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Abstract—This paper introduces and compares some tech-
niques used to predict the student performance at the univer-
sity. Recently, researchers have focused on applying machine
learning in higher education to support both the students
and the instructors getting better in their performances.
Some previous papers have introduced this problem but the
prediction results were unsatisfactory because of the class
imbalance problem, which causes the degradation of the
classifiers. The purpose of this paper is to tackle the class
imbalance for improving the prediction/classification results
by over-sampling techniques as well as using cost-sensitive
learning (CSL). The paper shows that the results have been
improved when comparing with only using baseline classifiers
such as Decision Tree (DT), Bayesian Networks (BN), and
Support Vector Machines (SVM) to the original data sets.

Keywords-Academic performance; Prediction; Class imbal-
ance; Cost-sensitive.

I. INTRODUCTION

Machine learning has been applied in plenty of areas. For
examples, it can be used to predict/classify customer behav-
iors in marketing or sales, to detect fraudulent or default
in banking, to diagnose diseases in medicine, and recently,
to a new area which is education. Moreover, the universities
desire to improve their educational quality, hence, how to ap-
ply machine learning techniques in higher education to help
the universities, instructors, and the students getting better
in their performances become more and more attractive to
both university managers and researchers.

In the first conference of educational data mining 2008,
[1] compared different data mining methods and techniques
to classify students based on their Moodle usage data and the
final marks obtained in their respective courses; [2] proposed
a model with different types of education-related questions
and the data-mining techniques appropriate for them. For
examples, predicting student performance, clustering similar
students, and associating types of students with appropriate
courses; [3], [4], and [5] used BN, DT, and other common
techniques to predict the student results; another study [6]
was done by us recently to predict the student performance at
two real case studies: Can Tho University, Vietnam (CTU)1,
and Asian Institute of Technology, Thailand (AIT)2.

1http://www.ctu.edu.vn
2http://www.ait.ac.th

Researchers have spent a lot of time in the task of predict-
ing student performances while archiving only fair results.
One major problem is that the number of ”pass students” is
much higher than the number of ”fail students”. This skew
distribution is the main reason causing the degradation of
classifiers.

The purposes of this study are both to improve the
results of classification techniques in predicting the student
performance of two real world case-studies (CTU, AIT) by
dealing the class imbalance problem, and to compare the
results of some common classification techniques before and
after approaching with class imbalance.

The rest of the paper is organized as follows. Section 2
introduces some common techniques used to tackle with the
class imbalance problem; section 3 represents our methods;
section 4 explores the datasets; section 5 shows the results;
finally, section 6 and 7 represent discussion and conclusion
respectively.

II. DEALING WITH CLASS IMBALANCE PROBLEM

To deal with imbalanced datasets, researchers used to
focus on data level and classifier (algorithm) level. At
data level, the common task is the modification of class
distribution using over-sampling or under-sampling tech-
niques. At classifier level, some common techniques were
introduced such as manipulating classifiers internally, one-
class learning, ensemble methods, and CSL [7]. We will
briefly review some techniques used in this study.

A. Modifying class distribution

To modify the class distribution, over-sampling and under-
sampling are usually used. Under-sampling discards a lot
of useful information and usually appropriates for large
datasets. The most common over-sampling method is ran-
dom over-sampling, which randomly duplicates the exam-
ples in the datasets. Another over-sampling method was
introduced by [8] and called SMOTE (Synthetic Minority
Over-sampling Technique). SMOTE generates new artificial
minority examples by interpolating between the existing mi-
nority examples rather than simply duplicating the original
examples. This method, at first, finds k nearest neighbors of
each minority example (according to authors, k=5); then it
selects a random nearest neighbor; finally, the new synthetic



examples are generated along the line segment joining a
minority class sample and its nearest neighbor.

