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ABSTRACT
In this paper, we describe our approach to track 2 of the
KDD Cup 2011. The task was to predict which 3 out of 6
candidate songs were positively rated – instead of not rated
at all – by a user. The candidate items were not sampled
uniformly, but according to their general popularity.

We develop an adapted version of the Bayesian Personal-
ized Ranking (BPR) optimization criterion [9] that takes the
non-uniform sampling of negative test items into account.
Furthermore, we present a modified version of the generic
BPR learning algorithm that maximizes the new criterion.
We use it to train ranking matrix factorization models as
components of an ensemble. Additionally, we combine the
ranking predictions with rating prediction models to also
take into account rating data.

With an ensemble of such combined models, we ranked 8th
(out of more than 300 teams) in track 2 of the KDD Cup
2011, without using the additional taxonomic information
offered by the competition organizers.

Categories and Subject Descriptors
H3.3 [Information Search and Retrieval]: Information
Filtering—Collaborative Filtering

General Terms
Experimentation, Software

Keywords
matrix factorization, collaborative filtering, personalization,
ranking, music recommendation

1. INTRODUCTION
Recommender systems are information systems that learn

user preferences from past user actions (ratings, votes, ranked
lists, mouse clicks, page views, product purchases, etc.) and
suggest items (pages on the web, news articles, jokes, movies,
products of any kind, music albums, individual songs, etc.)
according to those user preferences.

While rating prediction (How much will a user like/rate
a given item? ) has gained more attention in the recom-
mender systems literature in the past, the task of item pre-
diction (Which items will a user like/buy? ) (e.g. [3, 7])
is actually more relevant for practical recommender system
applications. One approach to item prediction is to treat
it as a (per-user) ranking problem, and to suggest the top
ranked items.

Bayesian Personalized Ranking (BPR) (section 3.1) is a
per-user ranking approach that optimizes a smooth approx-
imation of the area under the ROC curve (AUC) (section
2.3) for each user. BPR has seen successful applications
in item prediction from implicit positive-only feedback [9] –
even though the framework is not limited to positive-only
data – and tag prediction [12].

Models optimized for BPR are suitable when the items to
be ranked are sampled uniformly from the set of all items.
Yet, this is not always the case, for example when the items
to be ranked are sampled according to their general popu-
larity, like in track 2 of the KDD Cup 2011.

To deal with such scenarios, we extend the BPR criterion
to a probabilistic ranking criterion that assumes the candi-
date items (those items that should be ranked by the model)
to be sampled from a given distribution (section 3.2). Using
this new, more general optimization criterion, we derive an
extension of the generic BPR learning algorithm (which is a
variant of stochastic gradient ascent) that samples its train-
ing examples according to the probability distribution used
for the candidate sampling, and thus optimizes the model
for the new criterion.

One instance of such a ranking scenario is track 2 of the
KDD Cup 2011: There, the task was to predict which 3
out of 6 candidate songs were positively rated (higher than
a certain threshold) – instead of not rated at all – by a
user. The candidate items were not sampled uniformly, but
according to their general popularity, i.e. the number of
users who gave a positive rating to them. It turns out that
the evaluation criterion, the number of correct predictions,
can be approximated by our adapted optimization criterion.

Matrix factorization models are suitable prediction mod-
els for recommender systems, and are known to work well
for item prediction when trained using the BPR framework.



rating >= 80 no rating?

Figure 1: Task of KDD Cup 2011 track 2: Distin-
guish between tracks a user liked and tracks the user
has not rated. Items that have been rated below 80
by the user are not present in the test dataset.

Thus, we used matrix factorization for the KDD Cup (sec-
tion 3.4).

The main contributions of this article are:

1. We show that for the task of track 2 of the KDD Cup
2011, maximizing the per-user area under the ROC
curve (AUC) on the training data is equivalent to min-
imizing the training error.

2. We adapt the Bayesian Personalized Ranking (BPR)
framework, which relies on maximizing a smooth ap-
proximation of AUC, to scenarios where negative items
are sampled non-uniformly.

3. We develop a scalable matrix factorization model that
is trained using the adapted BPR framework.

4. We integrate rating information into the predictions
with two different multiplicative schemes, combining
the probability of a rating happening with the esti-
mated rating, and the probability of a rating of 80 or
more, respectively.

