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Abstract. Factorization Machines (FM) are a new model class that
combines the advantages of polynomial regression models with factor-
ization models. Like polynomial regression models, FMs are a general
model class working with any real valued feature vector as input for
the prediction of real-valued, ordinal or categorical dependent variables
as output. However, in contrast to polynomial regression models, FMs
replace two-way and all other higher order interaction effects by their
factorized analogues. The factorization of higher order interactions en-
ables efficient parameter estimation even for sparse datasets where just
a few or even no observations for those higher order effects are available.
Polynomial regression models without this factorization fail. This work
discusses the relationship of FMs to polynomial regression models and
the conceptual difference between factorizing and non-factorizing model
parameters of polynomial regression models. Additionally, we show that
the model equation of factorized polynomial regression models can be
calculated in linear time and thus FMs can be learned efficiently. Apart
from polynomial regression models, we also focus on the other origin
of FMs: factorization models. We show that the standard factorization
models matrix factorization and parallel factor analysis are a special case
of FMs and additionally how recently proposed and successfully applied
factorization models like SVD++ can be represented by FMs. The draw-
back of typical factorization models is that they are not applicable for
general prediction tasks but work only for categorical input data. Fur-
thermore their model equations and optimization algorithms are derived
individually for each task. By knowing that FMs can mimic these mod-
els just by choosing the appropriate input data, we finally conclude that
deriving a learning algorithm, e.g., Stochastic Gradient Descent (SGD)
or Alternating Least Squares (ALS), for FMs once is sufficient to get
the learning algorithms for all factorization models automatically, thus
saving a lot of time and effort.

1 Introduction

Recommender systems are an important feature of modern websites. Especially,
commercial websites benefit from a boost in customer loyalty, click-through rates
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and revenue when implementing recommender systems. For example online shop-
ping websites like Amazon give each customer personalized product recommen-
dations that the user is probably interested in. Other examples are video portals
like YouTube that recommend movies to customers.

For the majority of researchers and practitioners in the field of recommender
systems, the main aim of their research has been to accurately predict ratings.
This focus on rating prediction, i.e. predicting a metric, real valued variable,
was particularly triggered by the Netflix prize challenge which took place from
2006 to 2009. The task of the Netflix challenge was to predict ratings of users for
movies, the movie rental company Netflix offered. The challenge was structured
into three different data sets: the training dataset consisting of more than 100
million ratings of almost 500 000 registered users for 17 700 different movies, a
held-out validation set and a test set. The first team which was able to improve
Netflix’ standard recommender system by 10 % in terms of RMSE on the pro-
vided test set was awarded the grand prize of one million US-$. The Netflix prize
especially popularized factorization models since the best approaches [1, 3, 2] for
the Netflix challenge are based on this model class. Also on the ECML/PKDD
discovery challenge3 for tag recommendation, a factorization model based on
tensor decomposition [11] has outperformed the other approaches.

Albeit their predictive power, factorization models have the disadvantage
that they have to be devised individually for each problem and each set of cate-
gorical predictors. This also requires individual derivations of learning algorithms
such as stochastic gradient descent [5, 6] or Bayesian inference such as Gibbs
sampling [12, 16] for each factorization model. Generalizing factorization models
to polynomial regression models with factorized higher-order effects, i.e. Factor-
ization Machines (FM) [8], solves this caveat and provides in total the following
advantages over hand-crafted factorization models:

– Categorical, ordinal, and metric predictors are possible
– Single derivation of a learning algorithm is valid for all emulated factorization

models
– Emulation of state-of-the-art factorization models by selection of appropriate

input feature vector

Compared to polynomial regression models, FMs bear other important im-
provements:

– Model equation can be computed in linear time
– Number of latent dimensions can be used to fine-tune the amount of expres-

siveness for higher-order interaction effects
– For a sufficient number of latent dimensions, FMs are as expressive as poly-

nomial regression models
– Factorization of parameters allows for estimation of higher order interaction

effects even if no observations for the interaction are available

3 http://www.kde.cs.uni-kassel.de/ws/dc09
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Thus, the general class of FMs brings together the advantages of polynomial re-
gression models and factorization machines: general applicability and predictive
accuracy. Moreover, inference in factorized polynomial regression models can be
understood as an intertwined combination of a Principal Component Analysis
like feature selection step and a linear regression step on the resulting latent
feature space representations. Please note, that in contrast to PCA regression
both steps are intertwined.

