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Abstract— Class imbalance is one of the challenging problems
for machine learning algorithms. When learning from highly
imbalanced data, most classifiers are overwhelmed by the
majority class examples, so the false negative rate is always high.
Although researchers have introduced many methods to deal
with this problem, including resampling techniques and cost-
sensitive learning (CSL), most of them focus on either of these
techniques. This study presents two empirical methods that deal
with class imbalance using both resampling and CSL. The first
method combines and compares several sampling techniques
with CSL using support vector machines (SVM). The second
method proposes using CSL by optimizing the cost ratio (cost
matrix) locally. Our experimental results on 18 imbalanced
datasets from the UCI repository show that the first method
can reduce the misclassification costs, and the second method
can improve the classifier performance.

I. INTRODUCTION

In binary classification problems, class imbalance can
be described as the majority class outnumbering of the
minority one by a large factor. This phenomenon appears in
many machine learning and data mining applications, such
as credit card fraud detection, intrusion detection, oil-spill
detection, disease diagnosis, and many other areas. Most
classifiers in supervised machine learning are designed to
maximize the accuracy of their models. Thus, when learning
from imbalanced data, they are usually overwhelmed by
the majority class examples. This is the main problem that
degrades the performance of such classifiers ([1], [2]). It is
also considered as one of ten challenging problems in data
mining research [3].

Researchers have introduced many techniques to deal with
class imbalance, as summarized in [1] and [2]. Most of
them focus on the manipulation at the data level (resampling
methods) such as in [4], [5], [6], [7], [8], [9], [10] and the
classifier level (changing the classifier internally) such as in
[11], [12], [13], [14], [15], [16], [17], [18].

A related problem is cost-sensitive learning (CSL). Many
past publications have applied CSL to decision trees ([19],
[20], [21], [22]) or Naive Bayes ([23], [24]). In addition, to
understand how class imbalance affects CSL, some authors
have analyzed the behavior of the classifier (e.g. C4.5)
when applying CSL ([21], [25]). Previous works have also
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combined manipulations at the data-level with classifier-level
modifications ([26], [27], [28]).

Although many papers about the class imbalance problem
have been written, most of them focus on either resampling
techniques or CSL. Our contributions consist of two methods
which utilize both resampling techniques and CSL.
• The first method combines and compares several sam-

pling techniques with CSL using an SVM as the base
classifier. Concretely, in the first step of this com-
bination, we re-balanced the datasets by using some
resampling techniques such as TLINK, RUS, ROS, and
SMOTE (we will explain these methods in the next
section); in the next step, we trained SVM models on
these re-balanced datasets. The outputs produced by
SVM were fitted by a sigmoid function based on the
method by Platt [29] to get the posterior probabilities.
Finally, a Bayes risk (conditional risk) criterion was
used to get the final model with minimum expected
costs.

• The second method for CSL, instead of assuming that
we know the cost ratio (or cost matrix) before learning
as in the first method and other previous works ([30],
[21], [25]) or setting the cost ratio by inverting of prior
class distributions ([31], [7], [32]), we treat this number
as a hyperparameter, optimize it locally and then train
the final models.

Our experiments on 18 imbalanced datasets from UCI show
that these methods are useful. The first method helps re-
ducing misclassification costs and the second method helps
improving classifier performance (e.g. the GMean metric).

The rest of the paper is organized as follows. Section II
introduces some related work; in session III, we summarize
some common techniques that are usually used to tackle the
class imbalance problem; section IV describes the proposed
methods; section V presents the datasets; section VI shows
the experimental results; and finally, section VII is the
conclusion.

II. RELATED WORK

Many sampling techniques have been introduced including
heuristic or non-heuristic oversampling ([4], [5]), undersam-
pling ([6], [7]), and data cleaning rules such as removing
“noise” and “borderline” examples ([8], [9], [10]). These
works focus on data-level techniques.

Other researchers concentrate on changing the classifier
internally, for example SVM, to deal with class imbalance
such as [11], [12], and [13]; [14] uses ensemble learning to
deal with class imbalance while [15] combines undersam-
pling with ensemble methods; [16] focuses on incorporating
different re-balance heuristics to SVM to tackle the problem



of class imbalance while [17] and [18] incorporate SVM into
a boosting method.