B. Cost-sensitive learning
Most of classifiers assume that the misclassification costs

(false negative and false positive cost) are the same. In some
real-world applications, this assumption may not be true. For
examples, the cost of mailing to non-buyers is less expensive
than the cost of non-mailing to the buyers [9]; or the cost of
predicting non-terrorist to terrorist is much cheaper than the
cost of misclassifying an actual terrorist who carries a bomb
to a flight. Cost is not necessarily monetary, for examples,
it can be a waste of time or even the severity of an illness
[10]. In our studies, the cost of misclassifying the actual
”fail students” to ”pass students” (so we can not help them,
consequently, they will be expelled from the university) is
much costlier than the false alarm.

When learning with two-class problems, we assume that
the positive class (+) represents for the minority examples,
and the negative class (−) represents for the majority
examples. Let C(i, j) be the cost of predicting an example
belonging to class i when in fact it belongs to class j, then
the confusion matrix and the cost matrix are described as in
tables I and II respectively.

Table I
CONFUSION MATRIX

Predict classes
Positive Negative

Actual classes
Positive TP FN
Negative FP TN

Table II
COST MATRIX

Predict classes
Positive Negative

Actual classes
Positive C(+,+) C(−,+)

Negative C(+,−) C(−,−)

Given this cost matrix, an example x can be classified into
class i with the minimum expected cost (conditional risk)
by using Bayes risk in equation (1)

H(x) = arg min
i

 N∑
j

P (j|x)C(i, j)

 (1)

where N is number of classes and P (j|x) is the posterior
probability of classifying an example x into class j.

Another term is the cost ratio, which is the propor-
tion of false negative and false positive determined by
C(−,+)/C(+,−). The purpose of cost-sensitive learning
is to build the model with minimum misclassification cost
as described in equation (2)

Totalcost = C(−,+)× FN + C(+,−)× FP (2)

C. Evaluation metrics

In the case of imbalanced datasets, accuracy metric be-
comes useless. For example, suppose the dataset has 990
negative examples and only 10 positive examples (this
minority is usually very important). Most of the classifiers
designed to maximize the accuracy, so in this case, they
will classify all examples belong to the majority class to get
the maximum of 99% accuracy. This result has no meaning
because all the positive examples are classified incorrectly.
To evaluate the model in the case of class imbalance,
researchers usually use F-measure and the AUC, which are
related to some other metrics described in the following.

False negative rate (FNR) is the proportion of positive
examples misclassified as belonging to the negative class,
FNR = FN

TP+FN
True negative rate (TNR) is the proportion of negative

examples correctly classified as belonging to the negative
class, TNR = TN

FP+TN)
False Positive Rate (FPR) is the proportion of negative

examples misclassified as belonging to the positive class,
FPR = FP

TN+FP
True Positive Rate (TPR) (or Recall R) is the proportion

of positive examples correctly classified as belonging to the
positive class, determined by:

TPR = R =
TP

TP + FN
(3)

Precision (P) is the positive predictive value determined
by:

P =
TP

TP + FP
(4)

F-Measure is an evaluation metric which considers both
precision and recall of the testing results (β is used to set
equal to 1)

F −Measure =
(1 + β2)× P ×R

(β2 × P +R)
(5)

Another important metric is the area under the ROC curve
(AUC) [11], in which ROC (Receiver Operating Characteris-
tic) curve is a graphical approach for displaying the tradeoff
between TPR (y-axis) and FPR (x-axis) of a classifier. We
will use these metrics to evaluate our models in section 5.

III. METHODS

The first step in this study is to collect the real datasets
from the relational databases. Based on experts and feature
selections, we have selected the most important attributes for
the prediction tasks. The second step is to apply techniques
to tackle the class imbalance based on three methods:
• Method 1: Modifying the class distribution by using

SMOTE.
• Method 2: Applying CSL to minimize the total mis-

classification cost.
• Method 3: Combining SMOTE and CSL



The third step is to evaluate and compare the results of these
methods by experimenting with 3 classifiers on both the
original and the re-balanced datasets. We use an evaluation
protocol visualized as in the figure 1. This evaluation works
as 10-folds cross-validation. At first, the dataset was sepa-
rated; next, the enrichment data was generated on the train
set; then the classifiers were built; finally, the evaluations
were applied to the original test data. The final results were
collected from average of ten run-times.

