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Abstract— Recently, researchers have shown that the Area
Under the ROC Curve (AUC) has a serious deficiency since
it implicitly uses different misclassification cost distributions
for different classifiers. Thus, using the AUC can be compared
to using different metrics to evaluate different classifiers [1].
To overcome this incoherence, the H measure was proposed,
which uses a symmetric Beta distribution to replace the implicit
cost weight distribution in the AUC. When learning from
imbalanced data, misclassifying a minority class example is
much more serious than misclassifying a majority class ex-
ample. To take different misclassification costs into account, we
propose using an asymmetric Beta distribution (B42) instead
of a symmetric one. Experimental results on 36 imbalanced
data sets using SVMs and logistic regression show that B42 is
a good choice for evaluating on imbalanced data sets because
it puts more weight on the minority class. We also show that
balanced random undersampling does not work for large and
highly imbalanced data sets, although it has been reported to
be effective for small data sets.

I. INTRODUCTION

Class imbalance is a phenomenon in which the class dis-
tribution1 is far from the uniform distribution. It appears in
many machine learning applications such as fraud detection,
intrusion detection, and so on [2], [3]. Most classifiers are de-
signed to maximize the accuracy of their models. Thus, when
learning from imbalanced data, they are usually overwhelmed
by the majority class examples. This is the main cause for
the performance degradation of such classifiers, and is also
considered as one of ten challenging problems in data mining
research [4]. For example, in fraud credit card detection,
suppose that the data set has 999 legitimate transactions
(majority class) and only 1 fraudulent transaction (minority
class – the one we would like to detect). To maximize the
accuracy, in this case, classifiers optimized for accuracy will
classify all transactions as belonging to the majority class
to get 99.9% accuracy. However, this result has no meaning
because the fraudulent transaction is misclassified.

Obviously, to evaluate the classifiers in this case, the
accuracy metric becomes useless, and the area under the
ROC curve (AUC) is commonly used instead [5], [6]. The
AUC has been widely used to evaluate the performance of
classifiers. Recently, [1] has shown that using the AUC is
equivalent to averaging the misclassification loss over a cost

Nguyen Thai-Nghe is with the Information Systems and Machine Learn-
ing Lab, University of Hildesheim, Samelsonplatz 1, 31141 Hildesheim,
Germany (phone: +49 5121 883 765; email: nguyen@ismll.de).

Zeno Gantner is with the Information Systems and Machine Learning
Lab, University of Hildesheim, Samelsonplatz 1, 31141 Hildesheim, Ger-
many (phone: +49 5121 883 856; email: gantner@ismll.de).

Lars Schmidt-Thieme is with the Information Systems and Ma-
chine Learning Lab, University of Hildesheim, Samelsonplatz 1, 31141
Hildesheim, Germany (phone: +49 5121 883 851; email: schmidt-
thieme@ismll.de)
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ratio distribution which depends on the score distributions.
Since the score distributions depend on the classifier itself,
employing the AUC as an evaluation measure actually means
measuring different classifiers using different metrics. To
overcome this incoherence, the “H measure” was proposed,
which uses a symmetric Beta distribution to replace the
implicit cost weight distribution in the AUC. When learning
from imbalanced data, misclassifying a minority class exam-
ple (e.g, a fraud credit card transaction) is much more serious
than misclassifying a majority example. Thus, we propose
using an asymmetric Beta distribution such as beta(x; 4, 2)
(called B42) instead of the symmetric one as in the H
measure.

Moreover, many papers have been published about the
class imbalance problem, but there is still little insight
on how skew class distributions affect the classifiers when
learning from large and imbalanced data sets. Furthermore,
as investigated in [3], there are two open problems for the
future research in this area: The need for a standardized
evaluation protocol and the need for uniform benchmarks
as well as large data sets [7]. The contributions of this
work are (1) to propose an evaluation metric for learning
from imbalanced data, (2) to introduce large benchmark data
sets for systematic studies on imbalanced data, and (3) to
investigate the influence of class imbalance on the behavior
of classifiers when learning from large data sets.