In CSL, [20] introduced an instance-weighting method to
induce cost-sensitive trees; two other methods investigated
on CSL with decision trees ([22], [23]) while [24] intro-
duced CSL with Naive Bayes. These studies introduced a
test strategy which determines how unknown attributes are
selected to perform test on in order to minimize the sum of
the misclassification costs and test costs.

Moreover, [26] applied synthetic minority oversampling
technique (SMOTE [4]) to balance the dataset first, then
built the model using SVM with different costs proposed
by [13]; [27] and [28] applied some common classifiers (e.g.
C4.5, logistic regression, and Naive Bayes) with sampling
techniques such as random undersampling, random oversam-
pling, condensed nearest neighbor rule [8], Wilson’s edited
nearest neighbor rule [10], Tomek’s link [9], and SMOTE.

Different to the literature, instead of focusing only on
data sampling or CSL, we propose using both techniques.
In addition, we do not assume a fixed cost ratio, neither
set the cost ratio by inverting the ratio of prior distributions
between minority and majority class; instead, we optimize
the cost ratio locally.

III. DEALING WITH CLASS IMBALANCE

To deal with imbalanced datasets, researchers used to
focus on the data level and the classifier level ([1], [2]). At
the data level, the common task is the modification of the
class distribution. At the classifier level, many techniques
were introduced such as manipulating classifiers internally,
one-class learning, ensemble learning, and CSL.

A. Modifying Class Distribution

Random oversampling (ROS) is a non-heuristic method
[1] used to balance class distribution by randomly duplicating
the minority class examples, while random undersampling
(RUS) randomly eliminates the majority class examples.

The Condensed Nearest Neighbor Rule (CNN) [8] is used
to find a consistent subset of examples. A subset Ê ⊆ E is
consistent with E if using the 1-nearest neighbor classifier,
Ê correctly classifies the examples in E.

Wilson’s Edited Nearest Neighbor Rule (ENN) [10] re-
moves any instance with a class label different from the class
of at least two of its three nearest neighbors.

Tomek’s Link (TLINK) [9] is a method for cleaning
data. Given two examples ei and ej belonging to different
classes, d(ei, ej) be the distance between ei and ej . A pair
(ei, ej) is called a TLINK if there is no example el such
that d(ei, el) < d(ei, ej) or d(ej , el) < d(ei, ej). If there
is a TLINK between 2 examples, then either one of these
is noise or both of them are borderline examples. We want
to use TLINK as undersampling method, so only majority
examples are removed.

One-sided selection (OSS) [33] is an undersampling
method that first applies CNN to find a consistent subset,
and then TLINK to remove noise and borderline examples.

The Synthetic Minority Oversampling Technique
(SMOTE) is an oversampling method introduced by
[4] which generates new artificial minority examples by
interpolating between the existing minority examples. This
method first finds the k nearest neighbors of each minority
example; next, it selects a random nearest neighbor. Then a
new minority class sample is created along the line segment
joining a minority class sample and its nearest neighbor.

B. Cost-Sensitive Learning (CSL)

Most classifiers assume that the misclassification costs
(false negative and false positive cost) are the same. In
most real-world applications, this assumption is not true. For
example, in customer relationship management, the cost of
mailing to non-buyers is less than the cost of not mailing to
the buyers [19]; or the cost of misclassifying a non-terrorist
as terrorist is much lower than the cost of misclassifying
an actual terrorist who carries a bomb to a flight. Another
example is cancer diagnosis: misclassifying a cancer is much
more serious than the false alarm since the patients could lose
their life because of a late diagnosis and treatment [34]. Cost
is not necessarily monetary, for examples, it can be a waste
of time or even the severity of an illness [30].

This study focuses on binary classification problems; we
denote the positive class (+ or +1) as the minority, and the
negative class (− or −1) as the majority. Let C(i, j) be the
cost of predicting an example belonging to class i when in
fact it belongs to class j; the cost matrix is defined in Table
I.

