MATRIX AND TENSOR FACTORIZATION FOR PREDICTING
STUDENT PERFORMANCE

Nguyen Thai-Nghe, Lucas Drumond, Tomas Horvéth,
Alexandros Nanopoulos, and Lars Schmidt-Thieme
Machine Learning Lab, University of Hildesheim, 31141 Hildesheim, Germany
{nguyen, ldrumond, horvath, nanopoulos, schmidt—lhieme}@ismll.uni—hildesheim.de

Keywords:

Abstract:

Recommender Systems, Matrix Factorization, Tensor Factorization, Student Performance

Recommender systems are widely used in many areas, especially in e-commerce. Recently, they are also ap-

plied in technology enhanced learning such as recommending resources (e.g. papers, books,...) to the learners
(students). In this study, we propose using state-of-the-art recommender system techniques for predicting stu-
dent performance. We introduce and formulate the problem of predicting student performance in the context
of recommender systems. We present the matrix factorization methods, known as the most effective recom-
mendation approaches, to implicitly take into account the latent factors, e.g. “slip” and “guess”, in predicting
student performance. Moreover, the knowledge of the learners has been improved over the time, thus, we
propose tensor factorization methods to take the temporal effect into account. Experimental results show that
the proposed approaches can improve the prediction results.

1 INTRODUCTION

Recommender systems are widely used in many ar-
eas, especially in e-commerce (Rendle et al., 2010;
Koren et al., 2009). Recently, researchers have ap-
plied recommendation techniques in e-learning, es-
pecially technology enhanced learning (Manouselis
et al., 2010). Most of the works focused on construct-
ing recommender systems for recommending learning
objects (materials/resources) or learning activities to
the learners (Ghauth and Abdullah, 2010; Manouselis
et al., 2010) in both formal and informal learning en-
vironment (Drachsler et al., 2009).

On the other side, educational data mining has
also been taken into account recently to assist univer-
sities, teachers, and students. For example, to help the
students improve their performance, we would like to
know how the students learn (e.g. generally or nar-
rowly), how quickly or slowly they adapt to new prob-
lems or if it is possible to infer the knowledge require-
ments to solve the problems directly from student per-
formance data (Feng et al., 2009). In (Cen et al.,
2006) it has been shown that an improved model for
predicting student performance could save millions of
hours of students’ time (and effort) in learning alge-

bra. In that time, students could move to other spe-
cific fields of their study or doing other things they
enjoy. Moreover, many universities are extremely fo-
cused on assessment, thus, the pressure on “teaching
and learning for examinations” leads to a significant
amount of time spending for preparing and taking
standardized tests. Any advances which allow us to
reduce the role of standardized tests hold the promise
of increasing deep learning (Feng et al., 2009). From
an educational data mining point of view, a good
model which accurately predicts student performance
could replace some current standardized tests.

To address the student performance prediction
problem, many works have been published. Most of
them relying on traditional methods such as logistic
regression (Cen et al., 2006), linear regression (Feng
et al., 2009), decision tree (Thai-Nghe et al., 2007),
neural networks (Romero et al., 2008), support vector
machines (Thai-Nghe et al., 2009), and so on.

Recently, (Thai-Nghe et al., 2010) have proposed
using recommendation techniques, especially matrix
factorization, for predicting student performance. The
authors have shown that using recommendation tech-
niques could improve prediction results compared to
regression methods but they have not taken the tempo-



ral effect into account. Obviously, in the educational
point of view, we always expect that the students can
improve their knowledge time by time, so the tempo-
ral information is critical for such prediction tasks.

On the other hand, in student performance predic-
tion, there are two “crucial aspects” need to be taken
into account, which are

1. the probabilities that the students do not know
how to solve the problem (or do not know some
required skills related to the problem) but guess-
ing correctly (we call “guess” for short); and the
probabilities that the students know how to solve
the problem (or know all of the required skills
related to the problem) but they make a mistake
(we call “slip” for short); these problems are user-
dependent, and,

2. their knowledge has been improved over the time,
e.g. the second time a student is doing his ex-
ercises, his performance on average gets better,
therefore, the sequence effect is important infor-
mation.