The rest of the paper is organized as follows. Section
II introduces the H metric followed by the proposed B42
metric; in session III, we summarize some common tech-
niques that are usually used to tackle the class imbalance
problem; section IV first presents the evaluation protocol
and the data sets. Then, we analyze and compare the results
of three metrics (B42, AUC, and H) followed by analyzing
the behaviors of classifiers when learning from large and
imbalanced data; and finally, section V concludes the article.

II. NEW EVALUATION MEASURES

A. The H Measure – A Replacement for the AUC

To overcome the incoherence of the AUC, the “H measure”
was proposed, which is determined by

H = 1−
∫
Q(T (c); b, c)uα,β(c)dc

π0

∫ π1

0
cuα,β(c)dc+ π1

∫ 1

π1
(1− c)uα,β(c)dc

. (1)

where π0 and π1 are prior probabilities; c0 and c1 are
the misclassification costs for class 0 (majority) and class 1
(minority); b = c0 + c1 and c = c1/(c0 + c1); f0(s) and
f1(s) are the probability density functions; and F0(s) and
F1(s) are the cumulative distribution functions for class 0



and class 1, respectively.

Q(t; b, c) , {cπ1(1− F1(t)) + (1− c)π0F0(t)}b

is the loss for an arbitrary choice of threshold t and

uα,β = beta(c;α, β) =
cα−1(1− c)β−1

B(1;α, β)

is a symmetric Beta distribution. Please refer to [1], [8] for
details.

B. B42 – A New Evaluation Measure for Learning from
Imbalanced Data

Beta distributions are a popular model for random vari-
ables [9] with values in the interval [0,1]. The Beta function,
also known as Euler’s Beta integral [9], is defined as

B(1;α, β) =
∫ 1

0

cα−1(1− c)β−1dc.

It can also be defined by using the Gamma function

B(1;α, β) =
Γ(α) Γ(β)
Γ(α+ β)

.

A generalization of the Beta function is the incomplete
Beta function:

B(x;α, β) =
∫ x

0

cα−1(1− c)β−1dc.

The probability density function of the Beta distribution
has its mode at α−1

α+β−2 and is determined by

f(x;α, β) =
1

B(1;α, β)
xα−1(1− x)β−1

=
Γ(α+ β)
Γ(α) Γ(β)

xα−1(1− x)β−1.

As discussed in [1], the alternative cost distribution, which
can replace the implicit cost weight distribution in the AUC,
needs to be a non-uniform one. Thus, an asymmetric Beta
distribution would be a good choice for this replacement.

Fig. 1. Symmetric and Asymmetric Beta Distributions

As we can see in Figure 1, for two balanced classes, a
symmetric Beta distribution acts as a cost weight distribution,
which places most probabilities at 0.5, is used in the H.

However, when learning from imbalanced data sets, mis-
classifying a minority class example (e.g, in terrorist de-
tection system, misclassifying a terrorist who can carry a
bomb on a flight) is much more serious than misclassify-
ing a majority class example (e.g, misclassifying a normal
passenger as a terrorist) [10]. Thus, the misclassification
cost c1 (false negative cost) of the minority is much higher
than the misclassification cost c0 (false positive cost) of
the majority, therefore, the cost ratio c = c1/(c0 + c1)
should be higher than 0.5. For the aforementioned reason, we
use the asymmetric Beta distribution B42 as a cost weight
distribution. B42 places higher weight on minority class
examples and is a unimodal distribution with mode at 0.75.

Please note that one can choose some other values for α
(e.g, beta(x,6,2), beta(x,8,2). . . ). In those cases, the absolute
values of the metrics can be higher, but the relative values are
not significantly different. Thus, we decide to use beta(x,4,2).

III. DEALING WITH CLASS IMBALANCE

To deal with imbalanced data sets, many techniques have
been introduced, e.g. undersampling [11], [12]; oversampling
[13]; manipulating classifiers internally [14], [15], [16]; cost-
sensitive learning [17], [18], [10]; and more [2], [3].

