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Abstract. A prolonged phase of increased pressure in the upper esophageal sphinc-
ter (UES) after swallowing might result in globus sensation. Therefore, it is impor-
tant to evaluate restitution times of the UES in order to distinguish physiologic from
impaired swallow associated activities. Estimating the event t? where the UES has
returned to its resting pressure after swallowing can be accomplished by predicting if
swallowing activities are present or not. While the problem, whether a certain swal-
low is pathologic or not, is approached in [Mielens, 2012], the analysis conducted in
this paper advances the understanding of normal pharyngoesophageal activities.

From the machine learning perspective, the problem is treated as binary se-
quence labeling, aiming to find a sample t? within the sequence obeying a certain
characteristic: We strive for a best approximation of label transition which can be
understood as a dissection of the sequence into individual parts. Whereas com-
mon models for sequence labeling are based on graphical models [Nguyen, 2007],
we approach the problem using a logistic regression as classifier, integrate sequen-
tial features by means of FFT-coefficients and a Laplacian regularizer in order to
encourage a smooth classification due to the monotonicity of target labels.

1 Introduction

The work presented in this paper aims to support physicians analyzing high
resolution manometry data of regular swallowing activity. The medical prob-
lem consists of estimating restitution times of the upper esophageal sphincter
(UES) which we define as duration after swallowing until swallow related
activities have subsided. We will denote this time stamp as the restitution
sample t? from which the restitution time can be inferred. Since estimation of
restitution times is time-consuming for physicians and not standardized yet,
we develop a novel semi-automatic application to assist the analysis.
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1.1 Pharyngeal High-Resolution Manometry

In High-Resolution Manometry, pressures in the pharynx and UES are mea-
sured using a probe containing k equidistantly aligned pressure sensors. This
probe is inserted through the patient’s nose and stretches down to just below
the UES. Pressures are recorded at a predefined sample rate. Resulting data
can be visualized by a time-vs.-sensor plot as shown in Figure (1) [Meyer,
2012].

Fig. 1: Data is plotted as a time-vs.-pressure plot. Four different phases of the
swallow can be identified.

1.2 Estimation of Restitution Times

Treatments of diseases such as dysphagia are expected to be enhanced by a
better understanding of human pharyngeal and especially upper esophageal
activities during swallowing. The UES maintains a basal pressure at rest to
prevent air from entering into the gastrointestinal tract during inspiration and
to protect the airways from material refluxing back from the esophagus into
the pharynx. When swallowing, the UES relaxes, allowing a bolus to pass the
sphincter region. This region can easily be depicted on the manometric record-
ing (Figure (1)). The pressure decreases to a minimum and increases again
to very high pressure values when the peristaltic wave passes the sphinc-
ter region during swallowing. After having reached the maximum pressure,
sphincter pressures will eventually return to the resting pressure, this time in-
terval is defined as restitution time. Since UES pressures decrease irregularly,
it is difficult to define the exact t?.

For these reasons, it is important to develop a semi-automated method
able to predict restitution times. The two main contributions of this paper
are:

• To introduce the problem of estimating restitution times and regard it as
a machine learning problem.
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• To develop a method for estimating restitution times based on an anno-
tated corpora of 100 swallows measured across 10 patients in two real-world
medical application scenarios:
1. Intra-individual : having learned the swallowing behavior of an individ-

ual patient, we apply the learned model to predict restitution times for
the same patient.

2. Inter-individual : having learned the swallowing behavior for several
patients, we apply the learned model to predict restitution times of an
unknown patient.

2 Related Work

2.1 Medical Background

Pressures in the paryngeal and esophageal tract are typically measured by
HRM [Fox, 2008]. Several study groups have investigated pressure recodings
associated with physiological as well as pathological swallowing, analyzing
among others minimal and maximal as well as resting pressures, time intervals
[Meyer, 2012], integrals and velocities [Jungheim, 2013]. In order to distinguish
normal sphincter function from pathological swallowing activity, however, it
is also necessary to evaluate the restitution time. Changes in restitution times
could be indicative of i.e. globus sensation, impaired bolus passage or regur-
gitation. Since the UES pressure decreases slowly but inconstantly (not in an
asymptotic solution) after swallowing, it is difficult to define the exact point
in time when the resting pressure is reached again. This is probably why resti-
tution times have not been determined yet and why it is necessary to develop
a computed model to determine restitution times of the UES.