TABLE I
COST MATRIX

Predicted class
Positive Negative

Actual class
Positive C(+,+) C(−,+)

Negative C(+,−) C(−,−)

Given the cost matrix, an example x can be classified into
class i with the minimum expected cost by using the Bayes
risk criterion: (conditional risk):

H(x) = arg min
i

 ∑
j∈{−,+}

P (j|x)C(i, j)

 (1)

where P (j|x) is the posterior probability of classifying an
example x as class j.

We assume that there is no cost for correct classifications,
so the cost matrix can be described by the cost ratio:

CostRatio = C(−,+)/C(+,−) (2)

The purpose of CSL is to build a model with minimum
misclassification costs (total cost):

TotalCost = C(−,+)×#FN + C(+,−)×#FP (3)

where #FN and #FP are the number of false negative and
false positive examples respectively.



IV. PROPOSED METHODS

The proposed methods are described in 4 subsections:

• We use support vector machines (SVM) as the base
classifier.

• Grid search is used to determine the best hyperparam-
eters for SVM and the resampling techniques.

• Method 1: Combination of Sampling techniques with
CSL, called S-CSL.

• Method 2: Using CSL by Optimizing Cost Ratio Lo-
cally, called CSL-OCRL.

A. Support Vector Machines

Given a dataset D consisting of n examples (xi, yi), where
xi ∈ X are input features and yi is the target class, yi ∈
{−1,+1}. SVM predicts a new example x by

f(x) = sign

(
n∑
i=1

αiyik(x,xi) + b

)
(4)

where k(x,xi) is a kernel function, b is the bias, and αi is
determined by solving the Lagrangian optimization problem,
Lp =

1
2
‖w‖2 +C

n∑
i

ξi−
n∑
i

αi{yi(xi.w+b)−1+ξi}−
n∑
i

µiξi

(5)
where ξi is a slack variable, µi is a Lagrange multiplier,

and C is a user-specified hyperparameter representing the
penalty of misclassifying the training instances.

For non-linear problems, the kernel k is used to maximize
margin hyperplanes. Two commonly used kernel functions
are the polynomial kernel

k(x,xi) = (γx · xi + r)p (6)

and the radial basis function kernel

k(x,xi) = e−γ‖x−xi‖2 (7)

B. Hyperparameter Search

We have searched for the best hyperparameters C, expo-
nent p, and γ in equations (5), (6), and (7) respectively. First,
a “raw search” on the powers of two (e.g. 2−15 . . . 210 for C
values) was used to identify a good region, then a “smooth
search” around that region was conducted [35]. Figure 1
describes the details of this method.

Moreover, each dataset has its own structure, so the
percentages of undersampling and oversampling are also dif-
ferent. These percentages are also treated as hyperparameters.
For oversampling, we search on the percentages from 50,
100, 150, . . . to a balanced distribution between the two
classes. Similarly for undersampling, we also search on the
percentages from 10, 20, 30, . . . to a balanced distribution.

1: procedure HYPERSEARCH(DTrain, E, δ, λ)
returns the best hyperparameters Θ for eval. metric E

2: (DLocalTrain,DHoldout)← DTrain //split for 5-fold CV

//Raw search:
3: bestC, bestγ ← 0
4: for i← −15, . . . , 10 do
5: for j ← −15, . . . , 0 do
6: γ ← 2j ; C ← 2i

7: buildLocalSVM(DLocalTrain, γ, C)
8: TestLocalModel(DHoldout) //using metric E

9: Update bestC, bestγ
10: end for
11: end for

//Smooth search:
12: for i← bestC − 1, . . . , bestC + 1, step δ do
13: for j ← bestγ − 0.1, . . . , bestγ + 0.1, step λ do
14: γ ← j; C ← i
15: buildLocalSVM(DLocalTrain, γ, C)
16: TestLocalModel(DHoldout) //using metric E

17: Θ← C, γ //Update the best parameter values

18: end for
19: end for
20: return Θ
21: end procedure

Fig. 1. Hyperparameter search for optimizing metric E with step δ for C
value, and step λ for γ value in RBF kernel

