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Abstract. The growing popularity of social tagging systems promises to allevi-
ate the knowledge bottleneck that slows down the full materialization of the Se-
mantic Web since these systems allow ordinary users to create and share knowl-
edge in a simple, cheap, and scalable representation, usually known as folkson-
omy. However, for the sake of knowledge workflow, one needs to find a com-
promise between the uncontrolled nature of folksonomies and the controlled and
more systematic vocabulary of domain experts. In this paper we propose to ad-
dress this concern by devising a method that automatically enriches a folkson-
omy with domain expert knowledge and by introducing a novel algorithm based
on frequent itemset mining techniques to efficiently learn an ontology over the
enriched folksonomy. In order to quantitatively assess our method, we propose a
new benchmark for task-based ontology evaluation where the quality of the on-
tologies is measured based on how helpful they are for the task of personalized
information finding. We conduct experiments on real data and empirically show
the effectiveness of our approach.

1 Introduction

Due to the concrete advances towards the Semantic Web vision [4], ontologies are grow-
ing in use, specially in areas concerning information finding and organization. However,
their massive adoption is severely shortened because of the effort one needs to take to
assemble them, task which is usually assigned to domain experts and knowledge en-
gineers. Although ontology learning can help to some extent, the participation of the
expert is still usually required since the learned representations are not free of incon-
sistences (in a semantic level at least) and therefore require manual validation and fine
tuning. A more promising solution to this problem lies in the rapid spread of the Web
2.0 paradigm as it has the potential to educate ordinary users towards voluntary se-
mantic annotation, thereby decentralizing and cheapening knowledge acquisition. The
increasing popularity of Web 2.0 applications can be partly explained by the fact that
no specific skills are needed for participating, where anyone is free to add and catego-
rize resources in the form of free keywords called tags. Tags do not need to conform
to a closed vocabulary and therefore reflect the latest terminology in the domain under
which the system operates. Furthermore, the exposure to each other tags and resources
creates a fundamental trigger for communication and sharing, thus lowering the barriers
to cooperation and contributing to the creation of collaborative lightweight knowledge
structures known as folksonomies. Despite the compelling idea of folksonomies, its un-
controlled nature can bring problems, such as: synonymy, homonymy, and polysemy,



which lowers the efficiency of content indexing and searching. Another problem is that
folksonomies usually disregard relations between their tags, what restricts the support
for content retrieval. If tags are informally defined and continually changing, then it
becomes difficult to automate knowledge workflow. In this sense, it is necessary to
find a compromise between the flexibility and dynamics of folksonomies and the more
systematic structure of controlled vocabularies. This compromise is usually known as
collabulary [1], which corresponds to a portmanteau of the words collaborative and
vocabulary. For our purposes we define a collabulary in terms of a special ontology that
represents the knowledge of both users and experts in an integrated fashion.

In this paper we propose a method for collabulary learning. To this end, we first
take a folksonomy and a domain-expert ontology as input and project them into an
enriched folksonomy through semantic mapping; we then apply a fast and flexible al-
gorithm based on frequent itemset techniques to learn an ontology over the enriched
folksonomy. The main contributions of this paper are: (i) a definition for the new prob-
lem of collabulary learning, (ii) a method for automatically enriching folksonomies
with domain-expert knowledge, (iii) a fast and flexible algorithm based on efficient fre-
quent itemset mining techniques for ontology learning from folksonomies, and (iv) a
new benchmark for task-based ontology evaluation in folksonomies.

An obvious question one could ask is to which extent this so called collabulary re-
ally helps. Looking at the literature on ontology learning from folksonomies (e. g., [26,
15, 9, 23, 22]) we see that most of the proposed approaches are motivated by facilitating
navigation and information finding, even though they do not quantify to which extent
the learned ontologies really help on this task. Instead, the quality of the learned on-
tologies is measured based on how good they match people’s common sense or how
similar they are to a reference ontology. We argue that in this context, an ontology is
as good as it helps users finding useful information. Therefore, we propose, as con-
tribution (iv), to plug the investigated knowledge structures in collaborative filtering
algorithms for recommender systems and evaluate the outcome as an indicator of the
ontologies’ usefulness, given that collaborative filtering [21] is one of the most success-
ful and prominent approaches for personalized information finding. To the best of our
knowledge this is the first effort towards thorough empirical investigation of the trade-
off between folksonomies and controlled vocabularies. We conduct experiments on a
real-life dataset and demonstrate the effectiveness of our approach.