2.2 Machine Learning Background

We will cast the problem as a sequence labeling problem and define the resti-
tution sample t? with the aid of a labeled sequence y = (y1, . . . , y|T |) where
labels are categorical, i.e. yt ∈ Y and Y is a finite set. Predicting structured
output has been researched extensively throughout recent years [Nguen, 2007],
especially since problems such as part-of-speech tagging, the process of catego-
rizing words as noun, verb, preposition can be modeled. Earlier work [Rabiner,
1989] employs Hidden Markov Models on speech recognition. More recently,
[Lafferty, 2001] use Conditional Random Fields, a generalization of Markov
Models for labeling sequence data.

Since y ∈ Y |T |, the problem can also be understood as a multiclass prob-
lem and therefore be solved using multiclass Support Vector Machines. This
approach is based on averaged perceptrons proposed in [Collins, 2002]. The
earliest approaches were reported by [Altun, 2003] and [Tashar, 2003]. [Nguen,
2007] found, SVM Struct is among the most competitive methods and is there-
fore chosen as the competing method for the experiments.
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3 Problem Definition

The data obtained by the High-Resolution Manometry forms a multivariate
sequence of pressure values, as for each timestamp t ∈ T an associated pressure
vector pt ∈ Rk exists, containing the recorded pressures by the sensors. Every
swallow is assumed to have the same length to use only one finite index set
T . We denote the set of all swallows of length |T | by P. Moreover, we obtain
the restitution samples t? ∈ T as ground truth.

3.1 Definition as Sequence Regression

The swallow data set contains a sequence of associated pressure vectors and
the restitution sample.

D :=
{
{pt}t∈T , t?

}
∈ P × T (1)

The goal is to learn a classifier f̂ : P → T that maps a swallow to a discrete
time sample. However, one swallow corresponds to one instance, following
this approach is therefore expensive since the model needs a large amount
of training data. Therefore, we aim to formulate the problem as sequence
labeling.

3.2 Definition as Sequence Labeling

The formulation as sequence labeling involves two steps. The first step requires
a definition of labels yt (states) for each time sample t we employ binary labels
Y = {1,−1}.

D := {(pt, yt) | t ∈ T}. (2)

Consequently, we try to learn a classifier ŷ : Rk → Y which gives more in-
stances to learn a model. One state contains all time samples t where swallow
related activities are present, the other state forms the converse.

The second step consists of infering t? from a predicted sequence of la-
bels. We segment the swallow according to these labels, which we accomplish
through a derived maximum pressure pmax curve over the UES and addi-
tional knowledge in form of an annotated region of resting pressure before
swallowing.

As the probe monitors the whole pharynx, the region of the UES is ob-
served by a subset I ⊂ {1, . . . , k} of sensors. Over this subset, we compute a
curve pmax of maximum pressure

pmax(t) := max {pi(t)|i ∈ I} tmax := argmax
t

pmax(t),

which assigns the maximum pressure in the UES region to every time sample
t. Moreover, we denote its maximum position by tmax, using these properties
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Algorithm 1 PredictRestitutionSample

1: procedure Predict
input: Dtest ∪ {ŷt | t ∈ T} , w

2: ∀xt ∈ Dtest : ŷt ← ŷ(xt, θ
?)

3: ∀ ŷt : yt ← 1
2w+1

∑t+w
i=t−w ŷi

4: t? ← min {i > tmax | yi ≥ 0 ∧ yi+1 < 0}
5: end procedure

enables us to segment a swallow into four different phases as can be seen in
Figure (1):

The first phase of the swallow describes the annotated resting pressure
before swallowing. The state yt = −1 is assigned. The second phase contains
the beginning of activities in the velopharynx, until the tmax sample is reached.
We will perform a supervised exclusion for phase two as it belongs to neither
of the states. The third phase begins at the tmax sample, as from this point
on swallow related activities of the UES are present we assign yt = 1 for these
time samples. The remaining samples are labeled yt = −1, since by definition
of t? swallow related activities have subsided.