This paper is structured as follows. First, we repeat polynomial regression, go
on to factorized polynomial regression, and finally introduce FMs. Next, we com-
pare FMs to state-of-the-art factorization models and show how these models
can be emulated by FMs. During this process, we discuss the conceptual prop-
erties commonalities and differences between polynomial regression, factorized
polynomial regression, FMs and factorization models. Finally, in our evaluation
section we will make use of previously published results on the Netflix dataset to
show the equivalence of state-of-the-art factorization models to their emulating
FM counterparts. This is possible since after the challenge has ended, the Netflix
dataset including the ratings on test were published which made it a standard
dataset for research on recommender systems. Many publications on factoriza-
tion models are based on the provided train-validation-test split. Besides the
equivalence study, we show results on some new factorization models which we
easily developed by applying appropriate features and compare them to their
non-factorized counterparts.

Please note that except for rating prediction, factorization models may also
be used for item prediction, i.e. classifying items into relevant/non-relevant or
sorting items according to an estimated, ordinal relevance criterion. Without loss
of generality, we will deal in the evaluation section with the rating prediction case
since the models for rating and item prediction are identical, just the applied
loss function changes.

2 Factorization Machines - Properly Factorized
Polynomial Regression

Factorization Machines can be seen as equivalent to polynomial regression mod-
els where the model parameters β are replaced by factorized representations
thereof.

2.1 Polynomial Regression

The well-known polynomial regression model of order O for an input vector
X ∈ IRp+1 consisting of all p predictor variables and the intercept term indicator
x0 = 14, reads for o = 3:

4 Please note, that we use upper case Latin letters for denoting variables in general
as well as matrices and lower case Latin letters for specific realizations of a variable.
Bold printed variables are vectors or matrices.
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y(x|β) = β0x0 +
p∑
i=1

βixi +
p∑
i=1

p∑
j≥i

βi,jxixj +
p∑
i=1

p∑
j≥i

p∑
l≥j

βi,j,lxixjxl (1)

Obviously, this model is an extension of the standard linear regression model.
It can represent any non-linear relationship up to order O between the input pa-
rameters X and the target variable Y ∈ IR. A problem of polynomial regression
models is the estimation of higher-order interaction effects because each inter-
action effect can only be learned iff these interactions are explicitly recorded in
the available data set. Typically, this is not an issue for real-valued predictors
since for each of these effects all training data points (except missing values)
provide information about this interaction. However, for categorical predictors
this is not the case because for each category linear effects are created sepa-
rately, and each effect can only be estimated from observations of the related
category. Training rows in which the categorical variable is not observed do not
contribute to the estimation of the corresponding categorical effect. This spar-
sity problem for categorical variables gets even worse if higher order interaction
effects of categorical variables are considered. For example, the estimation of
two-way interaction effects for two categorical variables requires both categories
to be observed in train. Obviously, this is a more strict requirement than for
linear effects, leading to less training instances fulfilling it. This sparsity prob-
lem worsens with the order of an effect since the number of appropriate training
rows further decreases.

Equation 2 gives an example of a movie rental service for a design matrix
X containing real-valued and categorical variables. The first two columns show
age of lender (in years) and age of selected movie (in months), i.e. two real-
valued predictors. The last five columns show the ID of 5 different lenders, i.e.
realizations of a categorical variable with five states. While higher-order inter-
action effects for the real-valued variables are not critical since all train rows
can be used, estimation of categorical effects is problematic as the number of
appropriate train rows declines with the number of categories.

X =


25 5 1 0 0 0 0
52 100 0 1 0 0 0
34 7 0 0 1 0 0
18 6 0 0 0 1 0
55 60 0 0 0 0 1
18 12 0 0 0 1 0

 (2)

Typically, the number of users is much higher. For recommender systems it
is several (hundreds of) thousands. Thus, the number of predictors gets very
large and the sparsity for estimating categorical linear effects gets worse. If one
wants to include also the IDs for lent movies into the polynomial regression
model, i.e. into the design matrix, this would finally give a matrix with at least
several thousands of columns - only for the linear regression model. In the case
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of the Netflix dataset the number of users is 480 000 and the number of movies
is 17 700. For a polynomial regression model of order o = 2 estimation would
become infeasible as there would be 8.5 billion predictors just for the user-item
interaction. Figure 1 depicts such an extended design matrix including dummy
variables for each user and for each movie, fractions summing to one for all other
movies rated by the same user, a real number for the age of the movie, and an
indicator for the last rated movie.
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Fig. 1. Example for an extended design matrix having categorical variables user ID,
item ID and last rated movie ID as well as age as real-valued predictors.