The paper is organized as follows. Section 2 presents a definition for the collabulary
learning problem and our approach for enriching a folksonomy with domain-expert vo-
cabulary. Section 3 introduces an algorithm based on fast frequent itemset mining tech-
niques for ontology learning from folksonomies. Section 4 presents a new benchmark
for task-based ontology evaluation and Section 5 discusses the conducted experiments
and their results, followed by related work and conclusions (Sections 6 and 7).

2 Folksonomy Enrichment

Our approach for folksonomy enrichment is based on providing a semantic mapping
between an ontology designed by domain experts and a folksonomy, assuming that
both describe the same domain over the same set of instances.



2.1 Problem definition

Before presenting our approach, we provide a simplified definition for some of the
concepts used in this paper, namely, folksonomy, ontology, knowledge base and collab-
ulary. Similarly to [16], we define a folksonomy as follows:

Definition 1. A folksonomy1 is a tuple F := (U, T,R, Y ) where U , T , and R are finite
sets, whose elements are called users, tags and resources, and Y is a ternary relation
between them, i. e., Y ⊆ U × T ×R, whose elements are called tag assignments.

Since taxonomies are central components of ontologies, we are going to focus on them
first. Similarly to [12] we define an ontology as follows:

Definition 2. An ontology is a tuple O := (C, root,≤C) where C is a set of concept
identifiers and ≤C is partial order on C with one unique top element root, called taxon-
omy or concept hierarchy.

A knowledge base in turn, is defined as follows:

Definition 3. A knowledge base for an ontology O is a structure KB := (I, ιC) where
I is a set whose elements are instance identifiers and ιC : C → 2I is a function associ-
ating concepts to instances called concept instantiation.

To simplify our discussion, we assume that the relation between lexical terms and their
associated concepts or instances is a bijection i. e., each lexical term is a identifier of a
concept or an instance2. Finally we define the problem we want to address in this paper
as follows:

Definition 4. Given a folksonomy F, an ontology O and a knowledge base KBO =
(I, ιC) for O, an ontology P with concepts CP = TF ∪̇ CO and a knowledge base
KBP = (I ′, ι′C) with I ′ = I ∪̇RF is called a collabulary over F andO. The collabulary
learning problem is here defined as finding a collabulary over F and O, that best3

represents the common knowledge between folksonomy users and domain experts.

2.2 Semantic Mapping

Users of social tagging systems are heterogenous and thus have different levels of
knowledge about a domain. Moreover, they can express very personal opinions about
their resources, what lowers the potential for knowledge sharing. Tags like stuff to chill,
awesome artists, or makes me happy4 are very subjective and hence hard to make sense
of, nevertheless they appear relatively often in real life folksonomies. In order to ensure
interoperability, one needs to find a clear meaning for these tags such that we know,
for example, that actually stuff to chill is related to alternative, awesome artists to emo

1 In the original definition [16], it is additionally introduced a subtag/supertag relation, which
we omit here since most of the real life folksonomies disregard such tag relations

2 For our purposes instances will correspond to resources
3 In this paper ”best” is defined in terms of an ontology-based application scenario
4 Tags present in the online social radio station last.fm (http://last.fm)



and makes me happy to rockabilly, where alternative, emo, and rockabilly are concepts
coming from a controlled and well agreed vocabulary5. We propose to address this issue
by providing a semantic mapping between a folksonomy and a domain-expert ontology.
As these two knowledge representations are structurally different (i. e., folksonomies
do not have a partial order) we first turn the folksonomy, without loss of generality,
into a trivial ontology OF↓T over F, i. e., a projection of the folksonomy to its tag
space where all the concepts are leaf sibling nodes having root as father, more formally,
∀t ∈ T :≤t:= ∅ and≤root:= T (e. g., Fig. 1.a). Now we can cast the semantic mapping,
for our case, as an ontology matching problem, for which there is a well covered liter-
ature (e. g., [11, 13, 18]). Notice, however, that since the trivial ontology is structurally
limited we can not rely on methods that heavily consider structural information.

