first step is to uniformly sample an observation (x1, x2, y) ∈
Dr (line 2). The next step is to determine the parameters to
estimate ŷt,r(x1, x2) that will be updated (lines 3, 5 and 7).
If r = t, then it plays a target relation role and only the tar-
get specific parameters regarding t, namely Φt,1, φt(x1) and
φt(x2) are updated. In case r ̸= t, then r plays the role of an
auxiliary relation. In this case the auxiliary features Φr,0 are
used. If x1 is among the entities related by t, i.e., x1 ∈ Et,

Algorithm 1 CATSMF
1: procedure LearnMultiTarget

input: number of relations R, training data
{Dr}r=1,...,R, set of entities E , set of entities that possi-
bly could occur in relation r: {Er}r=1,...,R, learning rate
η, and regularization constants λ

2: ∀x∈E φ0(x) ∼ N (0, σ2)
3: for r = 1, . . . , R do
4: ∀x∈Er φr(x) ∼ N (0, σ2)
5: Φr,0(x) ∼ N (0, σ2I)
6: Φr,1(x) ∼ N (0, σ2I)
7: end for
8: repeat
9: t ∼ Uniform(1, R)

10: (φ,Φ) = UpdateModel(t, t,Dt, φ,Φ, η, λt)
11: r ∼ Uniform(1, R)
12: (φ,Φ) = UpdateModel(t, r,Dr, φ,Φ, η, λt)
13: until convergence
14: end procedure

Algorithm 2 CATSMF Stochastic Gradient Descent
Update
1: procedure UpdateModel

input: target relation t, auxiliary relation r, observa-
tions about relation r: Dr, set of entity features φ, set of
relation features Φ, learning rate η, and regularization
constant λt

output: updated entity features φ and updated rela-
tion features Φ

2: (x1, x2, y) ∼ Uniform(Dr)
3: r′ ← tδ(x1 ∈ Et)
4: φr′(x1)←

φr′(x1)− η
(

∂ℓr(y,ŷt,r(x1,x2))

∂φr′ (x1)
+ λtφr′(x1)

)
5: r′ ← tδ(x2 ∈ Et)
6: φr′(x2)←

φr′(x2)− η
(

∂ℓr(y,ŷt,r(x1,x2))

∂φr′ (x2)
+ λtφr′(x2)

)
7: r′ ← rδ(t = r)

8: Φr′ ← Φr′ − η
(

∂ℓr(y,ŷt,r(x1,x2))

∂Φr′
+ λtΦr′

)
9: return (φ,Φ)

10: end procedure

then φt(x1) is used, otherwise the auxiliary features φ0(x1)
are in place. We proceed analogously for x2. Finally, the
chosen parameters are updated with a stochastic gradient
descent step (lines 4, 6 and 8).

Setting up CATSMF
Often overlooked in the multi-relational factorization liter-
ature are bias terms. We use target-specific and auxiliary
bias terms. The prediction function is the following:

ŷt,r(x1, x2) := br,δ(t=r) + bt·δ(x1∈Et)(x1) + bt·δ(x2∈Et)(x2)

+ φt·δ(x1∈Et)(x1)Φr,δ(t=r)φt·δ(x1∈Et)(x2)

(10)

where br,δ(t=r), btδ(x1∈Et)(x1), btδ(x2∈Et)(x2) are bias terms.
The parameters in this prediction function should be opti-



mized for the task at hand, which is to make predictions
based on positive only observations. In [6], it is empirically
shown that the BPR optimization criterion (BPR-Opt) [16]
is suitable for this task.

Let σ(x) = 1
1+e−x be the sigmoid function, BPR-Opt is an

instance of a pairwise loss and can be defined for a general
multi-relational learning task as follows:

BPR-Optr(Dr, ŷt,r) :=
∑

(x1,x2,1)∈Dtrain
r∑

(x1,x
′
2,1)∈Xr×{1}\Dtrain

r

lnσ(ŷt,r(x1, x2)− ŷt,r(x1, x
′
2)).

5. EXPERIMENTAL EVALUATION
In this section, CATSMF and DMF are compared against

each other and against state-of-the-art competitors. More
specifically, we examine the impact of using target specific
parameters as well as of considering target and auxiliary
roles for relations.

The evaluation assesses the behavior of CATSMF on prac-
tical Web applications using three large Web datasets. The
datasets used in the experiments are described next, fol-
lowed by the metrics and evaluation protocol and the state-
of-the-art baselines used in the experiments. We conclude
the section presenting the detail of the results of our empir-
ical study.