To summarize, for polynomial regression models the number of predictors is
polynomial of order O in the number of predictor variables p which is particularly
harmful for any categorical interaction effect because its amount of training data
is not the training data size but the number of occurrences of that categorical
interaction.

Please note, that the data sparsity problem of categorical predictors holds
also true for real-valued predictors if splines and interactions of those splines
are used and if the support of the spline is a proper subset of the real numbers.
Besides data sparsity, another caveat of polynomial regression models is their
computation time. It is polynomial in O.

These shortcomings are tackled by factorizing higher-order interaction effects.

2.2 Factorized Polynomial Regression

The rationale behind factorized polynomial regression is to remove the necessity
of observing interactions for estimating interaction effects. While for polynomial
regression models this necessity is active and leads to poor parameter estimates
for higher-order interactions as discussed in the previous section, factorized poly-
nomial regression models detach higher-order interaction effect estimation from
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the occurrence of that interaction in train which improves parameter estimation
in sparse data settings considerably. The approach of factorized polynomial re-
gression is to replace all effects by their factorized representations. This yields
for o = 3:

y(x|β0,V) = β0x0 +

p∑
i=1

k1∑
f=1

vi,fxi +

p∑
i=1

p∑
j≥i

k2∑
f=1

vi,fvj,fxixj +

p∑
i=1

p∑
j≥i

p∑
l≥j

k3∑
f=1

vi,fvj,fvl,fxixjxl

(3)

Since parameter factorization βi =
∑k
f=1 vi,fxi of one-way effects is redun-

dant, the number of latent dimensions is fixed with k1 = 1 equivalent to no
factorization. In general, effects of different order have different numbers of fac-
torization dimensions k1, . . . , ko. This is because all effects of the same order o∗

are factorized using the multi-modal parallel factor analysis (PARAFAC) fac-
torization model of Harshman [4], which is defined as:

βi1,...,io∗ =
ko∗∑
f=1

o∗∏
j=1

vij ,f (4)

Figure 2 depicts PARAFAC models for o∗ ∈ {2, 3}.

VU VI=
I

U I

k k

* VU VI VT=U

I

T

U I T

k k k

* *U U , I U , I ,T

Fig. 2. PARAFAC: One parallel factor analysis model is used for each degree of in-
teraction o∗ = 1, . . . , o. The left panel shows the PARAFAC model for o∗ = 2 and
the decomposition of the user-item interaction. The right panel shows PARAFAC for
o∗ = 3 and the decomposition of a user-item-point-in-time interaction.

The replacement of all model parameters β by factorized versions thereof
replaces the original parameters β by a set of latent factor variables5

V = {Vo∗ : o∗ = 1, . . . , o} Vo∗ ∈ IRp×ko∗ ∀o∗ = 1, . . . , o (5)

Additionally, to emphasize that k1 = 1, i.e. there is no change in the parametriza-
tion of linear effects, we change notation for the one-column matrix V1 ∈ IRp×1

to the parameter vector w ∈ IRp and also for β0 to w0. This changes 3 to:

5 Note that each matrix has p instead of p+1 rows as the intercept β0 is not factorized.
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y(x|V) = w0x0 +

p∑
i=1

wixi +

p∑
i=1

p∑
j≥i

k2∑
f=1

vi,fvj,fxixj +

p∑
i=1

p∑
j≥i

p∑
l≥j

k3∑
f=1

vi,fvj,fvl,fxixjxl

(6)

Thus, each predictor has for each order o∗ a set of latent features. This
property of factorized polynomial regression models entails several advantages:

– The number of latent dimensions can be used to fine-tune the amount of
expressiveness for higher-order interaction effects.

– For a sufficient number of latent dimensions, factorized polynomial regression
is as expressive as polynomial regression models.