Here we are interested in methods that depend only on the semantic content of the
concepts involved since relying on syntactic descriptions of tags is not suitable, given
the uncontrolled vocabulary of users. In [13] joint probability distributions are used
as a framework for well-defined similarity measures that do not depend on the lexical
layer of ontologies. Denoting the probability of two concepts A and B being identical
by P (A,B), in [13] it is shown that under certain general assumptions P (A,B) for
two concepts A and B coming from different ontologies, can be approximated as the
fraction of instances that belong to both A and B6, therefore reducing the problem to
checking, for each instance, if it belongs to A ∩ B. In our experiments we use the well
known Jaccard coefficient

JS(A,B) := P (A ∩B)/P (A ∪B) :=
P (A,B)

P (A,B) + P (A, B̄) + P (Ā, B)
(1)

as a representative of this family of similarity measures, where P (A, B̄) is the prob-
ability that a randomly chosen instance belongs to A but not to B and P (Ā, B) the
other way around. Having defined the similarity measure to use, we build the enriched
folksonomy as follows:

1. LetOD denote the domain-expert ontology andOF a trivial ontology, first we need
to define a function for mapping the concept identifiers of both ontologies, i. e.,
T̂ : COF → COD

, where COF denotes the set of concept identifiers for OF and COD

for OD. In our case, for each concept A in the trivial ontology representing the
folksonomy, the most similar concepts from a domain-expert ontology is found as
follows: T̂ (A) := argmax

x∈COD

JS(A, x) (see Example 1).

2. After that, we add the best mappings in YF as additional triples, i. e., Y := Y ∪
{(u, T̂ (t), r)|(u, t, r) ∈ Y }.

3. Finally, we create a ”dummy” user uθ representing the expert and integrate it to
the folksonomy. In other words, we build additional triples reflecting the concept
instantiation of the expert and add them in YF. The enriched folksonomy is now
composed by the triples Y := Y ∪ {(uθ, c, r)|c ∈ COD

, r ∈ ι(c)}.

5 With respect to music genres
6 P (A, B) ≈ count of instances belonging to both A and B

count of all instances = |{ι∗(A)}∪{ι∗(B)}|
count of all instances where ι∗(C) denotes the

extension of concept C, i. e., the set of resources belonging to C and its descendants



Fig. 1. Example of two knowledge bases associated with a trivial core ontology representing a
folksonomy (a) and a domain-expert one (b) over the music domain.

Example 1. Consider the concept stuff to chill in the ontology at Fig. 1.a. Among the
concepts in the ontology at Fig. 1.b, we have to find the one with the highest sim-
ilarity. Computing a term like P (stuff to chill, alternative) is very simple as we just
need to find the instances belonging to both concepts. Looking at Fig. 1, we observe
that ιC(stuff to chill) := {r1, r5} and ι∗C(alternative) := {r1, r4, r5, r6} and there-
fore stuff to chill ∩ alternative := {r1, r5}. Now P (stuff to chill, alternative) is just
the number of elements in this intersection divided by the total number of distinct
instances, i. e., 2

8 := 0.25. The same procedure can be repeated to find the terms
P (stuff to chill, alternative) and P (stuff to chill, alternative). Now we just need to plug
all these terms in Eq. 1. Given that alternative is indeed the best mapping, for the triples
containing stuff to chill, i. e., {(u, r1, stuff to chill), (u, r5, stuff to chill)} ∈ Y , we add
new triples having alternative, i. e., Y := Y ∪ {(u,r1,alternative), (u,r5,alternative)}.
Finally the triples of the ”expert user” are included, i. e., Y := Y ∪ {(uθ,r5, alternative),
(uθ,r6,alternative), (uθ,r7,rockabilly), (uθ,r8,rockabilly), (uθ,r1,emo), (uθ,r4,emo)}.

Therefore, the enriched folksonomy has two major components: (i) a consistent
vocabulary that properly matches the user vocabulary, and (ii) an additional user rep-
resenting the expert point of view about the resources. The next step is to learn an
ontology over this enriched folksonomy, which is the topic of the next section.

3 Frequent Itemsets for Learning Ontologies from Folksonomies

Most of the approaches concerning ontology learning from folksonomies rely on co-
occurrence models (e. g., [26, 17, 9, 23, 22]). This is in line with the assumption that in
sparse structures, such as folksonomies, positive correlations carry most of the essential
information about the data (see [14] for a theoretical justification).

The idea of using frequent itemset mining for ontology learning in folksonomies
is not new, in [22] for example, the authors conceptually proposed the exploitation of
different projections of the folksonomy onto a two-dimensional formal context, where
they applied association rule mining techniques. Our work is in line with this idea,



however, we project the folksonomy to a transactional database7, which is usual in
the frequent itemset mining community and facilitates the direct application of highly
efficient state-of-the-art methods. Furthermore, we explore additional assumptions on
the users’ resource tagging behaviour and how itemsets reflect relations between tags.