We use the highly competitive KDD Cup 2011 to demon-
strate the suitability of our approach.

2. PROBLEM STATEMENT
The task of track 2 of the 2011 KDD Cup was to predict

which 3 tracks out of 6 candidates a user will like – rate
with a score of 80 or higher – for a set of users, given the
past ratings of a superset of the users. Additionally, an
item taxonomy expressing relations between tracks, albums,
artists, and genres was provided by the contest organizers.
We did not use this additional data in our approach.

The 3 candidate tracks that have not been rated highly by
the user have not been rated at all by the user. They were
not sampled uniformly, but according to how often they are
rated highly in the overall dataset.

To put it briefly, the task was to distinguish items (in this
case tracks) that were likely to be rated with a score of 80 or
higher by the user from items that were generally popular,
but not rated by the user (Figure 1). This is similar to the
task of distinguishing the highly rated items from all other
generally popular ones, which we call the “liked” contrast
(Figure 2).

rating >= 80

rating < 80

no rating

liked?

Figure 2: The “liked” contrast: We say that a user
likes an item if they rated it with 80 or higher.

2.1 Notation
Scalar variables are set in the default math font, e.g.

a, b, c, while matrices (upper case) and vectors (lower case)
are in bold face, e.g. A,B,x,y.

Be U the set of users and I the set of items (tracks, al-
bums, artists, genres). Without loss of generality, we will
refer to users and items using natural numbers between 1
and |U| or |I|, respectively.

Generally, the training and testing sets in track 2 of the
KDD Cup 2011 have the following structure:

Dtrain ⊂ U × I × [0, 100] (1)

Dtest ⊂ U × I × {0, 1}. (2)

with ∀(u, i, pu,i) ∈ Dtest : ¬∃(u, i, ru,i) ∈ Dtrain. The train-
ing set Dtrain contains ratings, and the testing set Dtest

contains binary variables that represent whether a user has
rated an item with a score of at least 80 or not.

For convenience, we use I+
u for positive items and I−u

for negative similarly to the notation in Rendle et al. [9].
Depending on the context, I+

u and I−u may refer to the
positive and negative items in the training or test set. What
determines whether an item is positive or negative may differ
(see below section 2.2).

We will use the letter p for assignments to 0, 1 or their
probabilities, and s for arbitrary scores ∈ R. pu,i says
whether item i was rated (highly) by user u. p̂u,i(Θ), usually
simplified to p̂u,i, is the decision (estimation) of a model Θ
for the true assignment pu,i. Output scores ŝu,i(Θ) = ŝu,i
refer to arbitrary numerical predictions of recommendation
models Θ, where higher scores refer to higher positions in
the ranking. Such estimated rankings can then be used to
make decisions p̂u,i.

2.2 Contrasts
Depending on the exact contrast we wish to learn, there

are certain different conditions for what is in the set of pos-
itive (I+

u ) and negative (I−u ) items for each user.

Track 2 Contrast. The contrast to be learned for the KDD
Cup 2011 ignores all ratings below a score of 80: Such rat-
ings are not used for sampling the negative candidate items
– only items that are not rated by to users are potential
candidates (Figure 1).

I+(t2)
u := {i|∃ru,i ≥ 80 : (u, i, ru,i) ∈ Dtrain} (3)

I−(t2)
u := |I| − {i|∃ru,i : (u, i, ru,i) ∈ Dtrain} (4)



rating >= 80

rating < 80
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Figure 3: The “rated” contrast: The question is not
how a user has rated an item, but if.

Note that all items i with ru,i < 80 do not belong to either
of the two sets.

“Liked” Contrast. The “liked” contrast differentiates be-
tween what users have rated highly (80 or more), and what
they have not rated or rated with a score below 80 (Figure
2):

I+(liked)
u := {i|∃ru,i ≥ 80 : (u, i, ru,i) ∈ Dtrain} (5)

I−(liked)
u := I − I+(liked)

u (6)

As can easily be seen from the definition of I−(liked)
u , the

split between positive and negative items is exhaustive for
each user.

“Rated” Contrast. Finally, the “rated” contrast differen-
tiates what users have rated vs. not rated (Figure 3):

I+(rated)
u := {i|∃ru,i : (u, i, ru,i) ∈ Dtrain} (7)

I−(rated)
u := I − I+(rated)

u (8)

Again, this split is exhaustive for each user.