– Factorization of parameters allows for estimation of higher order interaction
effects even if no observations for the interaction are available.

– Fast computation of the model

By selecting the number of latent dimensions, the complexity of the corre-
sponding interaction effects can be adjusted. Thus, the complexity of the model
is more fine-grained. The number of latent dimensions, i.e. the optimal model
complexity, is typically determined by cross-validation. Obviously, if the num-
ber of latent dimensions is large enough, the model complexity of factorized
polynomial regression can be equal to polynomial regression.

Besides the adaptive model complexity, another advantage is a more efficient
parameter estimation of higher-order interactions. As discussed in section 2.1
higher-order interactions suffer from data sparsity because with increasing order
of an interaction effect the available data for parameter estimation decreases.
However, in the case of factorized effects this correlation is eliminated, e.g., a
factorized user-item interaction is learned as soon as either the corresponding
item ID or user ID is observed whereas in the non-factorized case both item ID
and user ID have to be observed jointly.

The last advantage of factorized polynomial regression compared to standard
polynomial regression is that model predictions can be computed in linear time.
Typically, the runtime complexity of calculating the prediction function 1 is
polynomial in the number of parameters, i.e. O(po). By factorization of the model
parameters this complexity can be reduced to O(p

∑o
i=1 ko) by rearranging terms

in equation 6 to

y(x|V) =w0x0 +

p∑
i=1

wixi +

k2∑
f=1

p∑
i=1

vi,fxi

p∑
j≥i

vj,fxj︸ ︷︷ ︸
A

+

k3∑
f=1

p∑
i=1

vi,fxi

p∑
j≥i

vj,fxj

p∑
l≥j

vl,fxl︸ ︷︷ ︸
B

(7)
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and exploiting that A and B can be calculated in linear time:

A =
1
2

k2∑
f=1

( p∑
i=1

vi,fxi

)2

+
p∑
i=1

v2
i,fx

2
i


B =

k3∑
f=1

1
6

(
p∑
i=1

vi,fxi

)3

+
5
6

p∑
i=1

v3
i,fx

3
i,f +

1
4

( p∑
i=1

vi,fxi,f

)2

−
p∑
i=1

vi,fxi,f

 .

(8)

Thus, model prediction is linear in order o and speeds up for large p. The
reason for the speed up is that the nested sums can be decomposed into linear
combinations of fast to compute (O(p)) functions of the latent factor variables.
This decomposition can be derived by combinatorial analysis. For increasing or-
der o this derivation is still possible but becomes a more and more tedious task,
however, for standard applications like recommender systems it is not neces-
sary to derive them for higher-order interactions as already two-way interactions
typically suffice.

2.3 Factorization Machines - Properly Factorized Polynomial
Regression

So far we have discussed factorized polynomial regression and its appealing ad-
vantages. However, up to now we have ignored an important problem of fac-
torized polynomial regression using the PARAFAC factorization model: they
are unable to model negative effects for polynomial terms like x2

i , x
4
i ,. . . , i.e.

for terms of a polynomial with even exponents. That is why we call factor-
ized polynomial regression improper. A proper solution for that issue represent
Factorization Machines discussed in this section. Factorization Machines were
introduced by Rendle [8]. They follow the idea of (improperly) factorized polyno-
mial regression, thus leveraging all previously described advantages, i.e. adaptive
model complexity, faster model prediction, and efficient parameter estimation in
sparse data settings. However, FMs exclude those effects that take into account
squares, cubes, etc. of the same predictor variable, e.g. x2

i , x
3
i , or x2

ixj , which
leads to the following model equation for FMs:

y(x|Θ) = w0x0 +

p∑
i=1

wixi +

p∑
i=1

p∑
j>i

k2∑
f=1

vi,fvj,fxixj +

p∑
i=1

p∑
j>i

p∑
l>j

k3∑
f=1

vi,fvj,fvl,fxixjxl (9)

This has no impact on the advantages of factorized polynomial regression
models discussed in the previous section, but has two important advantages:

Properness: FMs eliminate the major drawback, the improperness of factorized
polynomial regression, i.e. the inability of them to represent negative effects for
polynomial functions like x2

i , x
4
i , etc. Please note, that this does not eliminate
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the ability of FMs to model this kind of higher-order interactions. If one wants
to model such an effect, this can be done easily by adding the corresponding
transformed predictor, e.g., x2

i , to the set of predictors, i.e. extending the design
matrix.