Datasets
In our experiments, we used three large Web datasets col-
lected from DBpedia, Wikipedia and BlogCatalog. DBpedia
is one of the central interlinking-hubs of the emerging Web
of Data,2 which makes it really attractive to evaluate multi-
relational learning approaches. The Wikipedia-SVO dataset
has one of the highest number of relations among published
multi-relational datasets [9]. The BlogCatalog dataset [21]
has been used in the literature to evaluate recommender sys-
tems that exploit social network information [10, 21]. The
three Web datasets are detailed as follows:

• DBpedia dataset corresponds to a sample of 625,680
triples from the DBpedia Properties in English3. It
consists of 269,862 entities and 5 relations regarding
the music domain. Such relations are: artist, genre,
composer, associated_band, and
associated_musical_artist.

• Wikipedia-SVO [9] depicts word relationships in the
form of subject-verb-object triples extracted from over
two million Wikipedia articles, where the verbs play
the role of the relationship. It consists of 1,300,000
triples about 4,547 relationships and 30,605 entities.

• BlogCatalog4 [21] is a large blogging website with
social network features. The dataset consists of two
relations, with one relation between users and blogs
indicating which blogs the users find interested and
the social relation between users and other users. The
task at hand is to recommend both interesting blogs
and potential new friends to users. Note that previous

2http://lod-cloud.net
3http://downloads.dbpedia.org/3.6/
4http://www.blogcatalog.com/

work on this dataset [10, 21] focused on the single tar-
get task of using the social information to recommend
blogs. There is a total of 10,312 users and 39 blogs.

Evaluation Protocol and Metrics
The dataset is split into training, validation, and test set.
First, 10% of the positive tuples are randomly selected and
assigned to the test set. Then, we randomly sample 10%
of the remaining ones to form the validation set. The re-
maining triples are used for training. To reduce variability,
10-fold cross-validation was performed. The results reported
are the average over the rounds considering 99% confidence
intervals. For this evaluation, we follow a protocol based
on [4] as described next.

For each relation r and entity x on the test set:
1. First, we sample from r−x ⊆ {(x, x2, y)|(x, x2, y) /∈

Dtrain
r ∪ Dtest

r }, i.e. the set of unobserved triples in
the knowledge base.

2. Then, we compute the score for the |r−x | negative triples
and for each of the positive ones in the test set: r+x =
{(x, x2, y)|(x, x2, y) ∈ Dtest

r }.

3. Finally, we measure the precision and recall at n =
1, . . . , 10 on this list of triples and report the results by
plotting the corresponding precision-recall curves [2].

Parameter Setting. For each dataset, split and model, we
tune the hyperparameters using the train and validation set
through grid-search. Next, the models were retrained on
both train and validation sets and evaluated on test parti-
tion. The results reported correspond to the performance
of the methods on the test set only. This process was per-
formed for all the models in the evaluation, including the
baselines. Regarding hyperparameter values, the number
of latent features k was searched in the range {10, 25, 50}
for all baselines and variants of our approach. The val-
ues for αt,r, λr and η were searched in {0.25, 0.5, 0.75},
{0.0001, 0.001, 0.01} and {0.0005, 0.005, 0.05}, respectively.
All the hyperparameters for the baselines were searched in
the ranges suggested by their respective authors in their pa-
pers.

Comparison against the state-of-the-art
As far as the approach proposed here is concerned we want
to make sure that any effects observed come from the usage
of predictive and auxiliary features and not from a specific
loss or how relation feature matrices look like. Thus, three
variants of the same prediction model are evaluated. They
are detailed as follows:

• Shared-Diag-BPR uses the complete sharing strat-
egy. This is how state-of-the-art methods approach
model parametrization. Shared-Diag-BPR can be
seen as RESCAL with a diagonal matrix for relation
features and optimized for BPR-Opt instead of the L2
loss.

• DMF-Diag-BPR comprises a set of decoupled mod-
els (i.e., no parameter sharing between them), one for
each target relation as in Equation 7.

• CATSMF-Diag-BPR is the core contribution of this
paper, that uses the parametrization from Equation 10,
with target-specific parameters and shared ones for
auxiliary relations.



Method Prediction function ŷr(x1, x2) Relation loss Relation
Features

Target
Parameters

Shared-Diag-BPR br+b(x1)+b(x2)+φ(x1)
⊤Φrφ(x2) BPR Diagonal Matrix Complete

Sharing
DMF-Diag-BPR br,1 + br(x1) + br(x2) +

φt(x1)
⊤Φrφt(x2)

BPR Diagonal Matrix DMF

CATSMF-Diag-BPR br,1 + br(x1) + br(x2) +
φtδ(x1∈Et)(x1)

⊤Φr,δ(t=r)φtδ(x2∈Et)(x2)
BPR Diagonal Matrix CATSMF

RESCAL φ(x1)
⊤Φrφ(x2) L2 Full Matrix Complete

Sharing
MOF-SRP aΦra⊤ + φ(x1)Φrb⊤ +

bΦrφ(x2)
⊤ + φ(x1)

⊤Φrφ(x2)
Logistic Outer Product of

Latent Vectors
Complete
Sharing

Table 1: Models used in the CATSMF and DMF evaluation.