3.3 Deriving the Restitution Sample from a Labeled Sequence

For the sequence labeling techniques presented in the next section, we are
required to derive the restitution sample given a labeled sequence of a test
swallow. This procedure is given in Algorithm (1). Based on the segmenta-
tion presented in Figure (1), going ahead in time from the tmax sample, we
determine t? as the first transition of states.

t? = min {i > tmax | yi = 1 ∧ yi+1 = −1} . (3)

In an ideal case, we have a classification sequence where the labels change
only once for all t > tmax, when the swallowing activities have subsided.
Problems may arise when the classification is not perfectly smooth, consider
a change of labels for only a short time period. We will overcome this issue by
smoothing the final prediction with a predefined window size w representing
an additional hyperparameter.

3.4 Preprocessing and Derivation of Additional Features

As a preprocessing step, we normalize the swallows individually, as to (a) ac-
count for possible probe calibration offsets, and to (b) roughly align the value
ranges for swallows of different lengths. Normalizing the swallows patient-wise
hase empirically prooven to result in a weaker classification.

Furthermore, since the UES region defined by I differs interindividually,
we compute derived sphincter features as follows: we calculate local pressure



6 Schilling et al.

maxima over the first, second, and last third of the UES region. We also
repeat this process for the first and second half and for the overall UES region.
Consequently, we obtain six additional sphincter features, denoted by st and
discard the initial pressure features.

Moreover, from the maximum pressure curve pmax, we derive additional
features by commiting a discrete fourier transformation (FFT) on every time
stamp t of the pmax curve, using a constant window size b = 128. The obtained
coefficients ct = (ct1, . . . , c

t
b) of the fourier transform, together with the current

value pmax(t), the extracted sphincter features st, and the label information
are then concatenated to a vector xt ∈ Rn, which leads to the following
swallow data set.

Dtrain := {(xt, yt) := (pmax(t), ct, st, yt) | t ∈ T} (4)

4 Proposed Methods

4.1 Prediction based on Maximum Pressure Curve

The simplest prediction method is based only on the pmax curve. From the
given resting pressure, we compute an average resting pressure pavg over all
resting pressure samples. Given these figures, we compute a labeled sequence
as:

ŷt :=

{
1 if pmax(t) ≥ pavg

−1 else.
(5)

Following equation (3), the restitution sample t? is then estimated as the
first sample t > tmax where the pmax curve falls below the average resting
pressure. This is a very simple method as it involves no learning and no pre-
processing besides computing pmax, and furthermore does not take sequential
information into account. Its shortcomings will be discussed in the experiment
section.

4.2 Logistic Regression

We perform a logistic regression, where model parameters θ ∈ Rn are learned
from the labeled data, optimized for logistic loss and regularized by the com-
mon l2-regularizer as to avoid overfitting:

LLog(ŷ(θ),D) =
∑
xi∈D

log
(

1 + e−yi〈θ,xi〉
)

+ λ‖θ‖22 (6)

The model parameters θ are initialized randomly by a Gaussian N (0, σ2) and
iteratively optimized using gradient descent with a fixed step size η. Note
that 〈·, ·〉 denotes the scalar product in Rn and λ denotes a regularization
parameter.
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4.3 Laplacian Logistic Regression

We integrate the knowledge that a label change (1 → −1) is expected only
once after tmax. To force learned parameters to adopt this property, we pe-
nalize label changes throughout the sequence by introducing a Laplacian reg-
ularizer S(θ) on neighboring samples,

S(θ) :=
∑
xi∈D

∑
xj∈w(xi,s)

1

2

(
σ
(
〈θ, xi〉

)
− σ

(
〈θ, xj〉

))2

, (7)

where σ(·) is a sigmoid function in order to make S(θ) differentiable, and
w(xi, s) := {xi−s, . . . , xi, . . . , xi+s} is the set of neighboring samples for a
predefined window length s. This term will be added to the overall loss func-
tional given in equation (6),

LLap(ŷ(θ),D) := µ · LLog(ŷ(θ),D) + (1− µ) · S(θ) (8)

using a weighting coefficient µ ∈ [0, 1] to capture the tradeoff between learning
an accurate solution and learning a smooth solution.

5 Experiments

We are using SVM-HMM [Altun, 2003], as a competitor method for predicting
structured output by converting our data as follows: One entire swallow is
treated as a sentence, while one time stamp is treated as a token. As there are
only two possible states, we convert these two states into two tags. More details
concerning the implementation of SVM-HMM can be found in [Joachims,
2009].