Matrix factorization techniques, one of the most suc-
cessful methods for rating prediction, are quite appro-
priate for the first problem since they implicitly en-
code the “slip” and “guess” factors in their latent fac-
tors and we do not need to explicitly take care of as
in case of other methods like Hidden Markov Mod-
els (Pardos and Heffernan, 2010). Moreover, if we
would like to incorporate the sequential (time) aspect
or any other context such as skills in the second “cru-
cial aspect”, then tensor factorization techniques are
suitable for solving this problem.

This work proposes the factorization approaches
for predicting student performance. Concretely, the
contributions of this work are:

o formulating the problem of predicting student per-
formance in the context of recommender systems;

e proposing matrix factorization as well as biased
matrix factorization techniques which implicitly
encode the “slip” and “guess” factors in predicting
student performance

e proposing tensor factorization techniques to take
the temporal effect into account, e.g. the knowl-
edge of the learners improves over time.

e comparing the proposed approaches with other
baselines as well as traditional techniques such as
logistic regression.

From the experimental results on two large data
sets collected from the intelligent tutoring system, we
show that the proposed approaches perform nicely
among the other methods.

2 RELATED WORK

As surveyed in (Manouselis et al., 2010), many rec-
ommender systems have been deployed in technol-
ogy enhanced learning. Concretely, (Garcia et al.,
2009) uses association rule mining to discover inter-
esting information through student performance data
in the form of IF-THEN rules, then generating the
recommendations based on those rules; (Bobadilla
et al., 2009) proposed an equation for collaborative
filtering which incorporated the test score from the
learners into the item prediction function; (Ge et al.,
2006) combined the content-based filtering and col-
laborative filtering to personalize the recommenda-
tions for a courseware selection module; (Soonthorn-
phisaj et al., 2006) applied collaborative filtering to
predict the most suitable documents for the learn-
ers; while (Khribi et al., 2008) employed web mining
techniques with content-based and collaborative fil-
tering to compute the relevant links for recommend-
ing to the learners.

For predicting student performance, (Romero
et al., 2008) compared different data mining meth-
ods and techniques to classify students based on their
Moodle usage data and the final marks obtained in
their respective courses; (Bekele and Menzel, 2005)
used Bayesian networks to predict student results;
(Cen et al., 2006) proposed a method for improv-
ing a cognitive model, which is a set of rules/skills
encoded in intelligent tutors to model how students
solve problems, using logistic regression; (Thai-Nghe
et al., 2007) analyzed and compared some classifica-
tion methods (e.g. decision trees and Bayesian net-
works) for predicting academic performance; while
(Thai-Nghe et al., 2009) proposed to improve the stu-
dent performance prediction by dealing with the class
imbalance problem. (i.e., the ratio between passing
and failing students is usually skewed). Recently,
(Thai-Nghe et al., 2010; Toscher and Jahrer, 2010)
proposed using collaborative filtering, especially ma-
trix factorization for predicting student performance
but they have not take the temporal effect into ac-
count.

Different from the literature, instead of using tra-
ditional classification or regression methods, we pro-
pose using matrix factorization technique to implic-
itly manage the “slip” and “guess” factors in predict-
ing student performance, and using tensor factoriza-
tion to incorporate the temporal effect into the mod-
els.



3 PREDICTING STUDENT
PERFORMANCE

In the problem of predicting student performance, we
would like to predict the student’s ability in solving
the tasks when interacting with the tutoring system.
Figure la presents an example of the task!. Given
the circle and the square as in this figure, the task for
students could be “What is the remaining area of the
square after removing the circular area?”
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b. A snaphot of the transaction log

Figure 1: Predicting student performance: A scenario (Pic-
ture source: pslcdatashop.web.cmu.edu/KDDCup)

To solve this task (question), students could do
some smaller subtasks which we call solving-step.
Each step may be required one or more skills (or we
can call “knowledge components”), for example:

e Step 1: Calculate the circle area (the required
skills for this step are the value of @, square,
multiplication, and finally putting them together
area; = T x (OE)?)

e Step 2: Calculate the square area (skill: area, =
(AB)?)

e Step 3: Calculate the remaining (skill: area, —
areay)

Each solving-step is recorded as a transaction. Figure
Ib presents a snapshot of the transactions. Based
on the past performance, we would like to predict
students’ next performance (e.g. correct/incorrect) in
solving the tasks. The following section will formally
formulate this problem.