Our approaches are also compared against the following
state-of-the-art models:

• RESCAL [13] uses the complete sharing strategy and
can be described as Shared-Full-L2. This model does
not make use of specific target features and uses full
matrices for relation features. Specific relations are
optimized for the L2 loss;

• MOF-SRP [9] also follows the complete sharing strat-
egy and uses full matrices for relation features but rep-
resents them by outer products of one dimensional ar-
rays, in order to require fewer parameters. The model
is optimized for the logistic loss.

Table 1 presents a summary of the approaches evaluated.

Results and Discussion
In the DBpedia and BlogCatalog datasets we set αt,t = 1
and estimated both the αt,r and the λt values through grid
search. On the Wikipedia-SVO dataset is infeasible to esti-
mate each αt,r value through grid search, given the number
of relations in this dataset. Therefore, we set each αt,r = a,
for t ̸= r, where a is a hyperparameter estimated on val-
idation data using grid search. We did the same for the
regularization constants, i.e., setting all λt = λ and opti-
mizing λ. Figure 4 shows the precision-recall curves with
the results of our evaluation.

When analyzing the results we observe that our approach
excels in the three Web datasets used in the empirical eval-
uation as seen in Figure 4. However, since the models evalu-
ated use different parametrization, prediction, and loss func-
tions, we need to explore in more detail which aspects of the
models are responsible for the relative differences in per-
formance. Therefore, to answer the question: what is the
impact on prediction performance of using target specific
parameters, while using the same prediction function and
the same relation specific losses? the first important as-
pect to observe is how the CATSMF-Diag and DMF-Diag
approaches compare to the Shared-Diag approach. This is
because they are essentially the same model where each
individual relation is optimized for the same loss function
and the only differences between them are whether they use
target specific predictive parameters or not, and the corre-
sponding strategy used to this end. When comparing those
three approaches, one can clearly see that both DMF and
CATSMF outperform the complete sharing approach.

The results show that using target specific parameters im-
proves over the complete parameter sharing scenario while
using both shared and target specific parameters gives an
even stronger performance boost.

In the comparison against the state-of-the-art approaches,
the differences in performance can be mostly explained by
the usage of different loss functions for individual relations.
The BPR loss deals better with the scenario where only
positive observations are available. On the other hand, the
pairwise interactions modeled by MOF-SRP seem to play an
important role in the DBPedia dataset, which explains the
good performance of this model there. The fact that mod-
eling pairwise interactions leads to better predictive perfor-
mance on RDF datasets has been observed before in [6]. It is
important to note that RESCAL and MOF-SRP also can be
used within the target specific parameter framework offered
by CATSMF and DMF.

CATSMF has clearly the best performance in the Blog-
Catalog and Wikipedia-SVO datasets.5

We believe that the poor performance of RESCAL on
the BlogCatalog dataset is due to the optimization for the
squared error since it has been observed that models opti-
mized for the BPR loss perform much better on this partic-
ular dataset [10].

We observe that MOF-SRP is not as competitive on the
BlogCatalog dataset as it is on the other ones. One possible
explanation is that this model does not take into account
entity type information. This means that when learning on
the User-Blog relation, the MOF-SRP assumes that users
are also potential items to be recommended. As reported by
[9], negative examples are sampled when learning the model,
but since it does not differentiate between users and blogs
and there are 10,312 users and only 39 blogs, one can expect
that approximately 99.6% of the sampled negative examples
are trivial ones containing recommendations of users. One
can see this when looking into the performance on the in-
dividual relations. On the social User-User relation, MOF-
SRP achieves 0.901 AUC6 against 0.961 AUC of CATSMF.
On the User-Blog relation however the AUC for MOF-SRP
5In addition to the results reported here, we reproduced the
same experiment on the Wikipedia-SVO dataset performed
by [9], where the hit rate at the top 5% (referred in their
paper as p@5) and 20% (referred to in the original paper as
p@20) is measured. CATSMF achieves a p@5 of 0.74 and a
p@20 of 0.95, while MOF-SRP is reported to achieve 0.75
and 0.95, respectively.
6AUC: area under the ROC curve. [2]
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Figure 4: Performance of CATSMF against state-of-the-art baselines on the three Web datasets.

is 0.481 against 0.825 of CATSMF. These results suggest
MOF-SRP was not able to learn accurately the information
about entity types for this dataset.