In this work, we have not focused on designing or improv-
ing the performance of the classifiers but on a new evaluation
metric for imbalanced data sets learning. Different from the
H measure [1] which uses a symmetric Beta distribution, we
propose using an asymmetric one to put more weight on the
minority class, thus, it is more appropriate for learning from
imbalanced data.

For analyzing the behavior of the classifiers, we use
different costs (weights) for different classes, which sets
different values of parameter C for different target classes
[14]. We will call this the weighting method in the rest of
the article. In this method, given a data set D consisting of
n examples (xi, yi), where xi ∈ X are input features and
yi ∈ {−1,+1} is the target class; n+ and n− are number
of positive (minority) and negative (majority) examples.
A linear SVM for imbalanced data solves the following
unconstrained optimization problem:

min
w

1
2
wTw + C+

 n+∑
{i|yi=+1}

ξi

 + C−

 n−∑
{j|yj=−1}

ξj

 ,

(2)
where C+ and C− are penalty values for minority and

majority class examples. For imbalanced data, the separating
hyperplane needs to be pushed towards the positive examples,
thus, C+ will be assigned a greater value than C−.

Akbani [15] combined SMOTE – an oversampling method
[2] – with the weighting method to cope with imbalanced
data. In this study, working on large data sets, oversampling
needs lots of memory and training time, so we only use the
weighting approach.