Multilinearity: FMs are multilinear in their parameters θ ∈ Θ = {w0,V}, thus
the model equation can be rewritten for each parameter as:

y(x|Θ) = g (x,Θ \ θ) + θh (x,Θ \ θ) (10)

where both functions g (x,Θ \ θ) and h (x,Θ \ θ) depend on the selected pa-
rameter θ. For a better understanding of both functions, we rewrite

y(x|Θ)− g (x,Θ \ θ) = θh (x,Θ \ θ) (11)

and get the semantics of y− g (x,Θ \ θ) as the residual error without parameter
θ, i.e. θ = 0 and h (x,Θ \ θ) as the gradient of FMs w.r.t. θ. In [10] more detailed
examples for both functions w.r.t. FMs are given.

This general, yet simple, dependency of all parameters θ ∈ Θ makes pa-
rameter inference much easier as exploited in [8] for stochastic gradient descent
(SGD) and in [10] for alternating least squares (ALS) method.

2.4 Factorization Machines vs. Factorization Models

So far factorization models have been devised for each problem independently
but no effort for generalizing all of these models has been done. This results in
many different papers, e.g., [5, 6, 13, 12, 9, 11] each defining a new model and
a tailored learning algorithm for each model. Having FMs this is not necessary
anymore like it is not necessary to invent a polynomial regression model for
each a new set of predictors. By deriving a learning algorithm for FMs all sub-
sumed factorization models can be learned as well. In this section, we show the
relation between FMs and other factorization models to demonstrate how easy
state-of-the-art models can be represented as FMs. In general, the best-known
factorization models are tensor factorization (like Tucker Decomposition [15],
PARAFAC [4] or Matrix Factorization) that factorize an m-ary relation over m
categorical variables. From a feature point of view these models require feature
vectors x that are divided in m groups and in each group exactly one value has
to be 1 and the rest 0. All existing factorization models are derived from those
more general decomposition models. However, these factorization models are not
as general as FMs as they are devised for categorical predictors only. Moreover,
they operate with a fixed order of interactions, e.g., 2-way interaction for matrix
decomposition or 3-way interactions for 3-mode tensor decomposition.

In the following, we will show according to [8] how state-of-the-art factoriza-
tion models are subsumed by FMs by (i) defining a real-valued feature vector x
that is created from transaction data S and (ii) analyzing what the factorization
machine would exactly correspond to with such features.
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Matrix Factorization Matrix factorization (MF) is one of the most studied fac-
torization models, e.g., [14, 5, 12, 7]. It factorizes a relationship between two
categorical variables, e.g., a set of users U and a set of items I:

y(u, i|ΘMF ) :=
k∑
f=1

vu,f vi,f (12)

with model parameters ΘMF :

V U ∈ IR|U |×k, V I ∈ IR|I|×k (13)

An extension of this model, e.g., [5], adds bias terms on the variables:

y(u, i|ΘMFb) := w0 + wu + wi +
k∑
f=1

vu,fvi,f (14)

with the following parameters extending ΘMF to ΘMFb:

w0 ∈ IR, wU ∈ IR|U |, wI ∈ IR|I|

This model is exactly the same as a factorization machine with o = 2 and two
categorical predictors, i.e. users and items. Figure 3 shows the corresponding
design matrix. With the corresponding feature vectors x, the FM becomes:

y(x|Θ) = w0 +
p∑
j=1

wjxj +
p∑
j=1

p∑
l>j

k∑
f=1

vj,fvl,fxjxl

= w0 + wu + wi +
k∑
f=1

vu,fvi,f (15)

which is the same as the bias matrix factorization model (eq. (14)). The reason is
that xj is only non-zero for user u and item i, so all other biases and interactions
vanish.

Tensor Factorization Tensor factorization (TF) models generalize MF to an
arbitrary number of categorical variables. Lets assume that we have a relation
over m categorical variables: X1 × . . . × Xm, where xi ∈ {xi,1, xi,2, . . .}. The
parallel factor analysis model (PARAFAC) [4] for a realization of an m-tuple
(x1, . . . , xm) is defined as:

y(x1, . . . , xm|ΘPARAFAC) :=
k∑
f=1

m∏
i=1

vxi,f (16)

with parameters ΘPARAFAC :

V 1 ∈ IR|X1|×k, . . . ,V m ∈ IR|Xm|×k
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Fig. 3. Design matrix of FM emulating a biased matrix factorization.