C. Method 1: Combine Sampling with CSL (S-CSL)

We combine 4 resampling techniques with CSL using
standard SVMs1. These techniques include non-heuristic
under-/over-sampling (RUS, ROS) and heuristic under-/over-
sampling (TLink, SMOTE). In the first step, we divide the
original dataset into two separate train and test sets; then,
4 sampling techniques µ ∈ {RUS, TLINK, ROS, SMOTE}
with different sampling percentages Φ are applied on the
train set to generate new distributions; next, we perform
hyperparameter search (see Figure 1) on the new training
sets to determine the best parameters in terms of total costs
(TC); in the next step, SVMs are built based on the best
hyperparameters found. The outputs of SVM are fitted by a
sigmoid function2 to get the posterior probabilities; finally,
we use the Bayes risk criterion to predict new examples in
the test set. Details are described in Figure 2. The results are
averaged from 5-fold cross-validation.

Most datasets do not have the cost ratios, so we assumed
cost ratios from the set {22, 24, 26, 28}. The final results are
reported by averaging misclassification costs for those ratios.
This is also done in many other studies ([30], [21], [25]).

1We have used Weka’s SMO, http://www.cs.waikato.ac.nz/ml/weka/
2The sigmoid function has 2 parameters: α and β. These values can be

determined by using maximum likelihood [29], but for straightforward, we
set them to 1



1: procedure S-CSL(D, µ, C)
Input: Dataset D and cost matrix C
Output: Label for new example x∗

2: (DTrain,DTest)← D //split for 5-fold CV

3: for each Φ in {sample space percentages} do
4: DTrµΦ ← GenerateDistribution(DTrain, µ,Φ)
5: ΘµΦ ← HyperSearch(DTrµΦ, TC, 0.25, 0.01)

//0.25 and 0.01 are increase-step of C and γ in RBF kernel

6: Θ∗µΦ ← Update-best-hyperparameters for D∗TrµΦ

7: end for
8: //Train SVM model with parameters Θ∗

µΦ on D∗TrµΦ

f(x)←
n∑
i=1

αiyik(x,xi) + b

9: //Fitting a sigmoid function to SVM outputs to get the posterior probability.

P (j|x)← 1
1 + eαf(x)+β

10: //Testing example x∗ in DTest

H(x∗)← arg min
i

 ∑
j∈{−1,+1}

P (j|x∗)Cij


11: end procedure

Fig. 2. Combination of sampling with CSL (S-CSL)

D. Method 2: CSL by Optimizing Cost Ratio Locally

In the S-CSL method, we have assumed unknown cost
ratios. We tried different cost ratios and took the average
result. In this section, we will introduce a method that
supplies the best cost ratio to the classifier. In previous
works, the cost ratio was determined by inverting the
prior distributions ([7], [31]), for example, cost ratio =
#majority examples/#minority examples. This choice leads
to the Kolmogorov-Smirnov statistic being the performance
metric [36]. Hand said that this is almost certainly inap-
propriate, precisely because it is made not on the basis of
consideration of the relative severity of misclassifications in
the presenting problem, but simply on grounds of conve-
nience ([36], [32]). In our method, we treat this cost ratio as
a hyperparameter, and locally optimize this parameter (see
Figure 3). We use this kind of search because the datasets in
this study are not extremely imbalanced and our preliminary
experiments showed that the results are not significantly
improved (in terms of the GMean metric) when using a
high cost ratio. Figure 4 presents the CSL-OCRL method.
This method is nearly the same as S-CSL, we just learn on
the original data and optimize the cost ratio for the GMean
metric3

3We used GMean as a evaluation metric in this study because previous
works show that GMean is more appropriate in the case of imbalanced data
([33], [15], [17], [37]). GMean =

√
TPR× TNR [33], where TPR and

TNR are the true positive rate and true negative rate.