In this section, we propose a new algorithm for learning ontologies from folk-
sonomies, which is based on frequent itemset mining on the one hand, and on extraction
of taxonomic relationships from frequent itemsets on the other.

3.1 Frequent Itemset Mining

Searching for frequently co-occurring items is a well studied subject in data mining and
is usually referred to as frequent itemset mining, for which there is a broad literature
(e. g., [2, 3, 25, 19]). A frequent itemset is a set of frequently co-occurring items, like
products often purchased together in a supermarket. The task can formally be defined
as follows.

Definition 5. Let Σ = {c1, c2, . . . , cs} be a set of items, a transactional database D is
a subset of the power set of Σ, i. e., D = {C1, C2, . . . , Cn},∀k ∈ {1, 2, . . . , n} : Ck ⊆
Σ where the sets C1, C2, . . . , Cn denote co-occurring items and are called transactions.

Definition 6. The support for an itemset I ⊆ Σ, henceforth denoted as sup(I), is
defined as the number of supersets8 of I in the transactional database sup(I) = |{Ck :
Ck ∈ D, I ⊆ Ck, k ∈ {1, 2, . . . , n}}|
Definition 7. Given Σ, D and a minimum support threshold m, the frequent itemset
mining problem is defined as the task of finding all sets I ⊆ Σ with sup(I) ≥ m.

We project a folksonomy to a transactional dataset as follows. Given that Σ now
corresponds to the set of tags, the transactions are identified by user-resource pairs
where a transaction is composed by the tags used by the same user to the same resource
(e. g., Fig. 2). Considering the transactional database illustrated in Fig. 2 and given
that the minimum support threshold is set to 2, a frequent itemset would be {musical,
modern } for example.

Fig. 2. Projection of a folksonomy to a transactional database

7 see Definiton 5
8 Note that for two subsets C′, I ⊆ Σ, if C′ = I , C′ is a (trivial) superset of I .



3.2 Learning Ontologies from Folksonomies

Before introducing our method we define some intuitive assumptions used by the al-
gorithm in the learning process:

1. High Level Tag Assumption – Users often associate resources with tags of dif-
ferent levels of an (eventually unknown) hierarchy. The more popular a tag is, the
more general it is and therefore should occupy a higher level in the taxonomy to
be learned. Notice that this in line with the assumption that users usually want to
alleviate the cognitive effort by selecting tags representing broader concepts. Con-
sider, for example, the well known singer Elvis Presley who is usually associated
with the music genres rock’n roll and rockabilly, where rock’n roll is regarded as
more general than rockabilly. If some users annotate this artist with rock’n roll, we
expect that many of these users also use the tag rockabilly. However, as there are
many other rock’n roll artists that are not necessarily rockabilly, we expect the tag
rock’n roll to be used more often than rockabilly.

2. Frequency Assumption – If a frequent itemset F has significantly higher support
than another frequent itemset F ′, we say that the items occuring in F are closer
related to each other than the items in F ′, i.e. F should have more influence on the
learned structure than F ′.

3. Large Itemset Assumption – Suppose there are two frequent itemsets F1 and F2

and there is another frequent itemset F , F ⊇ F1 ∪ F2. Suppose they all have
approximatelly the same support. In this case (i. e., F , F1, F2 are frequent) we
assume closer relation between the items included in F1 ∪F2, as if only F1 and F2

were frequent (but F not).

Algorithm 1 Algorithm for Taxonomy Learning based on Frequent Itemsets
Require: Folksonomy data, Array of Min. Support Tresholds[] m,

Goodness Treshold g, Array of Edge Tresholds[] e,
Resource-Tag-Correlation Treshold c.

Ensure: Learned Ontology O and its Knowledge Base KBO .

1: Transactional Database D = projectData(data);
2: S=empty taxonomy;
3: for i = 0; i <m.length; + + i do
4: fqSets = mineFrequentItemsets(D, m[i])
5: S′ = buildTaxonomyPieces(fqSets, e)
6: S′′ = pruneP ieces(S′)
7: S = addPrunedP iecesToTaxonomy(S, S′′)
8: end for
9: O, KBO = addResourcesToOntology(S, data, c)

10: return O, KBO

Our method is depicted in Algorithm 1. We apply an iterative process where the
most frequent itemsets are mined first resulting in the learning of some pieces of the on-
tology. This corresponds to our Frequency Assumption, i. e., we first learn the relations



contained in the most frequent itemsets since this corresponds to stronger evidences.
Then in each subsequent iteration we relax the minimum support threshold in order to
mine less frequent itemsets leading to the learning of new pieces. These pieces are it-
eratively put together converging to the final ontology. The main steps of the algorithm
are detailed below.