2.3 Error Measure
The evaluation criterion is the error rate, which is just the

relative number of wrong predictions:

e = 1− 1

|Dtest|
∑

(u,i,pu,i)

δ(pu,i = p̂u,i), (9)

where δ(x = y) is 1 if the condition (in this case: x = y)
holds, and 0 otherwise, and p̂u,i is the prediction whether
item i is rated 80 or higher by user u. For a single user, the
error rate is

eu = 1− 1

|I+
u |+ |I−u |

∑
(u,i,pu,i)

δ(pu,i = p̂u,i). (10)

For the KDD Cup 2011, we have the additional constraints
that for every highly rated item of each user, there is an
item that has not been rated in the evaluation set Dtest,
and that exactly half of the candidate items must be given
a prediction of p̂u,i = 1. We call this the 1-vs.-1 evaluation
scheme.

The area under the ROC curve (AUC) is a ranking mea-
sure that can also be computed for the KDD Cup scenario.
The per-user AUC on the test set can be defined as follows:

AUC(u) =
1

|I+
u ||I−u |

∑
i∈I+u

∑
j∈I−u

δ(p̂u,i > p̂u,j) (11)

1: procedure LearnBPR(Dtrain, α, λ)

2: initialize Θ̂
3: repeat
4: draw (u, i) from Dtrain

5: draw j uniformly from I−u
6: Θ̂← Θ̂ + α

(
e
−ŝu,i,j

1+e
−ŝu,i,j

· ∂

∂Θ̂
ŝu,i,j − λ · Θ̂

)
7: until convergence
8: return Θ̂
9: end procedure

Figure 4: LearnBPR: Optimizing BPR-Opt using
stochastic gradient ascent.

1: procedure LearnWBPR(Dtrain, α, λ)

2: initialize Θ̂
3: repeat
4: draw (u, i) from Dtrain

5: draw j from I−u proportionally to wj

6: Θ̂← Θ̂ + α
(

e
−ŝu,i,j

1+e
−ŝu,i,j

· ∂

∂Θ̂
ŝu,i,j − λ · Θ̂

)
7: until convergence
8: return Θ̂
9: end procedure

Figure 5: LearnWBPR: Optimizing WBPR us-
ing stochastic gradient ascent. The difference to
LearnBPR is the sampling in line 5.

The average AUC over all relevant users is

AUC =
1

|U test|
∑

u∈Utest

AUC(u), (12)

where U test = {u|(u, i, pu,i) ∈ Dtest} is the set of users that
are taken into account in the evaluation.

Lemma 1. In the 1-vs.-1 evaluation scheme the per-user
accuracy 1 − eu grows strictly monotonically given the per-
user area under the ROC curve (AUC) and vice versa.

Proof. Items are ordered according to their scores ŝu,i.
Be ntp and ntn the number of true positives and true neg-
atives, respectively. Given I+

u , I−u , AUC(u) =
ntp·ntn

|I+u ||I
−
u |

< 1

and 1 − eu =
ntp+ntn

|I+u |+|I
−
u |

< 1. If the scores change s.t.

p̂′u,i 6= p̂u,i for exactly two items that have been wrongly

classified before, then AUC′(u) =
(ntp+1)·(ntn+1)

|I+u ||I
−
u |

> AUC(u)

and 1− e′u =
ntp+1+ntn+1

|I+u |+|I
−
u |

> 1− eu.

This result can be easily extended from the user-specific
evaluation to the overall evaluation:

Lemma 2 (Corollary). In the 1-vs.-1 scheme the over-
all accuracy 1 − e grows strictly monotonically, given the
AUC averaged over all users, and vice versa.

A similar proof to the one above can be constructed for this
corollary.

This means that maximizing the AUC on the training
data (while preventing overfitting) is a viable strategy for
learning models that perform well under 1-vs.-1 evaluation
scheme.