1: procedure OPTIMIZECOSTRATIO(DTrain,Θ, η)
Input: DTrain, SVM parameters Θ, step length η
Outputs: the best cost ratio for GMean

2: (DLocalTrain,DV al)← DTrain . split for 5-fold CV

3: ImbaRatio← |Major|
|Minor| . imbalance ratio of DTrain

4: maxRatio← ImbaRatio ∗ 1.5
5: curRatio← 1.0
6: bestGMean← 0
7: buildLocalModel(DLocalTrain,Θ)
8: while curRatio <= maxRatio do
9: curGMean← testLocalModel(DV al, curRatio)

10: if (curGMean > bestGMean) then
11: bestGMean← curGMean
12: bestCostRatio← curRatio
13: end if
14: curRatio← curRatio+ η
15: end while
16: return bestCostRatio
17: end procedure

Fig. 3. Locally optimize the cost ratio with step length η

V. DATASETS

We have experimented on 18 imbalanced datasets from
the UCI repository4, as described in Table II. Some multi-
class datasets are converted to binary datasets using the one-
class-versus-rest scheme. The imbalance ratio ranges from
1.77 (lowest) to 64.03 (highest) between the majority and
minority examples. Since each dataset is generated by 4
different sampling techniques, we have actually experimented
on 90 “datasets”, including the original ones.

TABLE II
DATASETS

Dataset #Examples #Attributes #Minority Imba. Ratio
Abalone 4,177 9 391 9.68
Allbp 2,800 30 133 20.05
Allhyper 3,772 30 102 35.98
Allrep 3,772 30 124 29.45
Ann 7,200 22 166 42.37
Anneal 898 39 40 21.45
Breastcancer 699 11 241 1.90
Diabetes 768 9 268 1.86
Dis 3,772 30 58 64.03
Heartdisease 294 14 106 1.77
Hepatitis 155 20 32 3.84
Hypothyroid 3,163 26 151 19.95
Nursery 12,960 9 328 38.51
Pima-Indian 768 9 268 1.87
Sick 2,800 30 171 15.37
Spectheart 267 23 55 3.85
Transfusion 748 5 178 3.20
Wpbc 198 34 47 3.21

4http://archive.ics.uci.edu/ml/



1: procedure CSL-OCRL(D)
Input: Dataset D
Output: Label for new example x∗

2: (DTrain,DTest)← D //split for 5-fold CV

3: Θ← HyperSearch(DTrain, GMean, 0.25, 0.01)
4: //Optimize locally with increase-step 0.25 for cost ratio

C∗(i, j)← OptimizeCostRatio(DTrain,Θ, 0.25)

5: //Train SVM model with parameters Θ on DTrain

f(x)←
n∑
i=1

αiyik(x,xi) + b

6: //Fitting a sigmoid function to SVM outputs to get the posterior probability:

P (j|x)← 1
1 + eαf(x)+β

7: //Testing example x∗ in DTest :

H(x∗)← arg min
i

 ∑
j∈{−1,+1}

P (j|x∗)C∗(i, j)


8: end procedure

Fig. 4. CSL by Optimizing Cost Ratio Locally

VI. EXPERIMENTAL RESULTS

A. Results of Method 1 (S-CSL)

The sampling scheme is <Sampling method>
<Percentage>. For example, SM100 and ROS200 denote
SMOTE and random oversampling with 100% and 200%,
respectively. We have implemented 4 combinations and
compared them with three other CSL methods, which are
MetaCost ([30]), CSL on original data ([19], denoted by
CSL), and CSL by instance weighting ([20], [38], denoted
by CSW). Figure 5 shows the relationship between cost
ratios and total costs of these methods in five typical results.
One can see clearly that when the cost ratio increases, our
methods reduce the total cost significantly. This consolidates
the results of our initial study [39]. CSL as a meta-learning
method and the internal classifier (SVM in this case) are
still impacted by the class imbalance problem. CSL can
work better if it is supplied by a re-balanced dataset.

Table III compares the results of S-CSL with other
methods in term of average costs. For each dataset, when
comparing the last four columns (S-CSL) with the other
methods, we can see that the average misclassification costs
are reduced after re-sampling in most cases. For each row
in the table, the bold number denotes the best result and
the italic number describes our combination better than
MetaCost. We also report the percentage for the sampling
methods, and the imbalance ratio after resampling for each
dataset. The combination of RUS with CSL (RUS-CSL)
works better than the remaining combinations. In addition,
RUS-CSL is always works better than MetaCost, CSL, and

Fig. 5. Cost ratio and total cost relationship for 5 typical results

CSW (except for the Dis dataset). The last row in the table
summarizes the comparison results of each combination with
3 other methods.