Problem Formulation
Computer-aided tutoring systems (CATS) allow stu-
dents to solve some exercises with a graphical fron-

1Source: https://pslcdatashop.web.cmu.edu/KDDCup

tend that can automate some tedious tasks, pro-
vide some hints and provide feedback to the student
(Massey et al., 1988). Such systems can profit from
anticipating student performance in many ways, e.g.,
in selecting the right mix of exercises, choosing an
appropriate level of difficulty and deciding about pos-
sible interventions such as hints. The problem of stu-
dent performance prediction in CATS means to pre-
dict the likely performance of a student for some exer-
cises (or part thereof such as for some particular steps)
which we call the tasks. The task could be to solve a
particular step in a problem, to solve a whole problem
or to solve problems in a section or unit, etc.

CATS allow to collect a rich amount of informa-
tion about how a student interacts with the tutoring
system and about his past successes and failures. Usu-
ally, such information is collected in a clickstream log
with an entry for every action the student takes. The
clickstream log contains information about the

time, student,context,action

For performance prediction, such click streams can
be aggregated to the task for which the performance
should be predicted and eventually be enriched with
additional information. For example, if the aim is to
predict the performance for each single step in a prob-
lem, then all actions in the clickstream log belonging
to the same student and problem step will be aggre-
gated to a single transaction and enriched, for exam-
ple with some performance metrics.

Part of the context describes the task the student
should solve. In CATS tasks usually are described in
two different ways: First, tasks are located in a topic
hierarchy, for example

unit 2 section O problem 2O step

Second, tasks are described by additional metadata
such as the skills that are required to solve the prob-
lem:

skilly, skilly, ..., skill,

All this information, the topic hierarchy, skills and
other task metadata can be described as attributes of
the tasks. In the same way, also attributes about the
student may be available.

More formally, let S be a set of student IDs, T be a
set of task IDs, and P C R be a range of possible per-
formance scores. Let Mg be a set of student metadata
descriptions and

mg: S — Mg

be the metadata for each student. Let M7 be a set of
task metadata descriptions and

mT:T—>MT



be the metadata for each task. Finally, let D" C
(S X T x P)* be a sequence of observed student per-
formances and D" C (S x T x P)* be a sequence of
unobserved student performances. Furthermore, let

Ty :SXTXP—P, (s,t,p)—p
and
Mg :SXTXP—SXT, (s,t,p)r— (s,1)
be the projections to the performance measure and to
the student/task pair.

Then the problem of student performance predic-
tion is, given D", 1y, D', mg, and mr to find

ﬁ]aﬁZ?' . 7pA|D’“S"
such that
‘DYE.V[ |
err(p,p):= Y, (pi—pi
i=1
is minimal with p := ©,D'* (or some other error
measures). In principle, this is a regression or clas-
sification problem (depending on the error measure).
Givens € Sandt € T, our problem is to predict p.
Obviously, in a recommender system context, s,¢ and
p would be user, item and rating, respectively. The
recommendation task at hand is thus rating prediction.

4 TECHNIQUES FOR
RECOMMENDER SYSTEMS

The aim of recommender system is making vast cata-
logs of products consumable by learning user prefer-
ences and applying them to items formerly unknown
to the user, thus being able to recommend what has a
high likelihood of being interesting to the target user.
The two most common tasks in recommender systems
are Top-N item recommendation where the recom-
mender suggests a ranked list of (at most) N items
i €1toauseru € U and rating prediction where the
aim is predicting the preference score (rating) r € R
for a given user-item combination.

In this work, we make use of matrix factoriza-
tion (Rendle and Schmidt-Thieme, 2008; Koren et al.,
2009), which is known to be one of the most success-
ful methods for rating prediction, outperforming other
state-of-the-art methods (Bell and Koren, 2007) and
tensor factorization (Kolda and Bader, 2009; Dunlavy
et al., 2010) to take into account the sequential effect.
We will briefly describe these techniques in the fol-
lowing subsections.