TABLE I
COMPARISON OF `2-SVM (BASE) AND `2-LR USING THREE METRICS: B42, AUC, AND H

B42 AUC H
Data set %Minority Size `2-SVM `2-LR `2-SVM `2-LR `2-SVM `2-LR
r2l (*) 0.02 743.0 MB 0.413±.371 0.519±.356 0.963±.082 0.980±.044 0.345±.290 0.444±.278
nf-005p (***) 0.05 2.6 GB 0.006±.002 0.005±.003 0.523±.033 0.617±.038 ◦ 0.002±.001 0.003±.002
nf-05p (**) 0.50 2.6 GB 0.005±.001 0.022±.005 0.628±.008 0.767±.013 ◦ 0.002±.001 0.010±.001
probe (*) 0.83 743.0 MB 0.358±.364 0.543±.283 0.726±.119 0.818±.122 0.324±.270 0.467±.196
nf-1p(***) 1.00 2.6 GB 0.010±.001 0.039±.002 0.670±.007 0.784±.004 ◦ 0.005±.001 0.019±.001
appetency (**) 1.78 1.6 GB 0.012±.003 0.026±.007 0.735±.020 0.775±.014 ◦ 0.007±.003 0.013±.005
ann 2.30 436.0 KB 0.615±.093 0.659±.068 0.929±.025 0.984±.010 ◦ 0.536±.105 0.591±.057
allhyper 2.70 270.0 KB 0.459±.125 0.328±.105 • 0.862±.084 0.886±.030 0.254±.226 0.227±.116
w1a 2.97 3.4 MB 0.169±.183 0.214±.106 ◦ 0.810±.108 0.853±.034 0.108±.124 0.160±.133 ◦
allrep 3.29 275.0 KB 0.441±.064 0.385±.058 • 0.970±.006 0.967±.008 0.343±.072 0.264±.042 •
anneal 4.45 80.0 KB 0.635±.155 0.411±.116 • 0.957±.028 0.911±.042 0.573±.181 0.392±.297
allbp 4.75 200.0 KB 0.374±.169 0.324±.082 0.886±.135 0.859±.112 0.280±.132 0.207±.081
hypothyroid 4.77 281.0 KB 0.134±.179 0.343±.139 ◦ 0.834±.103 0.843±.056 0.292±.208 0.266±.143
nf-5p (***) 5.00 2.6 GB 0.112±.005 0.126±.005 0.766±.036 0.804±.004 0.061±.003 0.068±.003
sick 6.10 205.0 KB 0.625±.071 0.596±.065 • 0.929±.035 0.941±.023 0.535±.080 0.517±.070
churn (**) 7.34 1.6 GB 0.011±.003 0.023±.005 0.605±.017 0.648±.018 ◦ 0.005±.002 0.011±.002
abalone 9.36 259.0 KB 0.206±.054 0.205±.054 0.847±.024 0.845±.024 0.125±.043 0.122±.041
ijcnn 9.70 7.6 MB 0.313±.158 0.300±.150 0.861±.059 0.858±.058 0.227±.144 0.214±.135
nf-10p (***) 10.00 2.6 GB 0.194±.008 0.226±.010 ◦ 0.756±.005 0.817±.006 ◦ 0.118±.006 0.137±.007
nf-20p (***) 20.00 2.6 GB 0.223±.004 0.237±.003 0.752±.003 0.772±.003 0.149±.003 0.157±.003
hepatitis 20.64 23.0 KB 0.422±.195 0.484±.147 0.645±.368 0.736±.257 0.344±.234 0.417±.341
transfusion 23.80 24.0 KB 0.060±.077 0.399±.253 ◦ 0.562±.177 0.761±.178 0.132±.142 0.372±.255
a9a 23.93 3.4 MB 0.266±.033 0.270±.009 0.792±.006 0.794±.005 0.176±.006 0.178±.007
a2a 24.08 2.3 MB 0.293±.011 0.318±.011 ◦ 0.792±.009 0.793±.005 0.178±.013 0.180±.007
real-sim 30.75 88.2 MB 0.474±.278 0.768±.200 ◦ 0.812±.218 0.959±.057 0.455±.263 0.735±.231 ◦
url 33.05 2.2 GB 0.075±.021 0.095±.034 0.546±.025 0.565±.045 0.072±.020 0.086±.032
cod-rna 33.30 25.4 MB 0.166±.115 0.108±.076 0.586±.226 0.640±.094 0.155±.106 0.079±.056
pima 34.89 41.0 KB 0.216±.144 0.169±.085 0.587±.197 0.621±.037 0.186±.124 0.158±.077
diabetes 34.90 68.0 KB 0.396±.052 0.398±.049 0.671±.055 0.695±.052 0.144±.059 0.165±.072
heartdisease 36.00 22.0 KB 0.024±.034 0.108±.090 ◦ 0.317±.177 0.550±.105 ◦ 0.023±.033 0.092±.068
breastcancer 37.99 60.0 KB 0.087±.096 0.138±.144 0.404±.158 0.488±.176 ◦ 0.099±.112 0.150±.154
nf-47p (***) 47.00 2.6 GB 0.006±.001 0.007±.000 0.463±.003 0.462±.002 0.007±.001 0.008±.001
rcv1 47.54 1.2 GB 0.006±.004 0.086±.022 ◦ 0.533±.015 0.559±.025 0.006±.004 0.063±.017 ◦
splice 48.30 699.0 KB 0.106±.024 0.111±.027 0.584±.030 0.589±.031 0.084±.020 0.086±.021
covtype 48.76 70.0 MB 0.087±.101 0.103±.112 0.533±.106 0.543±.108 0.072±.084 0.084±.090
news20 49.99 136.7 MB 0.099±.074 0.088±.046 0.490±.251 0.486±.241 0.101±.169 0.091±.146
Average .225 .256 .703 .749 .181 .202

(*): KDD Cup 1999 data set; (**): KDD Cup 2009 data set; (***): Netflix data set.
◦, • statistically significant improvement or degradation (level=0.05).

Fig. 2. Distribution of columns and %minority examples on Netflix data set

IV. EMPIRICAL EVALUATION

A. Protocol

We compare two classifiers – `2-regularized logistic re-
gression (`2-LR) and `2-loss SVMs (`2-SVM) – wrt. the

AUC, H, and B42 on 36 data sets using 5-fold cross-
validation. To test for significance, we perform paired t-
tests with significance level 0.05. We use the LIBLINEAR
software [19] with some small modifications to get posterior
probability outputs.