Moreover, when observing the imbalance ratio before and
after sampling, the results show that not only class imbalance,
but also noise, borderline examples, and class overlapping
degrade the classifier performance. These problems have also
been reported by [9], [33], [40].



TABLE III
EXPERIMENTAL RESULTS - AVERAGE COSTS FOR METHOD 1: S-CSL

Dataset SVM MetaCost CSL CSW
S-CSL

ROS-CSL RUS-CSL SMOTE-CSL TLink-CSL
Abalone 6632.00 547.00 486.25 496.90 486.80 460.75 486.05 469.50
(%Sampling, Imbalance ratio) (-, 9.68) (100, 4.85) (30, 6.79) (100, 4.85) (-, 8.97)

Allbp
1771.00 364.50 342.80 373.65 337.75 290.50 320.30 302.10

(-, 20.05) (300, 5.03) (20, 16.11) (500, 3.35) (-, 19.50)

Allhyper
887.20 373.05 227.00 259.45 222.30 172.60 193.20 167.90

(-, 35.98) (400, 7.24) (50, 18.12) (100, 18.12) (-, 35.01)

Allrep
1320.00 93.65 112.35 399.25 84.40 84.55 135.65 111.00

(-, 29.45) (300, 7.36) (80, 5.89) (2800, 1.01) (-, 28.79)

Ann
787.00 134.80 131.45 182.05 140.45 98.10 131.05 113.40

(-, 42.37) (100, 21.31) (50, 21.31) (200, 14.21) (-, 42.10)

Anneal
154.20 57.40 55.15 55.10 51.20 53.15 38.15 69.30

(-, 21.45) (400, 4.28) (20, 17.15) (200, 7.14) (-, 21.25)

Breastcancer
206.20 24.30 25.80 23.60 14.90 14.45 24.70 13.15

(-, 1.90) (70, 1.12) (30, 1.33) (50, 1.27) (-, 1.85)

Diabetes
1916.80 91.65 89.90 172.45 85.80 86.10 86.25 90.40

(-, 1.86) (60, 1.16) (20, 1.49) (60, 1.16) (-, 1.52)

Dis
958.80 350.65 422.85 304.80 326.25 337.65 356.05 371.30

(-, 64.03) (6000, 1.05) (50, 32.30) (500, 10.76) (-, 63.97)

Heartdisease
598.40 34.10 32.50 195.25 31.15 31.45 31.70 36.30

(-, 1.77) (20, 1.51) (20, 1.44) (30, 1.38) (-, 1.28)

Hepatitis
273.60 18.80 19.20 76.55 18.15 18.70 20.90 19.85

(-, 3.84) (50, 2.67) (30, 2.80) (100, 1.98) (-, 3.40)

Hypothyroid
700.00 124.30 140.10 197.20 156.75 103.45 101.50 110.55

(-, 19.95) (100, 10.04) (20, 16.06) (100, 10.04) (-, 19.70)

Nursery
1317.8 115.75 108.45 42.75 42.80 37.95 26.40 35.00

(-, 38.51) (100, 19.28) (70, 11.57) (300, 9.64) (-, 36.56)

Pima-Indian
2017.6 96.3 97.05 128.8 88.25 87.95 88.85 105.00

(-, 1.87) (50, 1.24) (20, 1.49) (70, 1.10) (-, 1.50)

Sick
1316.40 254.20 207.00 437.80 253.35 206.65 201.20 256.80

(-, 15.37) (200, 5.15) (20, 12.38) (100, 7.73) (-, 15.12)

Spectheart
462.00 34.05 36.75 161.35 40.50 32.25 33.95 33.30

(-, 3.85) (200, 1.28) (50, 1.93) (50, 2.56) (-, 2.95)

Transfusion
2840.40 108.6 109.8 105.3 106.65 103.85 106.45 106.05

(-, 3.20) (50, 2.14) (10, 2.89) (50, 2.14) (-, 2.53)

Wpbc
463.40 33.00 29.90 74.55 28.40 26.35 28.05 28.55

(-, 3.21) (100, 1.63) (20, 2.62) (100, 1.63) (-, 2.65)
Number of times S-CSL works better than MetaCost/CSL/CSW (out of 18) 15/13/15 18/18/17 14/16/15 12/12/14