Notation: A matrix is denoted by a capital italic
letter, e.g. X; A tensor is denoted by a capital bold
letter, e.g. Z; wy denotes a k' vector; wy is the u'”
element of a k" vector; and o denotes an outer prod-
uct.

4.1 Matrix Factorization

Matrix factorization is the task of approximating a
matrix X by the product of two smaller matrices W
and H, i.e. X ~ WHT (Koren et al., 2009). In the
context of recommender systems the matrix X is the
partially observed ratings matrix, W € RV*X is a ma-
trix where each row u is a vector containing the K
latent factors describing the user u and H € R/*X is
a matrix where each row i is a vector containing the
K factors describing the item i. Let wy; and hj be
the elements of W and H, respectively, then the rating
given by a user u to an item i is predicted by:

K
Pui = Z Wikhix = (WHT)u,i (1)
k=1
where W and H are the model parameters and can be
learned by optimizing the objective function (2) given
a criterion such as root mean squared error (RMSE):

min (r —7a)> + MW +[HIP) @)
W.H
where A is a regularization term which is used to pre-
vent overfitting. In this work, the model parameters

were optimized for RMSE using stochastic gradient
descent (Bottou, 2004):

RMSE = \/Zm’ebresr (Fui — Pui)? 5

|Dtexl ‘

An illustration of matrix decomposition is presented
in Figure 2
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Figure 2: An illustration of matrix factorization

4.2 Tensor Factorization

This is a general form of matrix factorization. Given
a three-mode tensor Z of size U x I x T, where the
first and the second mode describe the user and item
as in previous section; the third mode describes the
context, e.g. time, with size T. Then Z can be written
as a sum of rank-1 tensors:

Z= ) wiohioq C))

K
k=1

where o is the outer product and each vector wy € RY,
hiy € R!, and g; € RT describes the latent factors of



user, item, and time, respectively (please refer to the
articles (Kolda and Bader, 2009; Dunlavy et al., 2010)
for more details). An illustration of tensor decompo-
sition is presented in Figure 3. The model parameters
were also optimized for RMSE using stochastic gra-
dient descent.

—

item

user

Figure 3: An illutration of tensor factorization

S DATA SETS AND METHODS

Two real-world data sets are collected from the
Knowledge Discovery and Data Mining Challenge
2010%. These data sets, originally labeled “Algebra
2008-2009” and “Bridge to Algebra 2008-2009” will
be denoted ”Algebra” and ”Bridge” for the remainder
of our paper. Each data set is split into a train and a
test partition as described in Table 1. The data rep-
resents the log files of interactions between students
and computer-aided-tutoring systems. While students
solve math related problems in the tutoring system,
their activities, success and progress indicators are
logged as individual rows in the data sets. A snap-
shot of the data sets is described in Figure 4.

Table 1: Data sets

Data sets Size | #Attr. #Records
Algebra train | 3.1 Gb 23 8,918,054
Algebra test | 124 Mb 23 508,912
Bridge train 5.5Gb 21 | 20,012,498
Bridge test 135 Mb 21 756,386

The central element of interaction between the
students and the tutoring system is the problem. Ev-
ery problem belongs into a hierarchy of unit and sec-
tion. Furthermore, a problem consists of many indi-
vidual steps such as calculating a circle’s area, solving
a given equation, entering the result and alike. The
field problem view tracks how many times the stu-
dent already saw this problem. Additionally, a dif-
ferent number of knowledge components (KC) and
associated opportunity counts is provided. Knowl-
edge components represent specific skills used for

Zhttp://pslcdatashop.web.cmu.edu/KDDCup/
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Figure 4: A snapshot of the data sets

solving the problem (where available) and opportu-
nity counts encode the number of times the respective
knowledge component has been encountered before.
Both, knowledge components and opportunity counts
are represented in a denormalized way, featuring all
knowledge components and their counts in one col-
umn.

Target of the prediction task is the correct first at-
tempt (CFA) information which encodes whether the
student successfully completed the given step on the
first attempt (CFA = 1 indicates correct, and CFA =
0 indicates incorrect). The prediction would then en-
code the certainty that the student will succeed on the
first try.

