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Abstract Recommender systems are widely used in many areas, especially in e-
commerce. Recently, they are also applied in e-learning for recommending learn-
ing objects (e.g. papers) to students. This chapter introduces state-of-the-art recom-
mender system techniques which can be used not only for recommending objects
like tasks/exercises to the students but also for predicting student performance. We
formulate the problem of predicting student performance as a recommender system
problem and present matrix factorization methods, which are currently known as the
most effective recommendation approaches, to implicitly take into account the pre-
vailing latent factors (e.g. “slip” and “guess”) for predicting student performance.
As a learner’s knowledge improves over time, too, we propose tensor factorization
methods to take the temporal effect into account. Finally, some experimental results
and discussions are provided to validate the proposed approach.

INTRODUCTION

Recommender systems are widely used in many areas, especially in e-commerce
(Rendle et al., 2010). One of their main aims is to make vast catalogs of products
consumable by learning user preferences and to apply them to items formerly un-
known to the user. Thus they can learn which products have a high likelihood of
being interesting to the target user. Recently, recommender systems have also been
applied to e-learning, especially in technology enhanced learning (Manouselis et al.,
2010).

On the other hand, educational data mining has also been taken into account re-
cently to assist the students in the learning process. One of the main educational
data mining tasks, for instance, is to predict student performance. It is applicable
when we would like to know how the students learn (e.g. generally or narrowly),
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how quickly or slowly they adapt to new problems or if it is possible to infer the
knowledge requirements to solve the problems directly from student performance
data (Feng et al., 2009). Generally speaking, the prediction of student performance
is the problem of predicting the student’s ability (e.g., estimated by a score metric) in
solving tasks when interacting with a tutoring system. Cen et al. (2006) have shown
that an improved model for predicting student performance could save millions of
hours of students’ time and effort in learning algebra that they could otherwise have
spent on other subjects or leisure. Moreover, many universities are extremely fo-
cused on assessment, thus, the pressure on teaching and learning for examinations
leads to a significant amount of time spent for preparing and taking standardized
tests. Any move away from standardized and non-personalized tests holds promise
for increasing deep learning (Feng et al., 2009). From an educational data mining
point of view, a good model which accurately predicts student performance could
replace some current standardized tests and yield truly personalized, adaptive test.

To address the student performance prediction problem, many works have been
published. Most of them rely on traditional methods such as neural networks
(Romero et al., 2008), Bayesian networks (Bekele and Menzel, 2005), logistic re-
gression (Cen et al., 2006), support vector machines (Thai-Nghe et al., 2009) and so
on.

In the recommender system context, predicting student performance can be con-
sidered as a rating prediction problem since student, task, and performance infor-
mation could be treated as user, item, and rating, respectively, which are the main
objects recommender systems learn from, nowadays. Recently, Thai-Nghe et al.
(2010a); Toscher and Jahrer (2010) have proposed the use of recommendation tech-
niques, especially matrix factorization, for predicting student performance. The au-
thors have shown that using recommendation techniques could improve prediction
results compared to regression methods (Thai-Nghe et al., 2010b) but they have
not taken the temporal effect into account. Obviously, in the educational point of
view, we always expect that the students (or generally, the learners) can improve
their knowledge over time, so temporal information is an important factor for such
prediction tasks.

Furthermore, in predicting student performance, two crucial user-dependent as-
pects need to be taken into account:

1. The probability of a student to guesses correctly while not knowing how to solve
the problem at hand or not having the required skills related to the problem
(which we call “guess” for short); and the probability of a student to fail while
knowing how to solve the problem or having all of the required skills related to
the problem (which we call “slip” for short);

2. The increase in knowledge over time obviously has an effect on a student’s per-
formance, e.g. the second time a student does his exercises, the performance gets
better on average, and therefore, the sequential effect is important information.

Factorization techniques are a promising approach for this problem since they
i) implicitly take into account the latent factors such as “slip” and “guess”, and
ii) incorporate the sequential (time) aspect to their models. Moreover, the impor-
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tance of the proposed approach is that besides predicting student performance, we
can also recommend the similar tasks (exercises) to the students and can determine
which tasks are notoriously difficult for a given student. The predicted student per-
formance represents the estimation of a student’s performance on a given exercise.
For example, there is a huge database of exercises where students lose a lot of time
solving problems which are too easy or too hard for them. When a system is able to
predict their performance, it could recommend more appropriate exercises for them.
Thus, we could filter out the tasks with predicted high performance / confidence
since these tasks are too easy for them, or filter out the tasks with predicted low
performance (too hard for them) or both, depending on the goals of the e-learning
system. As mentioned in the literature, recommender systems for educational pur-
poses are a complex and challenging research direction (Drachsler et al., 2009).
The preferred learning activities of students might pedagogically not be the most
adequate (Tang and McCalla, 2004) and recommendations in e-learning should be
guided by educational objectives, and not only by the user’s preferences (Santos
and Boticario, 2010). Our approach which uses student performance prediction for
the recommendation of e-learning tasks would be a promising approach to tackle
the above problems since we can recommend the tasks for students based on their
performance but not on their preferences.