Note: The lower the cost, the better the model

B. Results of Method 2 - CSL-OCRL

Table IV compares the result of CSL-OCRL with other
CSL and meta-learning methods, which are CSL by instance
weighting (CSW) ([20], [38]), MetaCost ([30]), Threshold-
Selector ([38]), and AdaBoost-CSL ([41], [42]). We use a
paired t-test with significance level 0.05. We use the CSL-
OCRL method as a baseline and compare the other methods
against it. The bold numbers present the best results among
these methods. One can see clearly that CSL-OCRL is almost
always equal to, or better than other methods.

VII. CONCLUSIONS

When learning from imbalanced data, the classifiers are
usually overwhelmed by the majority class, so the minority
class examples tend to be misclassified. Along with sampling
techniques and modifying the classifiers internally, CSL is
also an important approach because it takes into account
different misclassification costs for false negatives and false
positives.

In this study, we have proposed two simple methods to deal
with class imbalance. A key feature of our methods is that
we do not need to change the classifiers internally, so they
are easy to implement. The first method combines sampling
techniques with CSL to reduce the total misclassification
costs of the model. Experimental results show that in most
cases, the misclassification costs are reduced by using this
combination. The second method (CSL-OCRL) optimizes the
cost ratio locally and applies this ratio to train the full model.
The GMean results show that CSL-OCRL usually performs
at least as good as the other methods, and is significantly
better than some methods in certain cases.

In the future, we will study how to combine CSL with
feature selection methods, and investigate the influence of
class imbalance on large datasets.
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TABLE IV
EXPERIMENTAL RESULTS - GMEAN FOR METHOD 2: CSL-OCRL

Dataset CSL-OCRL CSW MetaCost ThresholdSelector AdaBoost-CSL
abalone 0.779±0.015 0.784±0.006 0.779±0.020 0.738±0.023 • 0.798±0.017
allbp 0.870±0.032 0.823±0.055 0.865±0.028 0.722±0.058 • 0.797±0.074
allhyper 0.895±0.042 0.841±0.084 0.893±0.073 0.776±0.021 • 0.791±0.067 •
allrep 0.886±0.031 0.789±0.061 • 0.874±0.033 0.736±0.075 • 0.780±0.065 •
ann 0.949±0.033 0.955±0.041 0.970±0.011 0.882±0.049 • 0.922±0.049
anneal 0.968±0.057 0.946±0.055 0.962±0.057 • 0.743±0.419 0.932±0.068
breastcancer 0.969±0.016 0.968±0.019 0.965±0.011 0.965±0.011 0.944±0.019 •
diabetes 0.760±0.043 0.746±0.048 • 0.705±0.046 • 0.610±0.072 • 0.713±0.055 •
dis 0.739±0.081 0.641±0.109 • 0.738±0.184 0.656±0.155 0.545±0.172 •
heartdisease 0.828±0.064 0.818±0.067 0.776±0.049 0.796±0.062 0.781±0.091
hepatitis 0.755±0.061 0.747±0.071 0.725±0.075 0.764±0.082 0.763±0.058
hypothyroid 0.899±0.044 0.856±0.038 • 0.927±0.034 ◦ 0.799±0.103 • 0.818±0.060 •
nursery 1.000±0.000 1.000±0.000 0.995±0.000 • 0.853±0.295 0.998±0.003
pima 0.747±0.050 0.737±0.031 0.697±0.052 0.727±0.038 0.710±0.037
sick 0.912±0.029 0.870±0.054 0.912±0.033 0.852±0.079 0.863±0.044
spectheart 0.772±0.037 0.732±0.082 0.730±0.076 0.756±0.055 0.739±0.117
transfusion 0.678±0.027 0.682±0.021 0.661±0.008 0.680±0.018 0.693±0.028
wpbc 0.683±0.056 0.619±0.194 0.680±0.084 0.257±0.269 • 0.678±0.116
Average 0.838 0.809 0.826 0.740 0.793
win/tie/lose base 0/14/4 1/14/3 0/10/8 0/12/6

◦, • statistically significant improvement or degradation, level=0.05
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