3. METHODS
One approach to solve the task of track 2 of KDD Cup

2011 is to assign scores to the 6 candidate items of each user,
and then to pick the 3 highest-scoring candidates. This is
similar to classical top-N item recommendation. The deci-
sion function is

p̂u,i =

{
1, |{j|(u, j) ∈ Dtest ∧ ŝu,i > ŝu,j}| ≥ 3

0, else
. (13)

3.1 Bayesian Personalized Ranking (BPR)
The Bayesian Personalized Ranking (BPR) framework [9]

consists of an optimization criterion and a gradient-based
learning algorithm for personalized item recommendations.
BPR is based on the idea of reducing ranking to pairwise
classification [1].

The BPR optimization criterion is

BPR-Opt = max
Θ

∑
(u,i,j)∈DS

ln σ(ŝu,i,j)− λ‖Θ‖2, (14)

where DS ∈
⋃

u∈U I
+
u × I−u are the item pairs to sample

from, σ(x) = 1
1+e−x is the logistic function, ŝu,i,j is the

pairwise prediction for user u and items i, j, and λ‖Θ‖2 is a
regularization term to prevent overfitting. Because the size
of the training data DS is quadratic in the number of items,
the BPR learning algorithm (Figure 4) samples from DS
instead of going over the complete set of item pairs.

Note that maximizing BPR-Opt is similar to maximizing
the AUC (eq. 12), by approximating the non-differentiable
δ(x) by the differentiable sigmoid function σ(x). See [9] for
a more detailed explanation.

3.1.1 BPR and CofiRank
BPR is similar in spirit to CofiRank [13]. BPR uses

stochastic gradient ascent for learning. CofiRank has a learn-
ing method that alternates between optimizing the user and
item factors with bundle methods. Both have ranking losses
– pairwise logistic loss vs. pairwise soft-margin loss. There
is also a variant of CofiRank that is optimized for normal-
ized discounted cumulative gain (NDCG). While both ap-
proaches can be used in principle to handle any kind of
ranking, BPR has been used for “ranking” positive-only
feedback (observed vs. missing/not observed), and Cofi-
Rank has been used for ordinal ranking (ranking of known
ratings). The trick used by Weimer et al. [14] for computing
the ranking loss in O(n logn) instead of O(n2) (where n is
the length of the ranked list) is particularly useful for ordi-
nal ranking, where n is seldom as large as |I|, and for exact
(as a opposed to stochastic) optimization, where the com-
plete loss/gradient has to be computed. Still, we will look
at ways to exploit this trick for our method in the future.

3.2 Weighted BPR (WBPR)
Because the negative items in the training data are all

weighted identically – and not according to their global pop-
ularity – optimizing a predictive model for BPR-Opt does
not lead to good results in track 2 of the KDD Cup 2011.

The sampling probability for an item is proportional to

wj =
1

|D|
∑
u∈U

δ(j ∈ I+
u ). (15)

Taking into account the sampling probability of the neg-
ative items, the modified optimization criterion is

WBPR = max
Θ

∑
(u,i,j)∈DS

wuwiwj ln σ(ŝu,i,j)−λ‖Θ‖2, (16)

where wu = 1

|I+u |
is a weight that balances the contribution

of each user to the criterion, and wi = 1 (positive items are
sampled uniformly).

Note that WBPR is not limited to the task of the KDD
Cup 2011: The weights wu, wi, wj can be adapted to other
scenarios (sampling probabilities).

3.3 Learning by Adapted Sampling
To train a model according to the modified optimization

criterion, we adapted the original learning algorithm (Figure
4); instead of sampling negative items uniformly, we sam-
ple them according to their overall popularity wj (line 5 in
Figure 5).

3.4 Matrix Factorization Optimized for WBPR
The pairwise prediction ŝu,i,j is often expressed as the

difference of two single predictions:

ŝu,i,j := ŝu,i − ŝu,j . (17)

We use the BPR framework and its adapted sampling
extension to learn matrix factorization models with item
biases:

ŝu,i := bi + 〈wu,hi〉, (18)

where bi ∈ R is a bias value for item i, wu ∈ Rk is the
latent factor vector representing the preferences of user u,
and hi ∈ Rk is the latent factor vector representing item i.