Please note that in this chapter we have not focused on building a real system, e.g.
how the system interface looks like or which particular objects are recommended,
but on how to apply the state-of-the-art recommender system techniques to gener-
ate the most accurate performance estimation. More precisely, the purposes of this
chapter are to

• formulate the problem of predicting student performance in the context of rec-
ommender systems;

• propose matrix factorization models for predicting student performance, which
are extended from previous works (Thai-Nghe et al., 2010a; Toscher and Jahrer,
2010) and presented in a formalized and detailed way that can be helpful for
the researchers who come from educational domains. We can empirically show
that these factorization techniques can implicitly encode the “slip” and “guess”
factors as well as “student effect” (e.g. how clever/good the student is in perform-
ing the task) and the “task effect” (e.g. how hard/easy the task is in general) in
predicting student performance;

• propose tensor factorization techniques to take into account the temporal effect,
e.g. how the knowledge of the learners improves over time;

• map the student performance data from two real data sets to recommender system
context;

• experiment with the proposed approach and compare with some other baselines.
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BACKGROUND

In the area of recommender systems for technology enhanced learning (Manouselis
et al., 2010), almost all the works are focused on the construction of recommender
systems for recommendation of learning resources (materials/ resources) or learn-
ing activities to the learners (Ghauth and Abdullah, 2010; Manouselis et al., 2010)
in both formal and informal learning environments (Drachsler et al., 2009). More
precisely, Garcı́a et al. (2009) use association rule mining to discover interesting
information through student performance data in the form of IF-THEN rules, fol-
lowed by generating recommendations based on those rules; Bobadilla et al. (2009)
proposed an equation for collaborative filtering which incorporated the test score
from the learners into the item prediction function; Ge et al. (2006) combined the
content-based filtering and collaborative filtering to personalize the recommenda-
tions for a courseware selection module; Soonthornphisaj et al. (2006) applied col-
laborative filtering to predict the most suitable documents for the learners; while
Khribi et al. (2008) employed web mining techniques with content-based and col-
laborative filtering to compute the relevant links for recommending to the learners.
This use of recommender systems corresponds to the so-called item recommenda-
tion (or item prediction) task in the recommender literature. But what so far is miss-
ing in e-learning systems is the exploitation of the recommender systems capability
to predict scores - a task called rating prediction.

On the student performance prediction problem, many works have been pub-
lished, too. Most of them rely on traditional methods. E.g., Romero et al. (2008)
compared different data mining methods and techniques (like neural networks, de-
cision trees, etc.) to classify students based on their Moodle usage data and the final
marks obtained in their respective courses; Bekele and Menzel (2005) used Bayesian
networks to predict student results; Cen et al. (2006) proposed a method for im-
proving a cognitive model, which is a set of rules/skills encoded in intelligent tutors
to model how students solve problems, using logistic regression; Thai-Nghe et al.
(2007) analyzed and compared some classification methods (e.g. decision trees and
Bayesian networks) for predicting academic performance; while Thai-Nghe et al.
(2009) proposed to improve the student performance prediction by dealing with
the class imbalance problem using support vector machines (i.e., the ratio between
passing and failing students is usually skewed).

Although some novel approaches have been proposed for predicting student per-
formance recently, there are still several open issues. So far, the works have just
focus on explicit modeling of the “slip” and “guess” latent factors, e.g. using Hid-
den Markov Models as Pardos and Heffernan (2010) did. Or they deal with thou-
sands of features using feature engineering and hundreds of models stacked together
in large ensembles as Yu et al. (2010) proposed. Thus, those suggested approaches
need tremendous computational resources and human effort for data pre-processing.
Yet, they do not take the temporal effect of the underlying process into account as
in Thai-Nghe et al. (2010b); Toscher and Jahrer (2010).

Usually, the mentioned approaches work well when sufficient information is
available about the students as well as tasks or learning resources. However, in real-
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world applications we face the problem of information acquisition as the collection
of attributes and metadata about users, tasks and resources is often very expensive or
even not possible at all. The information easily obtainable is the results the students
yielded on the various tasks they previously worked on. This information could be
captured by the student, task, score tuple. Interestingly, this is exactly the kind of
information, current recommender systems rely on, though in the recommender ter-
minology the above mentioned tuple would be rephrased as user, item, rating. This
perspective allows two distinct kinds of treatment. First, the so-called “implicit feed-
back” view where only the information that a specific user (student) as interacted
with a given item (task). This can nicely be represented by a binary or even unary
matrix on users and items storing those interactions. Second, the “explicit feedback”
view where a numerical (preference) value can be obtained as the result of the inter-
action between user and item. This, too, can be represented as an interaction matrix
on users and items. In both cases, however, the resulting matrix will be sparse, as
most of the students will tackle only a (small) subset of the tasks / exercises avail-
able in the e-learning system. For recommender systems, the so called collaborative
filtering approach prevails since the late nineties. Collaborative filtering is based
on the assumption that similar users like similar things and, being content-agnostic,
focuses only on the past ratings assigned. Factorization techniques are the most pop-
ular collaborative filtering techniques (Koren et al., 2009), used for both item and
rating recommendations. Moreover, it has been shown that even a few ratings are
often more valuable than meta data (Pilászy and Tikk, 2009), thus, the use of factor-
ization techniques are in place for recommendation task. In case of sparse data with
no additional metadata, the use of collaborative filtering techniques has been shown
to be very effective.

Factorization techniques outperform other state-of-the-art collaborative filtering
techniques. They belong to the family of latent factor models which aim at mapping
users and items to a common latent space by representing them as vectors in that
space. The dimensions of this space are called the factors. Here we should mention,
that we usually don’t now the exact “meaning” of these factors, we are just interested
in the correlation between the vectors in that space. For example, imagine a well-
known simplified movie rating example where users and movies are mapped to a
two-dimensional latent space (Koren et al., 2009). Here, each user and each movie
is represented by two factors. These factors can represent genre, seriousness, amount
of action, quality of actors or any other concept. Even if we don’t know what exactly
the given two factors (dimensions of the latent space) represent, the “closeness” of
particular user and movie vectors in that space expresses the preference of a given
user on the given movie. Thus, we can expect with high certainty that the before
mentioned slip and guess factors are somehow encoded in the latent factors of the
computed factorization models and we do not need to explicitly take care of them as
in case of other methods, e.g. Hidden Markov Models (Pardos and Heffernan, 2010).
Other latent characteristics of students and tasks could also be implicitly encoded
in the models such as how good the performance of a student is, how hard/easy the
task is, etc. Furthermore, by using a tensor with three or more dimensions instead
of a matrix we can represent the sequential (time) aspect or any other additional
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context such as students’ skills. As also mentioned in Pilászy and Tikk (2009), the
performance of these techniques are very good in case of using just two or three
features such as student ID, task ID and/or time. Thus, memory consumption and
the human effort in pre-processing can be reduced significantly while the prediction
quality is reasonable.