The factorization machine (o := m) includes the PARAFAC model if it uses all
categories as single predictors (cf. fig. 4). Then, instead of just factorizing m-way
interactions like PARAFAC, FM factorizes all interaction up to order o = m:

The matrix and tensor factorization models described so far work only on
2-ary or m-ary relations over categorical variables. They cannot work, e.g., with
sets of categorical variables or continuous attributes like FMs do. There are
several specialized models that try to integrate other kind of information in
basic tensor factorization models. Next, we describe one of them. For further
mappings of succesfull factorization models into FM please refer to [8].
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Fig. 4. Design matrix of FM emulating a mode-3 tensor. The modes are user IDs, song
IDs and tag IDs. This design matrix might be used for tag recommendation, i.e. to
predict the propensity of a user to assign a specific tag to the currently selected song.
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SVD++ For the task of rating prediction, i.e. regression, Koren [5] improves the
matrix factorization model to the SVD++ model. In our notation the model can
be written as:

y(u, i|ΘSV D++) := w0 + wu + wi +
k∑
f=1

vi,fvu,f +
k∑
f=1

∑
l∈Nu

vi,fvl,f (17)

whereNu is the set of all movies the user has ever rated and the model parameters
are ΘSV D++:

w0 ∈ IR, wU ∈ IR|U |, wI ∈ IR|I|, V ∈ IR(|U |+2|I|)×k (18)

The information of Nu can also be encoded in the feature vector x using indicator
variables for Nu. With the design matrix of fig. 5 the FM (o = 2) looks like:

y(x|Θ) = w0 + wu + wi +
k∑
f=1

vu,fvi,f +
1√
|Nu|

∑
l∈Nu

k∑
f=1

vi,fvl,f

+
1√
|Nu|

∑
l∈Nu

wl +
k∑
f=1

vu,fvl,f

+
1
|Nu|

∑
l∈Nu

∑
l′∈Nu,l′>l

k∑
f=1

vl,fvl′,f

(19)

Comparing this to the SVD++ (eq. (17)) one can see, that the factorization
machine with this feature vector models exactly the same interactions as the
SVD++ but the FM contains also some additional interactions between users
and movies Nu as well as basic effects for the movies Nu and interactions between
pairs of movies in Nu. This is a general observation when comparing FMs to
factorization models. It is possible to model all factorization models but due to
the completeness of FMs in terms of all interaction effects, they typically include
some additional interactions.

In total, FMs and factorization models have the following differing properties:

– Standard factorization models like PARAFAC or MF are not general predic-
tion models like factorization machines. Instead they require that the feature
vector is partitioned in m parts and that in each part exactly one element is
1 and the rest 0.

– There are many proposals for specialized factorization models designed for
a single task.

– Factorization machines can emulate many of the most successful factoriza-
tion models (including MF, SVD++, etc.) just by feature extraction. Thus,
developing one learning algorithm for FMs suffices to get learning algorithms
for all subsumed factorization models automatically.

3 Experiments

After developing FMs and discussing their relationship to (factorized) polyno-
mial regression and some factorization models we show in this section results
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Fig. 5. Design Matrix of FM emulating SVD++.

on the Netflix dataset, thus empirically comparing FMs to some factorization
models and polynomial regression models (fig. 6). For all shown FMs we set
o = 2.

The left panel of fig. 6 shall show the ease with which different factorization
models can be represented just by selecting different design matrices. By compar-
ing them to standard factorization models (cf. 6, left panel) it becomes clear that
both are equivalent. The right panel shows how FMs outperform non-factorized
polynomial regression models in sparse data settings.