The optimization problem is then

max
W,H,b

∑
(u,i,j)∈DS

wuwiwj ln σ(bi − bj + 〈wu,hi − hj〉)

− λu‖W‖2 − λi‖H‖2 − λb‖b‖2. (19)

The training algorithm LearnWBPR-MF (Figure 6) (ap-
proximately) optimizes this problem using stochastic gra-
dient ascent. It is an instance of the generic LearnWBPR
algorithm. The parameter updates make use of the partial
derivatives of the local error with respect to the current pa-
rameter. The matrix entries must be initialized to non-zero
values because otherwise all gradients and regularization up-
dates for them would be zero, and thus no learning would
take place. The item bias vector b does not have this prob-
lem. Note that the λ constants in the learning algorithm
are not exactly equivalent to their counterparts in the opti-
mization criterion. We also have two different regularization
constants λi and λj which lead to different regularization
updates for positive and negative items.

3.5 Ensembles
To get more accurate predictions, we trained models for

different numbers of factors k and using different regular-
ization settings. We combined the results of the different
models, and of the same models at different training stages.

We used two different combination schemes, score averag-
ing and vote averaging.

Score Averaging. If models have similar output ranges, for
example the same model at different training stages, we can



1: procedure LearnWBPR-MF(Dtrain, α, λu, λi, λj , λb)
2: set entries of W and H to small random values
3: b← 0
4: repeat
5: draw (u, i) from Dtrain

6: draw j from I−u proportionally to wj

7: ŝu,i,j ← bi − bj + 〈wu,hi − hj〉
8: x← e

−ŝu,i,j

1+e
−ŝu,i,j

9: bi ← bi + α (x− λbbi)
10: bj ← bj + α (−x− λbbj)
11: wu ← wu + α (x · (hi − hj)− λuwu)
12: hi ← hi + α (x ·wu − λihi)
13: hj ← hj + α (x · (−wu)− λjhj)
14: until convergence
15: return W,H,b
16: end procedure

Figure 6: Optimizing a matrix factorization model
for WBPR using stochastic gradient ascent.

achieve more accurate predictions by averaging the scores
predicted by the models:

ŝscore-ens
u,i =

∑
m

ŝ
(m)
u,i . (20)

Vote Averaging. If we do not know whether the scale of
the scores is comparable, we can still average the voting
decisions of different models:

ŝvote-ens
u,i =

∑
m

p̂
(m)
u,i . (21)

Other possible combination schemes would be ranking en-
sembles [11], and of course weighted variants of all schemes
discussed here.

Greedy Forward Selection of Models. Because selecting
the optimal set of models to use in an ensemble is not fea-
sible if the number of models is high, we perform a greedy
forward search to find a good set of ensemble components:
This search procedure tries all candidate components sorted
by their validation set accuracy, and adds the candidate to
the ensemble if it improves the current mix. When search-
ing a large number (e.g. > 2, 000) of models, we ignored
candidates above a given error threshold.

3.6 Integrating Rating Information
Except for the rating threshold of 80, the methods pre-

sented so far in this paper do not take into account the
actual rating values. We suggest two different schemes of
combining probabilities of whether an item has been rated
by a user with rating predictions produced by a matrix fac-
torization model that incorporates user and item biases (see
e.g. [8, 10]:

min
W,H,bU,bI

∑
(u,i,ru,i)∈Dtrain

(σ(µ+ bUu + bIi + 〈wu,hi〉)− ru,i)2

+ λb(‖bU‖2 + ‖bI‖2) (22)

+ λu‖W‖2 + λi‖H‖2,

where µ is the global rating average. The model is trained

1: procedure CreateDataset(Dtrain,Dtest, n)
2: Dtrain-val ← Dtrain

3: U test ← {u|(u, i, pu,i) ∈ Dtest}
4: for all u ∈ U test do
5: I+ ← {n random items from I+(t2)

u }
6: Dtest-val ← Dtest-val∪̇{u} × I+ × {1}
7: I− ← {n items from I−(t2)

u sampled prop. to popul.}
8: Dtest-val ← Dtest-val∪̇{u} × I− × {0}
9: for all i ∈ I+∪̇I− do

10: Dtrain-val ← Dtrain-val − {(u, i, ru,i)}
11: end for
12: end for
13: return (Dtrain-val, Dtest-val)
14: end procedure

Figure 7: Sampling procedure for the validation
split.

using stochastic gradient descent with the bold-driver heuris-
tic that dynamically adapts the learn rate. Using this heuris-
tic for learning matrix factorizations was suggested by Gemulla
et al. [6].