Regarding our initial questions on the performance of the proposed meth-
ods, we design two experiments as follows.

5.1 Experimental Setup

The dataset used in the experiments consists of 10 patients, who have each
conducted 10 swallows. The data is split per swallow into a training and a
test set according to the use case, and determine optimal hyperparameters on
a validation set using grid search.

Accuracy scores are reported for the predicted sequence as well as absolute
time differences between the predicted restitution sample and the true restitu-
tion sample. For the Logistic Regression, we evaluated accuracies and sample
differences after every iteration, while for the SVM-HMM, we employed the
model learned after convergence of the algorithm. Note that, for an accurate
prediction of the restitution sample t?, the accuracy of the predicted binary
sequence correlates only to a certain extent with finding the correct t?, but
does not necessarily lead to a correct prediction of t?. As such, a model with
a higher accuracy might predict an inaccurate t?.
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5.2 Hyperparameter Optimization

As stated earlier, the hyperparameters have been optimized using grid search.
The step size η was searched in 10−5 · {1, 0.7, 0.5, 0.1}, the regularization con-
stant λ and the window size w have been searched in {0.001, 0.01, 0.1, 1} and
{10, 75, 150}, respectively. For the Laplacian Logistic Regression, µ and the
window extent s were searched in {0.01, 0.5, 1} and {3, 5, 11, 31}.

The hyperparameters concerning the SVM-HMM were searched on the
following grid. C was searched in {10−4, . . . , 103}, epsilon was set to 0.5 as a
suggestion of the authors, the number of transitions was between 1 and 3, the
number of emission was either 0 or 1.

Patient SVM-HMM LogReg LapLogReg pmax SVM-HMM LogReg LapLogReg

1 84.81 ± 6.3 82.75 ± 6.2 85.49 ± 6.3 5.32 ± 3.65 9.72 ± 2.42 10.48 ± 2.83 10.01 ± 2.45

2 81.45 ± 5.6 86.29 ± 9.0 86.91 ± 9.2 22.84 ± 5.42 2.16 ± 1.03 1.41 ± 1.64 0.58 ± 0.39

3 83.20 ± 5.1 82.00 ± 4.4 80.96 ± 6.4 7.49 ± 3.42 6.45 ± 2.74 6.66 ± 3.63 6.92 ± 3.44

4 85.86 ± 2.7 86.02 ± 3.1 87.18 ± 4.5 5.08 ± 3.24 3.20 ± 2.48 4.07 ± 3.78 4.12 ± 3.75

5 88.52 ± 5.5 71.20 ± 4.1 87.20 ± 4.5 10.17 ± 4.74 2.69 ± 1.64 2.65 ± 1.34 1.83 ± 1.27

6 79.13 ± 5.1 68.29 ± 3.8 65.97 ± 3.2 7.19 ± 5.32 6.64 ± 1.93 3.26 ± 1.81 2.50 ± 1.56

7 86.51 ± 4.3 61.00 ± 1.9 61.64 ± 3.4 9.43 ± 6.05 3.90 ± 1.52 3.13 ± 1.30 2.74 ± 1.12

8 88.65 ± 9.4 66.85 ± 4.3 64.62 ± 3.8 3.47 ± 2.49 4.18 ± 4.73 5.72 ± 4.92 6.46 ± 4.76

9 78.38 ± 12.7 60.77 ± 6.2 62.24 ± 7.6 16.05 ± 5.54 8.48 ± 5.12 9.02 ± 4.58 8.37 ± 4.82

10 86.51 ± 4.0 63.34 ± 3.5 65.38 ± 4.6 18.12 ± 8.55 13.45 ± 9.10 12.30 ± 10.69 14.16 ± 10.15

Table 1: Results for the Intra-Individual use case are shown. Average accuracies
and 95%-confidence intervals are reported on the left. Average sample differences
converted to seconds and their confidence intervals are reported on the right.

5.3 Use Case 1: Intra-Individual

We train the classifiers individually in a leave-one-out cross validation, where
we omit one swallow as test swallow for which we want to predict the resti-
tution sample. Of the remaining swallows, 2 swallows are randomly picked as
validation data. Thus, we have 7 training swallows, 2 validation swallows and
1 test swallow.