For the frequent itemset mining (line 4), we use a highly efficient implementation
of the algorithm Apriori [3, 2], which is based on a doubly recursive scheme to count
how often a set of items co-occur (see [6, 7] for details). Since frequent itemsets do
not always reflect the true relation between the items, we use the following goodness
condition to which an itemset I = {t1, t2, . . . , tk} needs to fulfill

∀i, i ∈ {1, 2, . . . , k} :
sup(I)
|D|

sup({ti})
|D| · sup(I\{ti})

|D|
> g (2)

where g is a goodness threshold.
After the mining step, we turn to the building of the taxonomy. We then start build-

ing what we call for convenience taxonomy-pieces (line 5), i. e., the taxonomic relations
to be learned in the current iteration. In this graph, two nodes tx and ty are connected,
with tx being a superconcept of ty , if there are frequent itemsets I containing both tx
and ty such that sup({tx}) ≥ e[j] · sup({ty}), where j = |I| and e[j] is a given edge
threshold for itemsets of size j. In other words, according to the High Level Tag As-
sumption, sup({tx}) has to be ”significantly larger” than sup({ty}). Moreover, due to
the Large Itemset Assumption the co-occurrence of tx and ty in a large itemset means
higher correlation between tx and ty than their co-occurrence in a smaller itemset, thus
the meaning of ”significantly larger” depends on the size of the itemset I , i. e., the edge
threshold e[j] is the largest for 2-itemsets (j = 2), and the larger the itemset, the smaller
the threshold.

To avoid multiple-inheritance relations, we prune the graph restricting it to a tree9

(line 6). In this step we give preference to long paths since they are usually more infor-
mative. Given the edges tx → ty, ty → tz and tx → tz (note that tz has two father
concepts, tx and ty) for example, the edge tx → tz would be considered redundant and
thus would be removed, since the path going through ty is longer10. This step is done by
a depth-first-search like traversal through the taxonomy-pieces, which also guarantees
that one concept has only one father-concept in the pruned graph.

As pointed out before, the relations learned in each iteration are merged with re-
lations learned in previous iterations (line 7), hence converging to the final ontology.
According to the Frequency Assumption, we ensure that itemsets with higher support
have higher priority than the itemsets with lower support at the merging step, i. e., the
taxonomy-pieces learned in previous iterations with higher support have higher priority
than the ones learned in the current iteration (e. g., Fig. 3).

9 The decision of using a tree instead of an arbitrary directed acyclic graph is due to the fact,
that the evaluation procedure (see section 4) operates only on trees

10 Note that the path tx → ty → tz leads to more specialized classification of the concept tz , i. e.,
it is not classified as a subconcept of the general concept tx, but it classified as a subconcept
of a more specific concept ty



Fig. 3. Addition of taxonomical relations during the learning process. a) Relations already learned
in previous iterations. b) Possible relations extracted in the current iteration. c) The learned tax-
onomy at the end of the current iteration. Note that only the new relations conforming to the old
ones will be learned. In this example pop will not be defined as a subconcept of rock, because it
is already known to be a subconcept of modern and a concept is only allowed to have one direct
super-concept.

Remarks on complexity. The most expensive steps of the algorithm are: (i) the pro-
jection of the folksonomy to a transactional database, (ii) the extraction of frequent
itemsets and (iii) the population of the ontology (line 9), as these are the only steps op-
erating on the original folksonomy11. The other steps operate on the extracted frequent
itemsets, which have sizes of lower orders of magnitude. The step (i) requires a linear
scan on the folksonomy and therefore has linear complexity. As for the step (ii), the
algorithm described in [3] can be implemented as l linear scans on the transactional
database, where l is the size of the largest itemsets to be found. However, we imple-
mented this step using a sophisticated trie representation of the transactional database
and the frequent itemsets, which further improves efficiency [6, 7, 5]. The last step, i. e.,
the creation of the knowledge base (line 9, outside the loop), is based on the count-
ing of the co-occurrence between resources and tags, which means a linear scan on the
folksonomy.