Estimating Probabilities. First, we describe how we com-
pute probabilities from prediction scores of models that were
trained to decide whether an item has been rated or not
(Figure 3).

p̂rated
u,i =

5∑
k=1

5∑
l=k+1

5∑
m=l+1

σ(ŝrated
u,i,jk )σ(ŝrated

u,i,jl)σ(ŝrated
u,i,jm), (23)

where ŝrated
u,i,j1 . . . ŝ

rated
u,i,j5 refer to the score estimates of the

other 5 candidates. Note that the models for ŝrated are
trained using all ratings as input, not just the ones of 80
or higher. The intuition behind this way of probability es-
timation is as follows: σ(ŝrated

u,i,jk
) ∈ (0, 1) can be interpreted,

similar to the case of logistic regression (e.g. [2]) as the
probability that item i is ranked higher (more likely to be
rated) than item j by user u. We know that exactly 3 items
are rated by the user, which means we need to estimate
how probable it is that a given item is ranked higher than
3 other items. Eq. 23 sums up the probabilities for the
different cases where this holds.

Scheme 1: Multiply with Rating Prediction. The first
scheme takes a “rated” probability and multiplies it with a
rating prediction from a model trained on the rating data:

ŝone
u,i = p̂rated

u,i · r̂u,i, (24)

where r̂u,i is the predicted rating.

Scheme 2: Multiply with Rating Probability. The sec-
ond scheme takes a “rated” probability and multiplies it
with the probability that the item, if rated, gets a rating of
80 or more by the user:

ŝtwo
u,i = p̂rated

u,i · p̂≥80
u,i , (25)

where p̂≥80
u,i is the estimated probability of ru,i ≥ 80. We es-

timate p̂≥80
u,i using several different rating prediction models:

p̂≥80
u,i =

∑
k

δ(r̂
(k)
u,i ≥ 80). (26)



Ratings
validation split competition split

# users 249,012 249,012
# items 296,111 296,111
# ratings 61,640,890 61,944,406
# sparsity 0.999164 0.9991599
# test users 101,172 101,172
# test items 128,114 118,363

Ratings ≥ 80
validation split competition split

# users 248,502 248,529
# items 289,234 289,303
# ratings 22,395,798 22,699,314
# sparsity 0.9996884 0.9996843
# test users 101,172 101,172
# test items 128,114 118,363

Table 1: Characteristics of the validation and com-
petition splits when considering all ratings (Figure
3) and the ratings of 80 or more (Figure 2), respec-
tively.

4. EXPERIMENTS

4.1 Datasets
The Yahoo! Music dataset used for KDD Cup 2011 is de-

scribed in [4]. We created a validation split from the train-
ing set so that we could estimate the accuracy of different
models, and use those estimates to drive the composition of
ensemble models. The procedure to create the split, based
on the task description of track 21, is described in Figure 7.
In the case of the KDD Cup data, the number of positive
items per user in the test set is n = 3. Table 1 shows the
characteristics of the datasets.

4.2 Rating Prediction
Table 2 contains the rating prediction accuracy in terms

of root mean square error (RMSE) and mean absolute error
(MAE) on the validation split for different hyperparameter
combinations. For the original split, the true rating values
are not (yet) available, so we do not report them.

4.3 Track 2 Results
We trained all models on both splits. Some results for the

validation splits, and from the leaderboard are in Table 3.
We did not submit all of those models to the competition,
so some leaderboard results are missing.

4.4 Final Submission
For our final submission (see Table 3), we used the second

rating integration scheme (eq. 25). To estimate p̂rated
u,i , we

created a score ensemble (section 3.5) from candidate mod-
els described in Table 4, with a candidate error threshold
of 5.2% – models with a higher validation error were not
considered for the ensemble. We estimated the probabilities
for a high rating p̂≥80

u,i according to eq. 26, from the models
listed in Table 5.

1http://kddcup.yahoo.com/datasets.php

4.5 Reproducibility
The algorithms described here are part of the MyMedi-

aLite2 recommender system library [5]. http://ismll.de/

mymedialite/examples/kddcup2011.html describes all steps
needed to reproduce the experiments presented in this pa-
per.