Figure 1. Evaluation protocol

The final step in this research is to build the intelligent
system based on the best model we have evaluated. This
system is deployed on the local web to help not only the
students in predicting their result to have clever study plans
but also the instructors who give them advices or more
tutorials.

IV. DATASETS

The first dataset was got from Can Tho University, Viet-
nam (CTU), which has 20492 examples and 14 attributes.
The second dataset was collected from the Asian Institute of
Technology, Thailand (AIT), which has 936 examples and
14 attributes. We use these two datasets for predicting the
student results (”pass”, ”fail”).

Furthermore, to observe the results on the less imbalance
data, two other datasets were also collected. The third dataset
was taken from UCI repository3 named Teaching Assistant
Evaluation (TAE). This data consists of evaluation of teach-
ing performance for 151 teaching assistant assignments at
University of Wisconsin-Madison. The scores were divided
into 2 classes (”low”, ”med-high”). The fourth dataset was
collected from the Journal Statistics of Education Data
Archive4 named ”U.S. News College” (USNC) having 1204
colleges, 33 attributes. This data is used to classify the
graduation rate. We artificially assigned binary target labels
for USNC by dividing the students at 85% graduation rate to
get the imbalanced ratio between two real datasets AIT/CTU
and TAE, as in table III

V. EXPERIMENTIAL RESULTS

The experiments and the application system in this study
were developed based on the WEKA library.5

3http://archive.ics.uci.edu/ml
4http://www.amstat.org/publications/jse/index.html
5http://www.cs. waikato.ac.nz/ml/weka/

Table III
DATASETS

Dataset #Examples #Attributes #minor #major/
#minor

CTU 20492 14 1565 13.09
AIT 936 14 75 12.48
TAE 151 6 49 3.08
USNC 1024 33 132 7.76

A. Hyperparameters search

We have applied hyperparameter searches to look for
the best parameters on all classifiers. To observe how the
classifiers are influenced by the each dataset, we have
also searched for the best parameter (percentage) of over-
sampling techniques. Each dataset has its own structure, so
the percentage of undersampling and oversampling are also
different. This percentage is treated as hyperparameter. For
oversampling, we search on the percentage from 50, 100,
200,.. to a balanced distribution. There are some notations
such as CTU-SM150 represents for the dataset with SMOTE
at 150%, and CTU-O means that the Original CTU dataset
was used.

Table IV shows the best hyperparameters for DT. The
”unpruned” indicates whether pruning is performed; ”use-
Laplace” indicates whether counts at leaves are smoothed
based on Laplace [12].

Table IV
HYPERPARAMETERS FOR DT

Dataset Un use Binary #Instances per leaf
pruned Laplace split

CTU-O True True True 5
CTU-SM150 False True True 10
AIT-O True True True 2
AIT-SM200 True True False 2
TAE-O True True False 2
TAE-SM50 True False True 2
USNC-O True True False 7
USNC-SM100 True True True 3

Table V describes the hyperparameters for BN. Alpha
is used for estimating the probability tables and can be
interpreted as the initial count on each value [13]; MaxNoOf-
Parents (M) sets the maximum number of parents a node in
the BN can have. (M = 1 for Naive Bayes classifier; M = 2
for Tree Augmented Bayes Network [14]; M > 2 for Bayes
Net Augmented Bayes Network [15]; The framework K2
developed by [16] for induction of BN from data is used.

Given a datasetD consisting of n examples (xi, yi), where
xi ∈ X input features and yi the target class, yi ∈ Y =
{−1,+1}, SVM predicts a new example x by using the
function:

f(x) = sign

(
n∑
i=1

αiyik(x,xi) + b

)
(6)



Table V
HYPERPARAMETERS FOR BN

Dataset MaxNoOfParents Search Algorithm Alpha
CTU-O 2 Local.K2 0.3
CTU-SM150 3 Local.K2 0.3
AIT-O 2 Local.K2 0.4
AIT-SM200 2 Local.K2 0.1
TAE-O 2 Local.K2 0.2
TAE-SM50 2 Local.K2 0.1
USNC-O 1 Local.K2 0.1
USNC-SM200 1 Local.K2 0.7

where k(x,xi) is a kernel function, b is the bias, and αi is
determined by solving the Lagrangian optimization problem,
Lp =

1
2
‖w‖2 +C

n∑
i

ξi−
n∑
i

αi{yi(xi.w+b)−1+ξi}−
n∑
i

µiξi

(7)
where ξi is a slack variable, µi is Lagrange multiplier,

and C is user-specified parameter representing the penalty
of misclassifying the training instances and it can be chosen
based on calibration.