With the recommendation of learning resources, recommender systems already
address an important problem in technology enhanced learning. Nonetheless, with
rating prediction a highly appreciated capability of recommender systems is so far
underexplored in e-learning environments. As we have already seen, all information
necessary for recommender systems for both item and rating prediction is avail-
able in these systems and could be exploited. Furthermore, we have highlighted the
power of recommender systems in addressing latent factors and their excellent run-
time characteristics. The remainder of this chapter will proceed to show, how rating
prediction can be mapped to predicting student performance.

PREDICTING STUDENT PERFORMANCE

Figure 1a presents an example (Koedinger et al., 2010) of the task in predicting
student performance. Given the circle and the square as in this figure, the task for
students could be “What is the remaining area of the square after removing the cir-
cular area?” To solve this task (question), students could do some smaller subtasks
which we call a “step”. Each step may require one or more skills (or “knowledge
components”), for example:

• Step 1: Calculate the circle area (area1 = π ∗ (OE)2)
• Step 2: Calculate the square area (area2 = (AB)2)
• Step 3: Calculate the remaining (area2−area1)

Each solving-step is recorded as a transaction. Figure 1b presents a snapshot of
transactions. Based on the past performance, we would like to predict students’ next
performance (e.g. correct/incorrect) in solving the tasks. To do this we first need
to consider the amount and the quality of information we have collected about the
students and tasks as well as their interactions. Such data can be collected from some
Student Information Systems (SIS) or from the Computer-Aided Tutoring Systems
(CATS).

Computer-aided tutoring systems (CATS) allow students to solve some exercises
with a graphical front-end that can automate some tedious tasks, provide some hints
and provide feedback to the student (Massey et al., 1988). Such systems can profit
from anticipating student performance in many ways, e.g., in selecting the right mix
of exercises, choosing an appropriate level of difficulty and deciding about possible
interventions such as hints. Thus, CATS are valuable environments for collecting
data for prediction and for interacting with students in an intelligent way.
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Fig. 1 Predicting student performance: A scenario. (Adapted from PSLC-
Datashop.web.cmu.edu/KDDCup).

Problem formulation in the context of Computer-Aided Tutoring Systems
(CATS)

The problem of student performance prediction in CATS is to predict the likely
performance of a student for some exercises (or part thereof such as for some par-
ticular steps) which we call the tasks. The task could be to solve a particular step in
a problem, to solve a whole problem or to solve problems in a section or unit, etc. In
CATS, tasks usually are described in two different ways: First, tasks can be located
in a topic hierarchy, for example

unit ⊇ section⊇ problem⊇ step

Second, tasks can be described by additional meta data such as the skills that are
required to solve the problem:

skill1,skill2, . . . ,skilln

All this information, the topic hierarchy, skills and other task meta data can be de-
scribed as attributes of the tasks. In the same way, also attributes about the student
may be available.
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CATS allow collecting a rich amount of information about how a student inter-
acts with the tutoring system and about his past successes and failures. Usually,
such information is collected in a clickstream log with an entry for every action the
student takes. The clickstream log may contain many useful information, e.g. about
the

time,student,context,action

For performance prediction, such click streams can be aggregated to the task
for which the performance should be predicted and eventually be enriched with
additional information. For example, if the aim is to predict the performance for
each single step in a problem, then all actions in the clickstream log belonging to
the same student and problem step will be aggregated to a single transaction and
enriched, for example with some performance metrics.

More formally, let S be a set of students, T be a set of tasks, and P⊆R be a range
of possible performance scores. Let MS be a set of student meta data descriptions
and mS : S→MS be the meta data for each student. Let MT be a set of task meta data
descriptions and mT : T →MT be the meta data for each task. Finally, let D train ⊆
(S×T ×P)∗ be a sequence of observed student performances and D test ⊆ (S×T ×
P)∗ be a sequence of unobserved student performances. Furthermore, let

πp : S×T ×P→ P, (s, t, p) 7→ p

and
πs,t : S×T ×P→ S×T, (s, t, p) 7→ (s, t)

be the projections to the performance measure and to the student/task pair.
Then the problem of student performance prediction is, given D train, πs,t(D test),

mS, and mT to find
p̂ = p̂1, p̂2, . . . , p̂|D test |

such that

err(p, p̂) :=
|D test |

∑
i=1

(pi− p̂i)2

is minimal with p := πp(D test). Some other error measures could also be considered.
In principle, this is a regression or classification problem (depending on the error

measure). Specifically, we have to treat (i) two variables, e.g. the student ID and the
task ID, both being nominal with many levels (1,000-100,000s), which can be casted
as rating prediction in recommender systems since s, t and p would be user, item and
rating, respectively (Thai-Nghe et al., 2010a), as illustrated in Figure 2. Thus, we
could apply factorization techniques or other collaborative filtering techniques to
this problem; and (ii) potentially sequential effects which describes how students
gain experience over time.
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Fig. 2 An illustration of casting student/task/performance in PSP as user/item/rating in RecSys

FACTORIZATION TECHNIQUES

The two most common tasks in recommender systems are Top-N item recommen-
dation where the recommender suggests a ranked list of (at most) N items i ∈ I to
a user u ∈U and rating prediction where the aim is predicting the preference score
(rating) r ∈ R for a given user-item combination. In this work, we make use of ma-
trix factorization (Rendle and Schmidt-Thieme, 2008; Koren et al., 2009), which is
known to be one of the most successful methods for rating prediction, outperform-
ing other state-of-the-art methods (Bell and Koren, 2007) and tensor factorization
(Kolda and Bader, 2009; Dunlavy et al., 2010) to take into account the sequential
effect.