The statistics for the Netflix data set are as follows:

Dataset # users # movies size train size test

Netflix 480 189 17 700 100 480 507 1 408 342

3.1 FMs vs. state-of-the-art Factorization Models

The left panel of fig. 6 shows the evolution of five different models on Netflix
over different sizes of the latent space k. Since all models are of order o = 2, the
size of the latent space is determined by k = k2. Results for MF and SVD++ are
taken from the literature [12, 5], the other three models show FMs with different
feature vectors. The names of the FMs indicate the chosen features:

– u . . . user IDs
– i . . . item IDs (movie IDs)
– t . . . day when rating happened
– f . . . natural logarithm of the number of ratings a user has made on the day

the sought rating has happened
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Fig. 6. Empirical comparison of several instances of FMs to selected factorization mod-
els (left panel) and to non-factorized polynomial regression models (PR, right panel).

By comparing the accuracy of MF and (u, i) the equivalence of both models
can be seen. However, the FM model with features (u, i) is always slightly better
than MF (eq. 13) which can be attributed to the additional bias terms for users
and items (eq. 15).

The accuracies of the remaining models indicate that the additional features
time t, frequency f , and co-rated items (SVD++) entail several significantly
different two-way interactions of the standard user and item features with time,
frequency or co-rated items, i.e. user-time, item-time, user-frequency, etc. This
can be seen from the increasing gap between the (u, i)-models and the extended
models as the number of latent dimensions increases. The higher the complexity,
i.e. k, the better the predictive accuracy. This means that there exist quite some
significant two-way interactions besides the user-item interaction which could
not be captured with a low number of latent dimensions since the smaller the
latent space for the modeled interaction, the lower their possible variety.

3.2 FMs vs. Polynomial Regression

Please note, the Netflix dataset is not amenable for non-factorized polynomial
regression models of order o > 1 if the chosen predictors are categorical variables
with too many categories and/or too few observations for those interactions like
users and items as the corresponding estimated model parameter would suffer
from too sparse data, i.e. overfitting. For instance, for the user-item interaction
the Netflix dataset contains at most one observation of a user-item rating, but
typically no observation at all. Even worse, if the rating for an item by a user is
sought in test, there is no rating for that user-item pair available in train. This
is a prime example for many recommender systems, e.g., online shops, where
customers buy an item, e.g., movies, songs, etc., at most once. With those data
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two-way or higher order interaction effects cannot be reliably estimated. Just
simple linear effects are feasible.

Thus, in the case of Netflix where only user IDs, item IDs and the time of
rating are available for predicting the dependent variable, polynomial regression
models have to drop the user-item-interaction to avoid overfitting. Therefore,
the polynomial regression model with only user ID and item ID (PR : (u, i))
as predictors in the right panel of fig. 6 is linear. The other polynomial regres-
sion model (PR : (u, i, t, f)) is able to include two-way interactions between
either user ID or item ID and the time-derived covariates t and f because there
are enough observations per interaction available. In the right panel of fig. 6 we
compare predictive accuracies of both non-factorized polynomial regression mod-
els and their factorized siblings which are able to estimate two-way interaction
effects from sparse data, i.e., the user-item interaction effect for Netflix.

The first empirical finding is, that the polynomial regression model (u, i, t, f)
including time-derived predictors gets significantly better results than the sim-
pler linear (u, i)-model. This is due to the added time but more importantly due
to the added two-way effects as can be seen from the left panel of fig. 6 and
from the discussion in the previous section 3.1 about the increasing gap between
the user-item model and the time-enhanced models: For k = 0, i.e. only linear
effects, the difference in accuracies is small, however, with increasing complex-
ity of the modeled two-way interactions, i.e. k, the accuracy increases as well.
Thus, in addition to a second-order user-item interaction there are other relevant
second-order interaction effects in the data.

The second important finding is, that FMs extremely outperform their non-
factorized siblings. The reason is that the second order interaction effect between
users and items is very important for rating prediction as different users have
different preferences for items which linear effects are unable to capture.

4 Conclusion

In this paper we have discussed the relationship of polynomial regression to fac-
torized polynomial regression and Factorization Machines. There exist several
advantages of factorized polynomial regression to standard polynomial regres-
sion. Especially in sparse data settings higher-order effect factorization improves
the predictive accuracy.

By introducing factorized polynomial regression, particullarly FMs, the deriva-
tion of single factorization models and their learning algorithms is no longer
needed. It is enough to specify the feature vectors and a preselected learning
algorithm such as SGD or ALS can be used to train all factorization models.
Implementations of FMs for SGD are already available6, thus FMs are an im-
portant generalization step saving a lot of time and effort for practitioners and
researchers.

6 www.libfm.org
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