For non-linear problems, the kernel k is used to maximum
margin hyperplanes. Two commonly used kernel functions
are the polynomial kernel

k(x,xi) = (γx · xi + r)p (8)

and the radial basis function kernel

k(x,xi) = e−γ‖x−xi‖2 (9)

We have searched for the best hyperparameters C, ex-
ponent p, and γ in equations (7), (8), and (9) respectively
using the method proposed by [17]. At first, a ”raw search”
on the powers of two (2−4 . . . 28) for C values was used
to identify a ”good region”, then a ”smooth search” around
that region was conducted. Table VI represents these results,
in which bLogistic indicates whether to fit logistic models
to the outputs.

Table VI
HYPERPARAMETERS FOR SVM

Dataset Kernel p/γ C bLogistic
CTU-O Poly 1 2.5 Yes
CTU-SM200 Poly 1 2.5 Yes
AIT-O Poly 1 1.6 Yes
AIT-SM200 Poly 1 2.0 Yes
TAE-O Poly 3 3.0 Yes
TAE-SM80 Poly 1 2.0 Yes
USNC-O RBF 0.01 2.0 Yes
USNC-SM50 RBF 0.01 1.0 Yes

When learning with cost-sensitive, this study also searches
for the cost ratio between false negative and false positive.
We will investigate more clearly in next section.

B. Evaluation and comparison

We have experimented with three classifiers on four
datasets. The AUC and F-Measure results are shown in table
VII. In each dataset, this study shows that the classification
results after dealing the class imbalance problem are nor-
mally better than learning on original data.

Another important method to deal with class imbalance is
CSL, in which the classifiers will not consider the FN and
FP equally. In our application, FN is the misclassification
cost from the actual ”fail student” to ”pass student” and FP
is the misclassification from the ”pass” to the ”fail” one.
What is the cost in this case? Suppose that a second year
student fails in this year, if he will fail again in next year
then he will be expelled from the university, so the cost
of both student and the university can be estimated as FN-
Cost = (tuition fees + living fees + insurance fees + other
fees) * 2-years-have-passed + (tuition fees will be lost from
the university) * 2-years-in-future + (invaluable moral-cost).
Conversely, the cost of FP can be approximated as FP-Cost
= (the fee of some tutorials).

In fact, the cost of FN is much higher than FP. To examine
how the total cost change when we increase the cost ratio, we
have experimented on the cost ratio from 2 to 20. Figures
2 (only uses CSL) and 3 (combining SMOTE with CSL)
display the total cost produced by DT, BN, SVM, and DT
without cost-sensitive (DT-O). The results indicate that DT
has the lowest total cost when comparing with the others
on original data, and SVM has the lowest total cost on re-
balanced data. Total cost is also reduced when learning on
over-sampling datasets.

Figure 2. Total cost of AIT-O

To observe clearly how CSL effects on our problems, we
have also experimented with three other ensemble methods,
which can be used for handling class imbalance problem,
AdaBoost [18], Bagging, and MetaCost [10] on the baseline
DT. (Since the limitation of space, some other results are
not presented here).