4 Recommender Systems for Ontology Evaluation

The non-hierarchical property of folksonomies can somewhat restrict the capabilities
of the users for finding information, as the browsing is constrained to a flat structure
where tag relations are disregarded. Most of the literature concerning ontology learning
from folksonomies use this observation as a main motivation for providing users with
a taxonomy of tags, even though the authors do not quantify how good it is for the task
it was designed for. Instead, the quality of the ontologies is measured based on whether
they match people’s common sense or a reference ontology. Taking this into account,
and given that collaborative filtering [21] is one of the most successful and prominent
approaches for helping users finding useful information, we propose to plug the inves-

11 Or its projection, which have roughly the same size



tigated knowledge structures in recommender systems and evaluate the outcome as an
indicator of their usefulness.

According to Porzel et al. [20], the minimal elements necessary for a task-based
evaluation of an ontology are: a task, one or more ontologies, an application and a gold
standard, which are specified for our benchmark as follows.

The Task: Recommending useful resources (e. g., music tracks, videos, websites, etc.)
to the users, based on their implicit feedback on resources.

One (or more) Ontologies: A trivial ontology representing a folksonomy, a domain-
expert ontology and a collabulary.

The Application: A collaborative filtering algorithm that uses taxonomies for finding
the resources of interest. The idea of collaborative filtering is to suggest new resources
based on the opinion of like minded users usually called neighborhood.

A Gold Standard: In this case the gold standard is the set of resources that the user
prefers the most. In a typical recommender systems evaluation scenario we know these
resources in advance. We split this set into training and test sets and then use the ones in
the training set to recommend other resources the user would eventually like. To mea-
sure the quality of the recommender, we compare the predicted resources with the ones
in the test set.

The concrete application we have chosen is a taxonomy-driven approach for recom-
mender systems proposed by Ziegler et al. [27], where taxonomies are not only regarded
as background knowledge, but also the main cornerstone for efficient and personalized
information discovery. The algorithm heavily relies on the taxonomy to make the rec-
ommendations and therefore we assume that the better the taxonomy is, the better are
the recommendations. In their method a user profile is not composed by vectors such
as ui ∈ R|R|, where uik indicates the user’s rating for resource rk ∈ R, common in
traditional collaborative filtering techniques, but by vectors of interest scores assigned
to concepts taken from an ontologyO over resource’s concepts. The main idea in repre-
senting user profiles in this way is the possibility to exploit the hierarchy of the ontology
to generate more overlap and thus allow more meaningful similarity computation. The
core idea lies in the users’ profile assembly, which is briefly described as follows (see
Example 2). For every concept c ∈ CO having the resources rk that user ui has implic-
itly rated as instances, it is also inferred an interest score for all super-concepts of c,
where scores assigned to super-concepts decay with increasing distance from the con-
cept c. There are other steps concerning score propagation and normalization (see [27]
for more details) that will not be covered here due to space reasons.

Example 2. Consider the ontology depicted in Fig. 1.b. Let ui have implicitly rated
resource r1. In this case this resource is assigned to just one concept, namely {emo
}. Now let s := 100 denote the overall accorded interest score. After score propaga-
tion and normalization, the profile vector for user ui is composed as ui := (emo :=
53.3, alternative := 26.6, rock := 13.3, root := 6.6)T . Note that the interest score
(100) is unevenly distributed among the ancestors of emo, where higher concepts re-
ceive lower scores, thus reflecting the loss of specificity upwards to the root. After the



Table 1. Characteristics of the knowledge bases. For convenience, we also let |T | represent the
count of concepts in musicmoz

dataset |U | |T | |R| |Y |
last.fm 3532 7081 982 130899
musicmoz - 555 982 -

Table 2. Examples of the three best semantic mappings between tags from last.fm and concepts
from musicmoz

electro hip hop chillout old skool dance anything else but death depeche mode
electronica hip hop alternative house heavy metal experimental rock

dance rhythm and blues rock hip hop metal synthpop
alternative rap electronica electronica rock indie

taxonomy-based profiles are assembled for all users, traditional user-based collabora-
tive filtering can be directly applied.

5 Experiments and Discussion

To evaluate our approach we used two different knowledge bases defined over the music
domain, where musical resources are assigned to concepts either by the users of a folk-
sonomy or by the experts in the domain. As the folksonomy representative we have cho-
sen Last.fm12, a social tagging system that provides personalized radio stations where
users can tag artists and tracks they listen to. Representing the domain-expert we have
chosen the Open Music Project13(musicmoz), which is based on the Open Directory14

philosophy and aims to be a comprehensive knowledge base about music. We extracted
the style hierarchy representing a taxonomy of music genres15 from musicmoz to consti-
tute the domain-expert ontology. Since we consider that the aforementioned knowledge
bases are defined over the same set of instances, we eliminated all the resources that
are not present in both knowledge bases. Table 1 gives a brief overview on the datasets
after this pre-processing.