Table (1) shows the results for all different methods. As can be seen clearly,
SVM-HMM wins in accuracy, but the Laplacian Logistic Regression is best in
predicting time differences. For all methods, we chose the model which gave
the best accuracy on validation. Then, we apply the window extent that gives
the best sample difference score on validation and apply the model with the
chosen window extent. Note that the time differences are the target we are
actually looking to optimize.

We can also see that the pmax method works well on Patient 1 and Patient
8. Nevertheless, the predicted t? is inferior for very many other patients, such
as 2,5,9 and 10.
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Moreover, we observe that predicting restitution times seems to differ a
lot regarding the individual patients as for instance for patient 2, the time dif-
ferences are quite low, whereas especially for patient 10, the time differences
are large. The confidence intervals reported are wide, since every patient con-
ducted only 10 swallows. Nevertheless, we see that our method outperforms
the SVM-HMM for the majority of patients and we also see that including a
Laplacian regularizer aids in finding t?.

5.4 Use Case 2: Inter-Individual

We train the classifiers on 9 of the 10 patients (training patients) and predict
the restitution times for the remaining test patient. We randomly leave 2 out
of the remaining 9 swallows per training patient as validation data. Thus, we
build a training set of 72 swallows, a validation set of 18 swallows and a test
set consisting of one swallow of the test patient. For each patient, 10 different
splits have been created.

Table (2) shows the results for the competing methods. Analogous to the
first use case, we can observe that SVM-HMM outperforms our approaches
with respect to accuracy, even though the margin is not that large anymore.
In comparison to use case 1, predicting t? for patient 1 seems to give better
results, when the model did not learn on the same patient’s swallows, which
is rather surprising as for the majority of patients, the predicted t? is worse.
For this use case, adding a Laplacian regularizer seems to work best for some
patients.

Patient SVM-HMM LogReg LapLogReg SVM-HMM LogReg LapLogReg

1 79.80 ± 8.2 83.76 ± 6.8 83.79 ± 7.0 6.70 ± 6.70 3.27 ± 2.32 4.24 ± 2.50

2 87.45 ± 5.6 84.63 ± 8.2 85.10 ± 8.6 3.04 ± 1.03 1.02 ± 0.41 0.97 ± 0.49

3 78.48 ± 4.7 66.03 ± 9.8 65.64 ± 10.3 8.76 ± 3.17 6.58 ± 3.12 7.19 ± 3.06

4 76.22 ± 7.3 80.02 ± 5.9 81.29 ± 5.6 11.62 ± 2.41 5.37 ± 2.90 4.56 ± 2.63

5 90.26 ± 5.0 81.00 ± 8.5 80.67 ± 9.1 2.36 ± 1.72 3.33 ± 1.79 3.29 ± 1.83

6 88.08 ± 6.4 79.79 ± 8.1 79.99 ± 8.8 1.87 ± 0.59 4.31 ± 3.47 4.17 ± 3.53

7 71.29 ± 8.7 62.31 ± 8.4 68.70 ± 6.5 4.62 ± 1.51 5.69 ± 1.53 6.11 ± 1.43

8 83.81 ± 13.4 87.94 ± 10.3 88.47 ± 10.6 5.31 ± 4.34 3.81 ± 4.67 3.00 ± 2.93

9 84.20 ± 13.5 80.15 ± 8.5 80.31 ± 8.6 9.02 ± 5.54 6.17 ± 3.35 6.13 ± 3.38

10 83.05 ± 6.3 84.10 ± 4.5 84.78 ± 4.5 14.32 ± 8.61 10.47 ± 9.52 10.12 ± 9.60

Table 2: Results for the Inter-Individual use case are shown. Average accuracies
and 95%-confidence intervals are reported on the left. Average sample differences
converted to seconds and confidence intervals are reported on the right.



10 Schilling et al.

6 Conclusions and Future Work

We introduced the problem of estimating restitution times and formulated it
as a machine learning problem suitable for semi automation, in the sense, that
still an annotated corpora of swallows is required for learning and parameters,
such as the window size have to be tuned manually. Furthermore, we depicted
that predicting restitution times is possible and delivers reasonable results.
Among the tested methods, we empirically showed that the Laplacian Logistic
Regression is the most promising method for predicting restitution times.
However, as the prediction varies strongly inbetween swallows and patients,
we aim for a more stable and more accurate estimation throughout future
work.
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Laryngo-Rhino-Otol 92:158–164.