Figures 4 and 5 compare the total cost on ensemble
methods. AdaBoost, Bagging and original-DT increase the



Table VII
AUC AND F-MEASURE

Algorithm Dataset TPR FPR Precision AUC F-Measure
AIT-O 0.160 0.063 0.182 0.692 (0.090) 0.170 (0.120)
AIT-SM200 0.280 0.038 0.389 0.763 (0.060) 0.326 (0.090)
CTU-O 0.347 0.029 0.507 0.879 (0.010) 0.412 (0.030)

Decision Tree CTU-SM150 0.466 0.056 0.550 0.882 (0.010) 0.495 (0.020)
TAE-O 0.375 0.147 0.545 0.660 (0.130) 0.444 (0.080)
TAE-SM50 0.563 0.382 0.409 0.733 (0.100) 0.474 (0.090)
USNC-O 0.341 0.022 0.615 0.821 (0.070) 0.455 (0.010)
USNC-SM100 0.545 0.062 0.522 0.850 (0.030) 0.533 (0.020)
AIT-O 0.080 0.021 0.250 0.655 (0.080) 0.118 (0.050)
AIT-SM200 0.120 0.031 0.273 0.731 (0.050) 0.167 (0.100)
CTU-O 0.383 0.025 0.570 0.856 (0.010) 0.458 (0.030)

Bayesian Networks CTU-SM50 0.400 0.031 0.535 0.877 (0.010) 0.456 (0.020)
TAE-O 0.438 0.206 0.438 0.680 (0.130) 0.296 (0.080)
TAE-SM90 0.625 0.294 0.500 0.688 (0.100) 0.556 (0.090)
USNC-O 0.514 0.123 0.380 0.848 (0.060) 0.470 (0.020)
USNC-SM200 0.591 0.115 0.388 0.864 (0.030) 0.531 (0.020)
AIT-O 0.120 0.021 0.250 0.690 (0.016) 0.167 (0.008)
AIT-SM100 0.200 0.035 0.330 0.739 (0.053) 0.250 (0.092)
CTU-O 0.385 0.026 0.500 0.813 (0.012) 0.450 (0.020)
CTU-SM200 0.454 0.038 0.510 0.878 (0.010) 0.496 (0.015)

Support Vector Machines TAE-O 0.500 0.176 0.571 0.715 (0.040) 0.467 (0.039)
TAE-SM80 0.625 0.088 0.769 0.757 (0.046) 0.615 (0.027)
USNC-O 0.409 0.011 0.418 0.805 (0.037) 0.503 (0.043)
USNC-SM50 0.545 0.070 0.490 0.810 (0.039) 0.516 (0.034)

Figure 3. Total cost of AIT-SM200

total cost as a linear function when the cost ratio is increased.
MetaCost is better than CSL in the case of small datasets
(e.g. AIT-O), but when learning on larger datasets (e.g. CTU-
O) then CSL outperforms.

VI. DISCUSSIONS

In this study, the results have been improved when com-
paring with our previous works [6], which only worked on
original datasets. Although some papers had researched in
this area such as [3], [4], and [5], they evaluated their models
in terms of accuracy, which has less meaning in the case of
class imbalance as we analyzed in section 2.3. We have used
AUC, F-Measure, and total cost to evaluate the models on

Figure 4. Total cost of ensembles (CTU-O)

three methods proposed in section 3 and recognized that the
results are reasonable. When the datasets are large enough,
CSL is better than MetaCost in the case of increasing cost
ratio.

In the ethical issues, it should be aware that there is
no segregation from using this system to treat with ”low
performance” or ”high performance” students. As we said
in the introduction, the purpose of this study is to improve
the prediction results to help the them get better in studying.



Figure 5. Total cost of ensembles (AIT-O)

VII. CONCLUSIONS

In this study, we have applied machine learning techniques
to improve the prediction results of academic performances
for two the real case studies. Three methods have been used
to deal with the class imbalance problem and all of them
show satisfactory results. We first re-balanced the datasets
and then used both cost-insensitive and sensitive learning
with SVM for the small datasets and with Decision Tree for
the larger datasets. Our models are initially deployed on the
local web. In future works, we will cross the results from
using this system with the expected results in educational
field.

In addition, we can integrate more features such as
combining with E-learning system or predicting results in
the E-learning. Moreover, most universities today are using
the Credit System, in which each semester the students
get confused with dozen of courses. So, how to help them
choose appropriate courses based on their previous study
results becomes the real problem. We can solve this by using
association rules or recommender system approach [19] [20].
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