Please note that the techniques presented in this chapter compute the prediction
as a linear combination of factors. Although it may happen that in some cases lin-
ear combination of factors can be insufficient. In such cases, we can use non-linear
extensions of factorization techniques (Lawrence and Urtasun, 2009). However, as
showed in Takács et al. (2009), using the standard factorization models is enough
to reach good prediction accuracy in an efficient and scalable way. The results of
this approach in our experiments (provided later in this chapter) as well as the re-
sults of experiments in other domains (Koren et al., 2009) constitute some empirical
evidence that assuming a linear interaction between the factors is a reasonable ap-
proach. The connection of factorization techniques to other methods, such as Neural
Networks, can be seen e.g. in (Takács et al., 2009). We will describe the basic matrix
and tensor factorization techniques to present the idea behind these approaches. Dis-
cussion of other advanced factorization techniques is out of the scope of this chapter.

Notation: A matrix is denoted by a capital italic letter, e.g. X ; A tensor is denoted
by a capital bold letter, e.g. Z; wk denotes a kth vector; wuk is the uth element of a
kth vector; and ◦ denotes an outer product. We denote r as the actual value and r̂ as
the prediction value. From here to the end of the chapter, we will call student, task,
and performance instead of user, item, and rating, respectively.
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Matrix Factorization

Matrix factorization is the task of approximating a matrix X by the product of two
smaller matrices W and H, i.e. X ≈WHT (Koren et al., 2009). W ∈RU×K is a matrix
where each row u is a vector containing the K latent factors describing the student
u and H ∈ RI×K is a matrix where each row i is a vector containing the K factors
describing the task i. Let wuk and hik be the elements of W and H, respectively, then
the performance p given by a student u to a task i is predicted by:

p̂ui =
K

∑
k=1

wukhik = (WHT )u,i (1)

The main issue of this technique is how to find the optimal parameters W and H (the
elements of W and H) given a criterion such as root mean squared error (RMSE):

RMSE =

√
∑ui∈D test (pui− p̂ui)2

|D test |
(2)

Training Phase

In this approach, training the model is finding the optimal parameters W and H. One
approach is that we first initialize these two matrices with some random values (e.g.
from the normal distribution N (0,σ2) with mean is 0 and standard deviation σ2 =
0.01), and compute the error function

err = ∑
(u,i)∈D train

e2
ui (3)

where

e2
ui = (pui− p̂ui)2 = (pui−

K

∑
k=1

wukhik)2 (4)

then try to minimize this error by updating the values of W and H iteratively.
Such a method is called gradient descent (Koren et al., 2009). To minimize equation
(3), we need to know for each data point in which direction to update the value of
wuk and hik. Thus, we compute the gradient of the function (4):

∂

∂wuk
e2

ui =−2euihik =−2(pui− p̂ui)hik (5)

∂

∂hik
e2

ui =−2euiwuk =−2(pui− p̂ui)wuk (6)
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After having the gradient, we update the values of wuk and hik in the direction
opposite to the gradient:

w′uk = wuk−β
∂

∂wuk
e2

ui = wuk +2βeuihik (7)

h′ik = hik−β
∂

∂hik
e2

ui = hik +2βeuiwuk (8)

where β is the learning rate. We iteratively update the values of W and H until the
error converges to its minimum or reaching a predefined number of iterations.

Regularization: To prevent overfitting, we modify the error function (4) by
adding a term which controls the magnitudes of the factor vectors such that W and
H would give a good approximation of X without having to contain large numbers.
The function (4) now becomes:

(pui−
K

∑
k=1

wukhik)2 +λ (||W ||2 + ||H||2) (9)

where λ is a regularization term. With this new error function, the values of wuk and
hik are updated by

w′uk = wuk +β (2euihik−λwuk) (10)

h′ik = hik +β (2euiwuk−λhik) (11)

Recall that there are 2 issues that should be taken into account when predicting
student performance, namely the “guess” and “slip” factors expressing the proba-
bilities that the students will guess correctly or make a mistake. Matrix factorization
techniques are appropriate for handling these issues because the mentioned “slip”
and “guess“ factors could be implicitly scrambled in the latent factors of W and H.

Algorithm 1 describes details of training a matrix factorization model using
stochastic gradient descent (we use stochastic gradient descent for all algorithms
in this chapter since it has been shown that the computing cost of stochastic gra-
dient descent has a huge advantage for large-scale problems (Bottou, 2004)). This
method factorizes the student and the task that student wants to solve. First, the pa-
rameters W and H are initialized randomly from the normal distribution N (0,σ2)
with mean is 0 and standard deviation σ2 = 0.01, as in lines 2-3. In each iteration,
we randomly select an instance in the training set (u, i, p), then compute the predic-
tion for this student and task, as in lines 5-9. We estimate the error in this iteration
and update the values of W and H as in lines 11-14.
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Algorithm 1 A matrix factorization for factorizing student and task using stochastic
gradient descent with Iter iterations, K factors, β learning rate, and λ regularization
1: procedure STUDENT-TASK-MATRIXFACTORIZATION(DTrain, Iter,K,β ,λ )

Let u ∈ S be a student, i ∈ T a task, p ∈ P a performance score
Let W [|S|][K] and H[|T |][K] be latent factors of students and tasks

2: W ←N (0,σ2)
3: H←N (0,σ2)
4: for iter← 1, . . . , Iter ∗

∣∣DTrain
∣∣ do

5: Draw randomly (u, i, p) from DTrain

6: p̂← 0
7: for k← 1, . . . ,K do
8: p̂← p̂+W [u][k]∗H[i][k]
9: end for

10: eui = p− p̂
11: for k← 1, . . . ,K do
12: W [u][k]←W [u][k]+β ∗ (eui ∗H[i][k]−λ ∗W [u][k])
13: H[i][k]← H[i][k]+β ∗ (eui ∗W [u][k]−λ ∗H[i][k])
14: end for
15: end for
16: return {W , H}
17: end procedure

Prediction Phase

After having the optimal W and H, the performance of a student u in a given task i
is predicted easily by

p̂ui =
K

∑
k=1

wukhik (12)

For the students or tasks in the test set but not in the train set, we return the average
performance on the training set (we will discuss more about this later).