5.1 Mapping Educational Data to
Recommender Systems

There is an obvious mapping of users and ratings in
the student performance prediction problem:

student — user
performance (correct first attempt) — rating

The student becomes the user, and the correct
first attempt (CFA) indicator would become the rat-
ing, bounded between 0 and 1. With this setting there
are no users in the test set that are not present in the
training set which simplifies predictions.

For mapping the item, several options seemed to
be available to us. Here we use two selections as items
1) Solving-step (a combination of problem hierarchy,
problem name, step name, and problem view); and 2)
Skills (knowledge components). Please refer to the
article (Thai-Nghe et al., 2010) for more information
about how to map these data to user/item in recom-
mender systems. Information about the number of
users, items, and ratings used in this study are pre-
sented in Table 2.



Table 2: Mapping student performance data to user/item in
recommender systems. Solving-step is a combination of
problem hierarchy (PH), problem name (PN), step name
(SN), and problem view (PV). Skill is also called knowl-
edge component (KC)

Algebra Bridge
User #User #User
Student 3,310 6,043
Item #Item #Item
Solving-Step (PH, PN, SN, PV) 1,416,473 887,740
Skill (KC) 8,197 7,550
Rating #Rating #Rating
Correct first attempt 8,918,054 | 20,012,498

5.2 Mapping Educational Data to
Regression Problem

As most of the columns available both in train and test
were categorical, we needed to pre-process the data
before we could regress on it. Of course, one could
use “normalize to binary” strategy but in that case the
datasets are quite large and very sparse (for example,
the solving-step after binarizing will have 8,918,054
(20,012,498) rows and 1,416,473 (887,740) columns
for Algebra (Bridge) data set). Thus, we mainly de-
rived user/item averages to aggregate the variables as
input for our regression models, as described in (Thai-
Nghe et al., 2010). In the specific data sets from table
2, the variables we computed the respective averages
on are: student ID, solving-step ID, and skill ID.

5.3 Matrix Factorization — Implicitly
Encoding the “Slip” and “Guess”
Factors

Recall that there are 2 latent factors that should be
taken into account when predicting student perfor-
mance: 1) “Guess”: the probability that the students
do not know how to solve the problem (or do not know
any skill related to the problem) but still attempt to
perform the task correctly by guessing, and 2) “Slip”:
the probability that the students know how to solve the
problems (or know all of the required skills related to
the problem) but they make a mistake.

Matrix factorization techniques, one of the most
successful methods for item prediction, are appropri-
ate for this issue because these “slip”” and “guess” fac-
tors could be implicitly encoded in the latent factors
of factorization models.

Besides the matrix factorization model as in equa-
tion (1), we also employ the biased matrix factor-
ization model to deal with the problem of “user ef-
fect” and “item effect”. On the educational setting the

user and item bias are, respectively, the student and
solving-step biases. They model how good a student
is (i.e. how likely is the student to perform a task cor-
rectly) and how difficult the solving-step is (i.e. how
likely is the step in general to be performed correctly).

The prediction function for user u and item i is
determined by

K
Fui = by +bi+ Y wuchi )
k=1

where u, b,, and b; are global average, user bias and
item bias, respectively.

5.4 Tensor Factorization for Exploring
the Temporal Effect

In section 5.3, we use matrix factorization models to
take into account the latent factors “slip” and “guess”
but not the temporal effect. Obviously, in education
point of view: “The more the learners study the bet-
ter the performance they get”. Moreover, the knowl-
edge of the learners will be cumulated over the time,
thus the temporal effect is an important factor to pre-
dict the student performance. We adopt the idea from
(Dunlavy et al., 2010) which applies tensor factoriza-
tion for link prediction. Instead of using only two-
mode tensor (a matrix) as in the previous section, we
now add one more mode to the models - the time
mode. We also take into account the “user bias” and
“item bias”. The prediction function now becomes:

K
Fuir =+ by +bi+ (Z WukhichTk) (6)
k=1

T
Zr:(Tmeaer 1) 4k

D7y = @)

Tmax
where ¢g; is a latent factor vector representing the
time, and T,y is the number of solving-steps in the
history that we want to go back. This is a simple strat-
egy which averages 7, performance steps in the past
to predict the current step. We will call this approach
TFA (Tensor Factorization - Averaging).