5. SUMMARY AND OUTLOOK
We described how to adapt the Bayesian Personalized

Ranking (BPR) framework to scenarios where negative items
are sampled non-uniformly, like in track 2 of the KDD Cup
2011, yielding the optimization criterion WBPR. This cri-
terion can for instance be used to learn scalable matrix fac-
torization models, which we used for our participation in
the KDD Cup 2011. In addition to ensembles of different
WBPR matrix factorization models, we enhanced the pre-
dictions by integrating additional rating information. The
experiments presented in this paper, and the ranking on the
KDD Cup leaderboard3, suggest that our methods are suit-
able for such recommendation tasks.

This article is merely a description of the methods we
developed and used for this competition. There are several
aspects worth further investigation.

First of all, we reduce a classification problem (optimiza-
tion for the error rate) to a ranking problem, which we again
solve using a reduction to pairwise classification. While in
general item recommendation scenarios ranking is the prob-
lem we want to solve, it would be still interesting to see
whether improvements are possible by directly training a
classifier.

We have not used the item taxonomy, so a next step will be
to make use of this additional information, as well as trying
other ways of integrating the rating information (see section
3.6). A fully Bayesian treatment of the WBPR framework,
i.e. by estimating parameter distributions, could yield mod-
els that have less hyperparameters, while having accuracies
comparable to ensembles of the current models.

For the competition, we performed all training on the
“liked” (Figure 2) and “rated” (Figure 3) contrasts, but not
on the proper contrast (Figure 1) that was used for eval-
uation the KDD Cup. We will investigate the benefits of
learning that correct contrast. Using a soft-margin loss in-
stead of a logistic loss could allow us to speed up learning
(see section 3.1.1). Finally, we are looking forward to see
the other contributions to the KDD Cup 2011, and to find
out which aspects and details made a real difference in the
competition, and which insights gained can be utilized for
other recommendation tasks.
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Model Hyperparameters RMSE MAE
MF k = 40, λu = 2.3, λi = 1.4, λb = 0.009, α = 0.00002, i = 30 25.37 16.88
MF k = 60, λu = 3.9, λi = 1.7, λb = 0.00005, α = 0.00005, i = 55 25.35 16.67

Table 2: Rating prediction accuracy on the validation split for different matrix factorization models (eq. 22).

Model Hyperparameters Validation Leaderboard
most popular – 29.8027 42.8546
most rated – 29.0802
WR-MF [7] k = 60, λ = .0001, cpos = 320, i = 30 13.7587
WBPR-MF (“liked” contrast) k = 240, λu = .01, λi = .005, λj = .0005, λb = .0000001, i = 222 6.275 6.0449
WBPR-MF (“rated” contrast) k = 320, λu = .0075, λi = .005, λj = .00025, λb = .000015, i = 53 5.4103 6.0819
final submission see section 4.4 3.80178 4.4929

Table 3: Validation set and KDD Cup 2011 leaderboard error percentages for different models. i refers to
the number of iterations used to train the model. See the method section for details about the methods.

k λu λi λj λb α i #
480 0.005 {0.0015, 0.0025, 0.0035} {0.00015, 0.00025, 0.00035} {0.000015, 0.00002} 0.04 {10, . . . , 200} 3,420

Table 4: Candidate components of the score ensemble used for estimating p̂ratedu,i (section 3.5). The last
column shows the number of different models resulting from combining the hyperparameter values in that
row.

k λu λi λb α i #
40 {1.9, 2.0, 2.2} {0.8, 1.0, 1.2} {0.000075, 0.0001, 0.0075} 0.00002 {8, . . . 11, 20, 24, 30, 31, 33, 38, . . . , 41} 351
40 {2.1, 2.3} {1.1, 1.4} {0.006, 0.0075, 0.009} 0.00002 {8, . . . 11, 20, 24, 30, 31, 33, 38, . . . , 41} 156
60 {3, 3.5} {1.1, 1.25, 1.5} {0.0000075, 0.00005} 0.00005 {30, 50, 70, 89, . . . , 93} 84
60 {3.4, 3.9} {1.2, 1.5, 1.7} {0.00005} 0.00005 {30, 50, 70, 89, . . . , 93} 48

Table 5: Rating prediction models used for estimating p̂≥80
u,i (eq. 26) in the final KDD Cup submission. The

last column shows the number of different models resulting from combining the hyperparameter values in
that row.
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