An Example

Figure 3 shows an example of how we can factorize the students and tasks. Suppose
that we have 6 students and 5 exercises (tasks) which are presented in matrix X .
Each task is to compute the values of y, e.g. y = −2x, given a specific value of x.
These students have performed some tasks which are measured by correct (1) and
incorrect (0) performance. Our problem is to predict the other tasks that they have
not done (the empty values in X).

Note, that the presented techniques do not depend on specific tasks. Important is
that the matrix represents a relation between two types of objects, which are in our
case students and math tasks but any other types of objects can be also used, e.g.
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students and courses, students and learning resources (as books or multimedia) as
well as tasks in other disciplines.

Fig. 3 An example of factorizing on students and tasks

After the training phase with K = 2 latent factors, we get the optimized param-
eters W and H as in this figure. Now, suppose that we would like to predict Mary’s
performance for the task y = −x− 1 (the cell with question mark). We can easily
compute the prediction using equation (12)

p̂ =
K

∑
k=1

wukhik = 0.7∗0.36+0.69∗0.96 = 0.91

From this prediction result, we can see that Mary can correctly answer her task
with high confidence (0.91). In a similar way, we can predict the performance of
other students in tasks which they have not done yet. Moreover, using this approach,
besides predicting student performance, we can also recommend the similar tasks
(exercises) to the students. For example, there is a huge database of exercises and
that students lose most of their time solving problems which are too easy or too hard
for them. By being able to predict their performance, the system could recommend
just the appropriate exercises for them. The student performance represents how
good the student will perform in a given exercise. Thus, we could filter out the tasks
with high performance/confidence since these tasks are too easy for them, or filter
out the tasks with low performance (too hard for them) or both, depending on the
system goal.

Biased Matrix Factorization

Besides the basic matrix factorization model, we also employ the biased matrix
factorization model to deal with the problem of “user effect” and “item effect”, or
we can call “user bias” and “item bias”, respectively (Koren et al., 2009). On the
educational setting, the user and item bias are, respectively, the student and task
biases. They model how good a student is (i.e. how likely is the student to perform a
task correctly) and how difficult/easy the task is (i.e. how likely is the task in general
to be performed correctly).
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The performance prediction function for student u and task i is now determined
by

p̂ui = µ +bu +bi +
K

∑
k=1

wukhik (13)

where µ , bu, and bi are global average, student bias and task bias, respectively.
Algorithm 2 describes more details about this method. First, we compute the

global average, student bias and task bias as in lines 2-8. Parameters W and H are
again initialized randomly from the normal distribution N (0,σ2) with mean is 0
and standard deviation σ2 = 0.01. Then, we update the value of µ , bu, bi, W and
H at each iteration as in lines 11-21. After getting these parameters, we can easily
compute the prediction in the test set for any existing student and task with the same
formula in line 13.

Algorithm 2 A biased matrix factorization for factorizing student and task using
stochastic gradient descent with Iter iterations, K factors, β learning rate, and λ

regularization
1: procedure STUDENT-TASK-BIASED-MATRIXFACTORIZATION(DTrain, Iter,K,β ,λ )

Let u ∈ S be a student, i ∈ T a task, p ∈ P a performance score
Let W [|S|][K] and H[|T |][K] be latent factors of students and tasks
Let bu[|S|] and bi[|T |] be student-bias and task-bias

2: µ ←
∑p∈πp(DTrain) p

|DTrain|
3: for each student u do
4: bu[u]← ∑i (pui−µ)

|DTrain
u |

5: end for
6: for each task i do
7: bi[i]← ∑u (pui−µ)

|DTrain
i |

8: end for
9: W ←N (0,σ2)

10: H←N (0,σ2)
11: for iter← 1, . . . , Iter ∗

∣∣DTrain
∣∣ do

12: Draw randomly (u, i, pui) from DTrain

13: p̂ui← µ +bu[u]+bi[i]+∑
K
k (W [u][k]∗H[i][k])

14: eui = pui− p̂ui
15: µ ← µ +β ∗ eui
16: bu[u]← bu[u]+β ∗ (eui−λ ∗bu[u])
17: bi[i]← bi[i]+β ∗ (eui−λ ∗bi[i])
18: for k← 1, . . . ,K do
19: W [u][k]←W [u][k]+β ∗ (eui ∗H[i][k]−λ ∗W [u][k])
20: H[i][k]← H[i][k]+β ∗ (eui ∗W [u][k]−λ ∗H[i][k])
21: end for
22: end for
23: return {W , H, bu, bi, µ}
24: end procedure
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Tensor Factorization

In previous section, we used matrix factorization models to take into account the
latent factors “slip” and “guess” but not the temporal effect. Obviously, from the
education point of view, “The more the learners study the better the performance
they get”. Moreover, the knowledge of the learners will be cumulated over the time,
thus the temporal effect is an important factor to predict the student performance.
We adopt the idea from Dunlavy et al. (2010) which applies tensor factorization for
link prediction. Instead of using only two-mode tensor (a matrix) as in the previous
section, we now add one more mode to the models - the time mode, thus, this method
is a general form of matrix factorization.

Given a three-mode tensor Z of size U × I×T , where the first and the second
mode describe the student and task as in previous section; the third mode describes
the context, e.g. time, with size T. Then Z can be written as a sum of rank-1 tensors
by using Tucker decomposition (Tucker, 1966):

Z≈
R

∑
r=1

S

∑
s=1

P

∑
p=1

Crsp wr ◦hs ◦qp (14)

or by using CANDECOM-PARAFAC (Harshman, 1970):

Z≈
K

∑
k=1

wk ◦hk ◦qk (15)

where Crsp is a core tensor, ◦ is the outer product, and each vector wk ∈ RU , hk ∈
RI , and qk ∈ RT describes the latent factors of student, task, and time, respectively
(please refer to the articles (Kolda and Bader, 2009; Dunlavy et al., 2010) for more
details).