Folksonomy Enrichment. In the semantic mapping step for the folksonomy enrichment
described in Section 2, we also handled concept duplications by eliminating tags that
are very similar to the concepts that are to be included in the enriched folksonomy. We
do this by using the Levenshtein distance metric with a high threshold. Note that this
also provides a lexical correction for misspellings, since if we detect that altertative and
alternative are duplicates for example, we just include the syntactically correct one, in

12 This data can be easily gathered by the Web Services provided by last.fm
(http://www.last.fm/api)

13 http://musicmoz.org
14 http://www.dmoz.org
15 The hierarchy is composed by cross references which were disregarded in order to guarantee

the tree structure



this case alternative. Table 5 illustrates some of the tags and their corresponding three
best semantic mappings. While some mappings are trivial, others are very interesting.
Consider the tag old skool dance for example. The best mapping refers to house, which
according to Wikipedia16: ”House music is a style of electronic dance music that was
developed by dance club DJs in Chicago in the early to mid-1980s”, thus indeed ”old
skool dance”. This can help both experts and users to evolve and specialize their vocab-
ulary in order to further improve the knowledge sharing. Moreover, looking to the three
best mappings of the tag anything else but death e. g., it is easy to infer that this tag
refers to people who likes all styles of heavy music except the subgenre death metal,
even though it is not explicit just by looking at the tag. Another interesting example
is the tag depeche mode. Depeche Mode actually refers to an English band from the
80s, which according to Wikipedia17 belongs to the genres New Wave, Synth Pop, Post
Punk and Alternative Dance. Note that synthpop is the second best map in this case and
therefore conforms to other authority sources such as Wikipedia.

Collabulary Learning. After some experiments for calibration, we used the following
setting for the ontology learning process. The count of iterations was set to 7, the min-
imum support threshold in the i-th iteration was 0.025·|D|

2i where |D| is the count of
transactions. This led in our case to a minimum support of about 500 in the first itera-
tion, and 8 in the last one. This is reasonable, as we assume that tags occurring more
than 500-times together certainly correlate no matter whether they co-occur for exam-
ple 1100-times or just 700-times. We also assume that in our database of around 40000
transactions, two tags co-occur at least 8-times, if they are correlated. Edge thresholds
were chosen to be 1.5 (for itemsets of size 2), 1.4 (for itemsets of size 3), 1.3 (for
itemsets of size 4), 1.2 (for itemsets of size 5) and 1.1(for itemsets of size 6). The as-
sumption behind this choice is that at least 50% of the users tagging a resource with a
subconcept (subtag), also tags the same resource with the corresponding super-concept.
It is also assumed, that a super-concept has at least 3 subconcepts (subtags). This results
in the super-concept (supertag) being used at least 3 · 0.5 = 1.5-times more often than
its subconcept (subtag). According to the Large Itemset Assumption, relaxed thresholds
can be applied for itemsets of size more than 2. To filter ”misleading” itemsets, we used
a goodness threshold of g = 2.

Due to space reasons in Fig. 4 we just show an extract of the learned ontology 18

with root in emo and maximum depth set to 2. It is interesting to note that while emo
is a leaf node in the domain expert ontology, it spans several other subtrees in our case.
Looking at the definition of the genre in Wikipedia19 we see that originally emo refers
to punk hardcore and indie rock but starting in the mid-1990s, the term evolved and
began to refer to a more melodic and less chaotic kind of indie rock style. Notice that
as children of emo we have both concepts associated to the original definition, which
comes from the domain expert-ontology (e. g., punk hardcore, indie rock) and the ones
associated with the term evolution (nineties and post hardcore). Also notice, that in the

16 http://en.wikipedia.org/wiki/House music
17 http://en.wikipedia.org/wiki/Depeche Mode
18 Generated with Pajek (http://pajek.imfm.si/doku.php)
19 http://en.wikipedia.org/wiki/Emo



definition given in musicmoz20 for the genre, the evolution of the term is not mentioned,
denoting that controlled vocabularies evolve somewhat slower than folksonomies, as
already intuitively expected.