Impact of the relation weights.
We discuss here the impact of (i) using auxiliary relations

with CATSMF and (ii) optimizing each αt,r value individu-
ally instead of setting αt,r = a and optimizing a (i.e., use the
same value for all parameters). In Figure 5, we see the per-
formance of CATSMF-Diag-BPR model on the BlogCatalog
dataset under these various settings. This dataset has two
relations, the social relationship s and the interest of users in
blogs i, thus leaving us with just two α values to optimize:
αs,i and αi,s, since αi,i = αs,s = 1. Each curve denotes
a different setting of each αt,r, i.e., setting all of them to
the same value or optimizing them individually. One can
see that by using no auxiliary relations (α = 0) the model
presents its worst performance whereas by optimizing each
relation weight individually, it exhibits its best performance.
Figure 5 also provides empirical evidence that, in datasets
with a large number of relations, where setting each relation
weight individually might be costly or even infeasible, set-
ting them to the same value might be a good compromise
for the tradeoff between predictive performance and cost of
model selection.
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Figure 5: Performance of CATSMF on the BlogCatalog
dataset for different values of α.

Runtime.
Here we report the average runtime over 10 single thread

runs on the DBpedia dataset on a Xeon E5620 2.40GHz
CPU. The average duration is 754 seconds for CATSMF-
Diag-BPR, 7039.5 seconds for RESCAL and 77406.25 sec-
onds or, approximately, 21 hours for MOF-SRP on the DB-
pedia dataset, which shows that CATSMF-Diag-BPR scales
much better w.r.t. runtime while providing very competitive
prediction performance. There are two main reasons that
can explain the better runtime performance of CATSMF-
Diag-BPR: (i) the fact that CATSMF-Diag-BPR uses a di-
agonal matrix for relation features whereas RESCAL uses
a full matrix and MOF-SRP a matrix represented as outer
products of feature vectors and (ii) we learn CATSMF-Diag-
BPR using the scalable stochastic gradient descent learning
algorithm.

As discussed in Section 3, using a diagonal matrix as re-
lation features may not be the best choice in terms of pre-
diction performance. However, as shown in Figure 4 the
target-specific strategy of CATSMF-Diag-BPR improves the
results making it competitive against state-of-the-art models
while still having much lower runtime.

Reproducibility of the experiments.
DMF and CATSMF implementations are available on-

line.7 For RESCAL and MOF-SRP we used the implemen-
tations provided by the authors.

6. CONCLUSION AND FUTURE WORK
In this work we argue and show empirically how multi-

relational factorization models can benefit from using differ-
ent parametrizations of prediction functions for individual
target relations. We first introduce a naive set of decoupled
models, one for each target relation called DMF, followed
by a more memory-efficient variant with shared auxiliary pa-
rameters: CATSMF, which has fewer parameters thus scales
better. The novelty of DMF and CATSMF lies in the fact
that they learn different sets of parameters for reconstruct-
ing particular target relations. In contrast to the trivial
DMF solution of learning one model per target, where all
models are completely decoupled from each other, CATSMF
defines parameters to be used when a given relation plays an
7Code available at http://ismll.de/catsmf



auxiliary role, which are shared among all different models
for the various targets.

Our experiments show that (i) CATSMF is able to scale to
large datasets better than state-of-the-art models, while still
achieving competitive predictive performance; (ii) CATSMF
and DMF are always at least as good as the standard ap-
proach of using the same set of parameters for all target rela-
tions, but often outperforms it; (iii) CATSMF outperforms
competitor models in the Linked Open Data mining, natural
language processing, and recommender systems tasks.

We are currently exploring how to effectively estimate
the relation weights αt,r and the regularization constants λt

from the data, considering that setting them through model
selection might be infeasible even for a moderate number
of relations. Two promising approaches are (i) based on
adaptive regularization [15] and (ii) learning the model in a
Bayesian framework and estimate the hyperparameters us-
ing hierarchichal models similar to what Singh and Gordon
propose [20]. As future work, we plan to investigate a more
memory efficient CATSMF variant, e.g., by reducing the
number of parameters to be learned. One possible alter-
native to this end would be to introduce an ℓ1 regularizer
so as to remove some of the small parameters and trim the
model even further. An additional direction for future work
is the extension of our framework for streaming data scenar-
ios, e.g., [5], where the model parameters have to be learned
online without compromising ranking performance.
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