To take into account the “student bias” and “task bias”, the prediction function
now becomes:

p̂ui = µ +bu +bi +

(
K

∑
k=1

wkhT
k Φk

)
u,i

(16)

Φk =
∑

T
t=(T−Tmax+1) qk(t)

Tmax
(17)

where qk is a latent factor vector representing the time, and Tmax is the number of
solving-steps in the history that we want to go back. This is a simple strategy which
averages Tmax performance steps in the past to predict the current step. We will call
this approach TFA (Tensor Factorization - Averaging).

Another important factor is that “memory of human is limited”, so the students
could forget what they have studied in the past, e.g., they could perform better on
the lessons they learn recently than the one they learn from last year or even longer.
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Moreover, we recognize that the second time the students do their exercises and
have more chances to learn the skills, their performance on average gets better (we
will explain more about this in Figure 5). Thus, we could use a decay function which
reduces the weight θ when we go back to the history. We call this approach TFW
(Tensor Factorization - Weighting)

Φk =
∑

T
t=(T−Tmax+1) qk(t)et·θ

Tmax
(18)

An open issue for this is that we can use forecasting techniques instead of weighting
or averaging. We leave this solution for future work.

Dealing with cold-start problem

One of the challenging problem of collaborative filtering approaches like matrix
factorization is to deal with the “new user” (new student) or “new item” (new task),
e.g., those that are in the test set but not in the train set. We treat this problem with a
simple strategy: providing the global average score for the new users or new items.
Of course, more sophisticated methods can improve the prediction results (Preisach
et al., 2010; Gantner et al., 2010) but we leave these solutions for future work.

Moreover, in the educational data mining scenario, the cold-start problem is not
as harmful as in the e-commerce environment where the new users and new items
appear every day or even hour. In educational environment, the new students and
new tasks (or courses) appear only in every term/semester, and thus, the models
need not to be re-trained continuously.

EMPIRICAL EVALUATION

An important problem in using recommender systems for predicting student per-
formance is that which task to be considered as item. This section will discuss
about this problem. At first, we will look in details 2 real world data sets which are
collected from the Knowledge Discovery and Data Mining Challenge 2010 (pslc-
datashop.web.cmu.edu/KDDCup).

These data sets, originally labeled “Algebra 2008-2009” and “Bridge to Algebra
2008-2009” will be denoted ”Algebra” and ”Bridge” for the remainder of this chap-
ter. The Algebra (Bridge) data set has 23 (21) attributes, 8,918,054 (20,012,498)
records for training, and 508,912 (756,386) records for testing. These data represent
the log files of interactions between students and computer-aided-tutoring systems.
While students solve math related problems in the tutoring system, their activities,
success and progress indicators are logged as individual rows in the data sets.

The central element of interaction between the students and the tutoring system
is the problem. Every problem belongs into a hierarchy of unit and section. Fur-
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thermore, a problem consists of many individual steps such as calculating a circle’s
area, solving a given equation, entering the result and alike. The field problem view
tracks how many times the student already saw this problem. Additionally, a dif-
ferent number of knowledge components (KC) and associated opportunity counts
is provided. Knowledge components represent specific skills used for solving the
problem (where available) and opportunity counts encode the number of times the
respective knowledge component has been encountered before.

Target of the prediction task is the correct first attempt (CFA) information which
encodes whether the student successfully completed the given step on the first at-
tempt (CFA = 1 indicates correct, and CFA = 0 indicates incorrect). The prediction
would then encode the certainty that the student will succeed on the first try.

There is an obvious mapping of users and ratings in the student performance
prediction problem:

student 7→ user
performance (correct first attempt) 7→ rating

The student becomes the user, and the correct first attempt (CFA) indicator would
become the rating, bounded between 0 and 1. With this setting there are no users in
the test set that are not present in the training set which simplifies predictions.

Table 1 Mapping student performance data to user/item in recommender systems. Solving-step is
a combination of problem hierarchy (PH), problem name (PN), problem group (PG) extracted from
PN, step name (SN), and problem view (PV). Skill is also called knowledge component (KC). (*)
items are used for the experiments

Algebra Bridge
User #User #User
Student 3,310 6,043
Item #Item #Item
Solving-Step (PH, PN, SN, PV)(*) 1,416,473 887,740
Skill (KC) (*) 8,197 7,550
PH, PN, SN 1,309,038 593,369
PH, PG, SN 848,218 188,001
PG, SN 776,155 155,808
PN, SN 1,254,897 566,843
SN 695,674 126,560
PN 188,368 52,754
PG 185,918 52,189
PH, PN 206,596 61,848
PH, PG 1,000 1,343
PH 165 186
PH, PN, PV 220,045 101,707
PH, PG, PV 3,203 5,537
PH, PV 780 1,526
Rating #Rating #Rating
Correct first attempt 8,918,054 20,012,498
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For mapping the item, several options seemed to be available to us. From the
official KDD Challenge dataset description it was immanent that an item was sup-
posed to be the combination (concatenation) of problem hierarchy (PH), problem
name (PN), step name (SN), and problem view (PV). Choosing PH-PN-SN-PV as
the item had the drawback of incurring the new-item problem into our recommen-
dation task: in the test sets, instances of PH-PN-SN-PV would occur that are un-
available in the training set, thus our models would not be able to learn much about
them. Another problem with this approach is that it leads to huge sparsity and to a
high number of new items on the test set. For instance, for the algebra dataset this
configuration would lead to a total of 1,416,473 items (see Table 1). Since there are
8,918,054 examples on the training set for this dataset one could expect to see, on
average, 6 observations per item (99.78% sparsity). Indeed, as shown in Thai-Nghe
et al. (2010a) the different mappings yield different results.