Another important factor is that “memory of hu-
man is limited”, so the students could forget what they
have studied in the past, e.g., they could perform bet-
ter on the lessons they learn recently than the one they
learn from last year or even longer. Moreover, we rec-
ognize that the second time the students do their exer-
cises and have more chances to learn the skills, their
performance on average gets better (we will explain
more about this in Figure 6 of section 6.3). Thus, we
could use a decay function which reduces the weight



0 when we go back to the history. We call this ap-
proach TFW (Tensor Factorization - Weighting)

T -0
Lo (1 Tyt 1) I1K€

Dry = (®)

Dnax
An open issue for this is that we can use forecast-
ing techniques instead of weighting or averaging. We
leave this solution for future work.

6 EVALUATION

6.1 Protocol

Before describing the experimental results, we
present the protocol used for evaluation. First of
all the data sets were mapped from the educational
context to both recommender systems and regression
contexts as described in sections 5.1 and 5.2. As a
baseline method, we use the global average, i.e. pre-
dicting the average of the target variable from the
training set. One of the challenging problem of rec-
ommender systems is to deal with the new-item prob-
lem. Matrix/tensor factorization cannot produce out-
put for “new items”, thus, we provide global average
scores for items that are not in the training data.

The proposed approaches were compared with
other methods such as user average, biased user-item
(Koren, 2010), as well as with traditional methods
such as logistic regression.

6.2 Results of Matrix Factorization

Figures 5 presents the comparison of root mean
squared error (RMSE) for Algebra data set. Clearly,
when using both matrix factorization and biased ma-
trix factorization on the student (as user) and the re-
quired skills (as item) to solve the step, the result
is significantly improved compare to other methods
such as biased user-item or logistic regression. More-
over, the proposed methods can deal with the “slip”
and “guess” by implicitly encoding them as latent
factors. (We also tried with linear regression, but
the results of linear regression and logistic regression
are very similar, we just report on logistic regression
here).

6.3 Results of Tensor Factorization for
Exploring Temporal Effects

Previous section shows how we encode the “slip” and
“guess” factors to the model. In this section, we
present the result of taking into account the temporal
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Figure 5: RMSE results of (biased) matrix factorization
which factorize on student and the required skills in solv-
ing the step compared to other methods on Algebra data
set. The lower the better.

information. Figure 6 describes the effect of the time
on knowledge of the learners for Bridge data set (the
trend of Algebra data set looks nearly the same). In
this figure, the x-axis is the number of times that the
students have chances to learn the skills (the “oppor-
tunity count” column in the data set), the y-axis is the
ratio of the number of students solving the problem
correctly. Clearly, we can see that their performance
has been improved when they have more opportuni-
ties to learn the skills. This trend also reflects the ed-
ucational factor that “the more the students learn, the
better their performance they get”.

0.85
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Figure 6: The effect of the time on knowledge of the learn-
ers (Bridge data set). The x-axis presents the number of
times the student learns the knowledge components. The
y-axis is the probability of solving the problem correctly.

Figure 7 presents the RMSE of tensor factoriza-
tion methods which factorize on the student (as user),
solving-step (as item), and the sequence of solving-
step (as time) for the Bridge data set. The results of
the proposed methods are also improved compared to
the others. Compared with matrix factorization which
does not take the temporal effect into account, the ten-
sor factorization methods have also been improved.
This result somehow reflects the natural fact that we
mentioned before: “the knowledge of the student is
improved over the time and human memory is lim-
ited”. However, the result of tensor factorization by



weighting with a decay function (TFW) has a small
improvement compared to the method of averaging
on the time mode (TFA).
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Figure 7: RMSE results of taken into account the tempo-
ral effect using tensor factorization (Bridge data set) which
factorize on student, solving-step, and time. The lower the
better.

For referencing, we also report the best hyperpa-
rameters that we found via cross-validation in Table
3.