Fig. 4. Extract of the learned ontology

Evaluation. As mentioned in Section 5, we have chosen three ontologies to evaluate
according to our benchmark, namely, a trivial one representing the folksonomy (see
Section 2) as the baseline, a domain-expert ontology represented by musicmoz and the
collabulary. We have used a AllBut1[8] protocol to evaluate the obtained recommenda-
tions where the test set was obtained by randomly selecting one resource from every
user. Note that this also means eliminating all the tag assignments of the corresponding
user for the respective test resource. The rest of the data is used for the enrichment of
the folksonomy and learning the collabulary that will be used by the recommender al-
gorithm. We have repeated this procedure 5 times and averaged the outcomes in order
to be more confident about the results21. Our evaluations considered any resource in the
recommendation set that matches the resources in the testing set as a ”hit”, which is
equivalent to the Recall metric, typical in such scenarios. The number of recommended
resources was set to 10 and the size of the neighborhood to 20.

Fig. 5 shows the results of the experiments. Note that while the domain-expert on-
tology provides a significant improvement over the baseline, the colabullary largely
outperforms both. Intuitively this is explained by the fact that we are not restricting the
vocabulary of the user, on the contrary, we provide an enriched ontology composed by
the best of both worlds. Based on this empirical evidences we can then conclude that
while domain-expert ontologies indeed improve the information finding in comparison
to pure flat folksonomies, the learned collabulary helps even further.

20 http://musicmoz.org/Styles/Rock/Alternative/Emo/
21 Standard deviation on the top of the bars in Fig. 5



Fig. 5. Ontology evaluation based on recommender systems

6 Related Work

Given the novelty of the problem, there are still very few related works. In [24] e. g.,
the authors rely on external authority sources or on Semantic Web ontologies to make
sense of tag semantics. Even though this can help finding more interesting relations than
co-occurrence models, it can somewhat restrict the relation discovery, since if a relation
is not defined in these external sources, it is assumed that the tags are not related, even
if they frequently co-occur in the dataset. We instead, infer the relations directly from
the data and thus are not dependant on external sources.

Other related areas are ontology learning and evaluation. As pointed out before,
most of the literature concerning ontology learning from folksonomies base their ap-
proaches upon co-occurrence models. Mika [17] e. g., use co-occurrence of tags with
resources and users to build graphs relating tags and users and also tags and resources.
In [23] conditional probabilities are used to find subsumption relations and [26] use
probabilistic unsupervised methods to derive a hierarchy of tags. Given that co-occurrence
models are the core subject of frequent itemset mining, in [22] it is proposed the appli-
cation of association rules between projections of pairs of elements from the triadic con-
text model of folksonomies, although in a conceptual level only. Even though all these
works qualitatively contribute for making folksonomies more useful, performance is-
sues are rarely mentioned. Furthermore, all these works are only subjectively evaluated
by checking whether the derived ontologies match a reference ontology for example.

7 Conclusions and Future Work

In order to take full advantage of folksonomies’ potential to alleviate the knowledge
bottleneck that slows down the Semantic Web realization, one needs to educate social
tagging systems’ users towards clear annotation, without however, taking out their free-
dom to tag. In this paper we proposed an approach to address this issue by combining
the user vocabulary with the expert vocabulary in an integrated fashion. Various studies
have shown (e. g., [10]) that the vocabulary of users in social tagging systems stabilize
over time due to exposure to each other tags and resources. Taking this into account,



we argue that exposing users to a collabulary where meaningful concepts are matched
and put together with tags, have the potential to make the whole vocabulary converge
to a more meaningful, shareable and useful knowledge representation. Furthermore, we
have empirically evaluated the extent to which folksonomies, domain-expert ontologies
and collabularies help recommender systems to deliver useful information to the users.
Looking at the results, the main lessons learned were: (i) indeed hierarchies provide ad-
vantages over flat folksonomies, and (ii) collabularies provide clear benefits over pure
domain-expert ontologies.

The main contributions can be summarized as follows: 1. The proposal of a new
approach to address the trade-off between folksonomies and domain-expert ontologies.
2. The proposal of a new algorithm for ontology learning from folksonomies based on
frequent itemset mining techniques. 3. The proposal of a new benchmark for ontology
evaluation. 4. The evaluation of the proposed model on real-life data, namely, from
Last.fm and musicmoz. In future work we plan to extend the method here proposed
with the identification of non-taxonomical relations between the tags of the enriched
folksonomy.
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