Generally speaking, there are three important factors for the evaluation of the
candidate items:

• the percentage of new users or new items in the test set
• the overall sparsity of the resulting matrix
• the percentage of missing values

Baselines and Model setting

Baselines: We use the global average as a baseline method, i.e. predicting the aver-
age of the target variable from the training set. The proposed methods are compared
with other methods such as user average, biased-user-item (Koren, 2010). Please
note that, as shown in Thai-Nghe et al. (2010a), matrix factorization already outper-
forms the traditional regression methods such as linear/logistic regression. Thus, in
this chapter we have not considered these algorithms for the evaluation.
Hyper paramter setting: We do the hyper parameter search to determine the best hy-
per parameters for all methods, by optimizing the RMSE (Root mean squared error)
on a holdout set. We will later report the hyper parameters for some typical methods
(in Table 2). Please also note that we have not performed a significance test (t-test)
because the real target variables of two data sets from KDD Challenge 2010 have
not been published yet. In order to obtain the RMSE on the two data sets we have to
submit the generated predictions to the KDD Challenge 2010 website. Thus, all the
results reported in this study are the RMSE score from this website (it still opens for
submission after the challenge). Of course, we could use an internal split (e.g. split-
ting the training set to sub-train and sub-test) but we wanted compared to the other
KDD cup participants’ approaches on the given datasets for better comparability
(we will report later in the discussion section).
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Implicitly Encoding Latent Factors Using Matrix Factorization

Figure 4 presents the comparison of root mean squared error for Algebra data set. In
Figure 4a, we factorize on the student and the task, which is the solving-step. The
result significantly outperforms any baseline method.

Fig. 4 RMSE results of matrix and biased matrix factorization which factorize on a) student and
the solving-step (task) and b) student and the required skills in solving the step. Algebra data set.

Moreover, if we have more metadata, e.g., the required skills in solving the step,
we see an additional improvement. Figure 4b clearly shows that when using both
matrix factorization and biased matrix factorization on the student (as user) and the
required skills (as item) to solve the step, the result is again improved compare to
other methods and increases the gap between the baseline methods and the best
factor model. These results somehow reflect that the proposed approach can deal
with the “slip” and “uess” factors by implicitly encoding them as the latent factors of
the model. The reason for the improvement of factorizing on the student/skill could
be that, in this setting, there are less (tasks) items (8,197) and the same number
of (performance) ratings, thus, on average, each (student) user has more ratings
(8,918,054/8,197≈ 1,088 ratings/user), which means that the algorithms have more
data to learn from.

Tensor Factorization for Exploring Temporal Effects

The previous section shows that the “slip” and “guess” factors could be implicitly
encoded in the models. In this section, we present the result of taking into account
the temporal information. Figure 5 describes the effect of the time on knowledge
of the learners for both Algebra and Bridge data sets. In this figure, the x-axis is
the number of times that the students have chances to learn the skills (the “oppor-
tunity count” column in the data set), and the y-axis is the ratio of the number of
students solving the problem correctly. Clearly, we can see that their performance
has been improved when they have additional approaches to learn the skills. This
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trend also reflects the educational factor that “the more the students learn, the better
their performance gets”.

Fig. 5 The effect of the time on the knowledge of the learners. The x-axis presents the number of
times the student learns the knowledge components. The y-axis is the probability of solving the
problem correctly

Figure 6 presents the RMSE of tensor factorization methods which factorize on
the student (as user), solving-step (as item), and the sequence of solving-step (as
time) on both data sets. The results of the proposed methods are also improved
compared to those already presented. Compared with a matrix factorization which
does not take the temporal effect into account, the tensor factorization methods per-
form better. This result somehow reflects the natural fact that we mentioned before:
”the knowledge of the student is improved over the time and human memory is lim-
ited”. However, the result of tensor factorization by weighting with a decay function
(TFW) has a small improvement compared to the method of averaging on the time
mode (TFA).

Fig. 6 RMSE of taken into account the temporal effect using tensor factorization which factorize
on student, solving-step, and time

For referencing, we report the best hyper parameters found via cross validation
and approximation of the running-time in Table 2, which produce the results in Fig-
ure 6. Please note that although the training time of TFW is high, e.g.≈15 hours for
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Bridge data set, in educational environment where the models need to be retrained
on each term/semester/year, run times in this order of magnitude are not an issue, as
we already discussed in the cold-start subsection.

Table 2 Hyperparameters and approximation of the running-time.

Method Data set Hyperparameters Train (min.) Test (sec.)
MF Algebra β=0.005, #iter=120, K=16, λ=0.015 16.83 0.15
Biased MF Algebra β=0.001, #iter=80, K=128, λ=0.0015 19.12 0.23
MF Bridge β=0.01, #iter=80, K=64, λ=0.015 40.15 0.34
TFA Bridge β=0.01, #iter=30, K=32, λ=0.015, Tmax=8 296.25 2.84
TFW Bridge β=0.01, #iter=30, K=32, λ=0.015, Tmax=8, θ= 0.4 904.40 22.56

DISCUSSION

To this end, one would raise the following question: “How do the delivered recom-
mendations look like?” The delivered recommendations depend on the goal of the
system. Let’s discuss the recommendation for a single student:

• In case of rating prediction, which is the problem approached in this chapter, we
are interested in student’s performance for a given item. In our case, it means that
we compute the expected performance on all tasks not solved by the student in
the past. Then, we have several choices: we can provide the student with tasks she
will be more likely to solve successfully or we can let the teacher decide about
the right mix of tasks or simply present the prediction as a measure of estimated
difficulty of that task for the student at hand.

• If we are most interested in those items the students is expected to have problems
with and which we therefore want to present to him for further learning (item
prediction is the recommender systems task at hand), we compute the expected
score for each item the student has not tackled in the past. We sort these items
according to the predicted score and deliver the student the top-k scored items as
those have the highest likelihood of him failing this task.

• Furthermore, we can of course tackle classic problems such as providing the
student with the top-k learning resources (courses, materials, tasks) he/she would
be more likely interested in.