7 DISCUSSION

To this end, one would raise the following
question: “how the delivered recommendations look
like?”. Actually, we have not explicitly answered for
this question because of two reasons:

e First, we would like to discover how recom-
mender systems (e.g. factorization techniques)
can be applied for educational performance data,
especially for predicting student performance but
not for recommending learning objects.

e Second, we would like to focus on the first step
in recommender systems to see how high quality
of the rating score that the proposed methods can
produce is. (Basically, every recommender sys-
tem has “two steps”: The first step is to generate
the score, e.g rating; and the second step is to wrap
around with an interface, e.g. a web page)

However, we can deliver recommendations for many
problems. For example, in the scenario of section 3,
when the students learn the formula of calculating the
area of the circle and square, we could recommend
them the similar skills such as rectangle or parallelo-
gram, or alike. Another example is recommendation
of similar grammar structures, vocabularies, or even a
similar problem/section when student learning or do-
ing exercises in an English course, etc.

Moreover, another question could be raised is that
“How good our approaches are compared to the oth-
ers on the same KDD Challenge data?”. We can have

an overview on the RMSE score of the best student
teams in Table 4. Note, that our purpose is not pro-
ducing a system for the KDD Challenge but on getting
the real datasets from this event and applying recom-
mender systems, especially factorization techniques
for predicting student performance. Although the
other methods reached lower RMSE, they are more
complex and require much effort on data preprocess-
ing (e.g. feature engineering,..) as well as generating
hundred of models and ensembling approaches. Fac-
torization methods are simple to implement and need
not so much human effort and computer memory to
deal with large datasets (e.g, we just need 2 and 3
features for matrix and tensor factorization, respec-
tively). More complex models using matrix factoriza-
tion can also produce the better results as shown in
(Toscher and Jahrer, 2010). This means that factor-
ization approaches are promising for the problem of
predicting student performance.

Table 4: RMSE Averaging on Algebra and Bridge - KDD
Challenge 2010 - Student teams

Rank | Team Name RMSE
1 National Taiwan University 0.27295
2 Zach A. Pardos 0.27659
3 SCUT Data Mining 0.28048
- Our approach (not submitted) | 0.29519
4 Y10 0.29801

The third issue should also be discussed is that
“what does the presented RMSE reduction mean in
practical? e.g., how can it help the education man-
agers, students, etc?”. As in the Netflix Prize? it has
been shown that a 10% of improvement on RMSE
could bring million of dollars for recommender sys-
tems of a company. In this work, we are on educa-
tional environment, and of course, the benefit is not
explicitly as in e-commerce but the trend is very sim-
ilar. Moreover, in (Cen et al., 2006) it has been shown
that an improved model (e.g. lower RMSE) for pre-
dicting student performance could save millions of
hours of students’ time and effort since they can learn
other courses or do some useful activities. The better
a model captures the student’s skills, the lower will
be it’s error in predicting the student’s performance,
thus, an improvement on RMSE would show that our
models are better capable of capturing how much the
student has learned; and finally, a good model which
accurately predicts student performance could replace
some current standardized tests.

3http://www.netflixprize.com



Table 3: Hyperparameters are used for the experiments

Method Data set | Hyperparameters

Matrix factorization Algebra | learning-rate=0.01, #iter=60, K=64, A=0.01

Biased matrix factorization Algebra | learning-rate=0.001, #iter=80, K=128, A=0.0015

Matrix factorization Bridge learning-rate=0.01, #iter=80, K=64, A=0.015

Tensor factorization - Averaging | Bridge learning-rate=0.01, #iter=30, K=32, A=0.015, T;,,;,=8

Tensor factorization - Weighting | Bridge learning-rate=0.01, #iter=30, K=32, A=0.015, T,,,+=8, 6= 0.4

8 CONCLUSION

We propose using state-of-the-art recommender sys-
tem techniques for predicting student performance.
We introduce and formulate this problem and show
how to map it into recommender systems. We pro-
pose using matrix factorization to implicitly take into
account two latent factors “slip” and “guess” in pre-
dicting student performance. Moreover, the knowl-
edge of the learners improve time by time, thus, we
propose tensor factorization methods to take the tem-
poral effect into account. Experimental results show
that the proposed approaches are promising.

In future work, instead of using averaging or
weighting approached on the third mode of tensor,
we could use forecasting approach to take into ac-
count the sequential effect. Moreover, each solving-
step relates to one or many skills, thus, we could ap-
ply multi-relational matrix factorization to factorize
this problem.
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