As shown above, there is a plethora of areas of application for recommender sys-
tems in learning environments. For instance, in the example of Figure 3, we could
recommend to the students some similar exercises which are neither too hard nor
too easy for them, thus, the system can help the student improve their knowledge
by learning/doing similar tasks. Moreover, from the scenario of Figure 1, when the
students solve a problem, we could also recommend them some similar problems
which may help them consolidate and expand their knowledge. Another example
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is the recommendation of similar grammar structures, vocabularies, or even a sim-
ilar problem/section when the student is learning or doing exercises in an English
course, etc.

Another important question could be raised is that “How good our approach is
compared to the others competitors on KDD Challenge data?” The RMSE score of
the best student teams is summarized from the leader-board as the following:

• First place: RMSE = 0.27295, National Taiwan University team (Yu et al., 2010)
• Second place: RMSE = 0.27659, Zach A. Pardos team (Pardos and Heffernan,

2010)
• Third place: RMSE = 0.28048, SCUT Data Mining team (Shen et al., 2010)
• Our approach: RMSE = 0.29519 (not submitted)
• Fourth place: RMSE = 0.29801, Y10 team

Please note that the focus of this work is not producing a system for the KDD
Challenge but on getting the real datasets from an e-learning system and apply-
ing recommender systems, especially factorization techniques for predicting student
performance. Although the other methods reached lower RMSE, they are more com-
plex and require much effort on data preprocessing (e.g. feature engineering) as well
as generating hundred of models and ensembling these together. On the other hand,
factorization methods like those presented in this work are simple to implement and
need not so much human effort and computer memory to deal with large datasets
(e.g., we just need 2 and 3 features for matrix and tensor factorization, respectively).
More complex models using matrix factorization can also produce the better results
as shown in Toscher and Jahrer (2010). This means that factorization techniques are
promising for the problem of predicting student performance.

One more issue should also be discussed is that “what does the presented RMSE
reduction mean in practical? E.g., in helping the education managers, students...” As
in the Netflix Prize (netflixprize.com) it has been shown that a 10% of improvement
on RMSE could bring million of dollars for recommender systems of a company.
In this work, we are on educational environment, and of course, the benefit is not as
explicit as in e-commerce but the trend is very similar. Moreover, in Cen et al. (2006)
it has been shown that an improved model (e.g. lower RMSE) for predicting student
performance could save millions of hours of students’ time and effort since they
can learn other courses or do some useful activities. The better a model captures the
student’s skills, the lower will be its error in predicting the student’s performance,
thus, an improvement on RMSE would show that our models are better capable
of capturing how much the student has learned; and finally, a good model which
accurately predicts student performance could replace some current standardized
tests.
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FUTURE RESEARCH DIRECTIONS

An open issue is that recommender systems for educational purposes are more com-
plex and challenging research direction (Drachsler et al., 2009) compared to the case
of e-commerce in which recommender systems are widely being used. The reasons
are that learners have specific learning goals that they want to achieve within a
specified competence in a certain time, and that the preferred learning activities
of learners might not be the pedagogically the most adequate (Tang and McCalla,
2004). As discussed in Santos and Boticario (2010), recommendations for tech-
nology enhanced learning scenarios have differences from those in other domains
because recommendations in e-learning should be guided by educational objectives,
and not only by the user’s preferences. Thus, in future work, the proposed approach
which uses student performance for recommendation would be promising to tackle
the above problems since we can recommend the tasks for students based on their
performance but not on their preferences.

Moreover, to improve the prediction results, one can apply more sophisticated
methods to deal with the cold-start problems. Also, using ensemble methods on
different models generated from matrix and tensor factorization can be investigated.
Moreover, to take into account the sequential effect, instead of using averaging or
weighting methods on the third mode of tensor, one could use forecasting techniques
such as single exponential smoothing or Holt-Winter methods (Chatfield and Yar,
1988).

Another open issue is that each solving-step relates to one or many skills, thus,
use multi-relational matrix factorization (Singh and Gordon, 2008; Lippert et al.,
2008) could be developed to deal with this problem.

CONCLUSIONS

In this chapter, we have discussed on the problem of predicting student performance
as well as personalized recommending tasks/exercises to students. We introduce
state-of-the-art factorization techniques for predicting student performance. These
techniques are useful in case of sparse data, and even in the case that we have no
background knowledge about the students and the tasks. After introducing and for-
mulating this problem in the context of recommender systems, we present factor-
ization methods, which are currently known as the most effective recommendation
approaches, by a formalized and detailed way that can be helpful for the researchers
who come from educational domains.

Factorization techniques belong to the family of latent factor models, thus, they
can implicitly take into account the important latent factors in predicting student
performance such as “slip” (student knows the solution but making a mistake) and
“guess” (student does not know the right solution but guessing correctly) as well
as “student effect” (e.g. how clever/good the student is, in performing the task) and
“task effect” (e.g. how hard/easy the task is). Moreover, as a natural fact, the knowl-
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edge of the learners improves over the time, thus, we propose tensor factorization
methods to take the temporal effect into account. Finally, some experimental results
and discussions are provided to validate the proposed approach.
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KEY TERMS & DEFINITIONS

• Collaborative Filtering (CF): CF filters the information or patterns based on the
collaboration among users, items, etc. CF generates the recommendations based
on the ideas that ”similar users like similar things”

• Cold-start problem: A user/item has not been known by the models (new user/item)
• Computer-Aided tutoring system (CATS): CATS is any computer system that

provides direct customized instruction or feedback to students (Wikipedia.org).
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• Educational data mining (EDM): EDM is concerned with developing methods for
exploring data that come from educational settings (Educationaldatamining.org).

• Matrix factorization (MF): MF is an approximation of a matrix by two (or more)
low-rank matrices.

• Predicting student performance (PSP): PSP is the problem of predicting student’s
ability (e.g., estimated by a score metric) in solving the tasks when interacting
with the tutoring system.

• Rating prediction: The prediction of the rating values (scores) for items (e.g.
movies, books) that a user may like.

• Tensor: Tensor is a three (or more) dimensional matrix
• Tensor factorization (TF): TF is a generalization of MF.