For analyzing classifier behavior, we have compared the
performance of the classifiers when learning on original data
sets with two other methods: random undersampling until
two class distributions are balanced (RUS-balance) and using
different weights for different classes (weighting) as in equa-
tion (2). We have not tried other methods (e.g, oversampling,
data cleaning, . . . ) since these methods need a lot of memory
and training time for large data sets. Moreover, we only aim
at analyzing the behavior of single classifiers, so we do not
take other advanced methods or ensembles, e.g [20], [12],
[18], [16], into account. We perform hyperparameter search
as described in [10] to determine the best hyperparameters
for all methods, e.g the ratio between C+ and C−, since our
previous results shown that this solution was helpful [10],
[21].

B. Data Sets

We have experimented on both small and large data sets
collected from the UCI repository2 and the Netflix Prize3.
We group them into 3 groups as in Table I. Nominal
attributes are converted to binary numeric attributes. For
multi-class data sets, many of them (e.g, RCV1, News20,
etc.) were already transformed to binary-class data sets as
in the LIBSVM data set library4. The remaining multi-class
datasets are converted to binary-class using one-versus-the-
rest. We encoded the class which has the smallest number
of examples as the minority (positive) class, and the rest as
the majority (negative) one.

The Netflix (nf) data set originally has 100,480,507 rat-
ings from 480,189 customers for 17,770 movies. To create
a binary matrix, in which rows represent users/customers
and columns represent items/movies, we assign 1 for each
observed rating, and 0 otherwise. We then sort the columns
based on their class distributions as in Figure 2. To create
a data set, we choose one column (movie) to be the target,
whereas the other columns represent the input features. This
way, we can generate 17,770 different data sets. For example,
the data set “nf-05p” means that we choose a target column
which has 0.5% minority.

Please note that the last five data sets are not imbalanced.
We use them to see how the results are affected when
learning from “nearly balanced” to “highly imbalanced” class
distributions.

C. B42 versus AUC and H

Table I presents the detailed results of three metrics: B42,
AUC, and H. The AUC evaluates `2-LR outperforming `2-
SVM (at least equal) on 3 groups, while B42 shows that
when the imbalance ratio increases, `2-LR shifts from win
(3/9/0) to lose (1/8/3) results, as illustrated in Table II. For
example, 1/8/3 means that the `2-LR wins one time, ties eight
times, and loses three times, compared to the `2-SVM.

Tables III and IV summarize the agreed/disagreed results
of B42 vs. AUC and B42 vs. H on 36 data sets when

2http://archive.ics.uci.edu/ml/
3http://www.netflixprize.com
4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

TABLE II
WIN/TIE/LOSE RESULTS AGGREGATED FROM TABLE I TO 3 GROUPS;

`2-SVM (BASE) VS. `2-LR

Groups (12 data sets) %Minority B42 AUC H
Group 1 (highly imba.) 0.02 - 5 1/8/3 5/7/0 1/10/1
Group 2 5 - 30 4/7/1 2/10/0 0/12/0
Group 3 (nearly bala.) 30 - 49 3/9/0 2/10/0 2/10/0

comparing `2-LR with `2-SVM (base). The bold number in
the diagonal (e.g. 10 and 7) means that B42 evaluates `2-
LR significantly outperforming/degrading `2-SVM 10 times,
but that AUC disagrees on those results, while the reverse
is 7 times the case. These agreed/disagreed results could be
because the B42 places more weight on the minority exam-
ples, thus, it has more statistically significant improvements
or degradations compared to the AUC and the H. However,
a deeper analysis needs to be done here. The results are
presented in the next paragraph.

TABLE III
THE B42 DISAGREES WITH THE AUC 17 TIMES OUT OF 36 DATA SETS

Signif. diff. Not signif. diff.
Significantly different 2 7
Not significantly different 10 17

TABLE IV
THE B42 DISAGREES WITH THE H 8 TIMES OUT OF 36 DATA SETS

Signif. diff. Not signif. diff.
Significantly different 4 0
Not significantly different 8 24

Let us analyze more details for the specific data set “nf-
05p” in Figure 3, which displays an example of cost weight
distribution implicitly used in the AUC (for “nf-05p”) and
explicitly used in B42 and H.

Fig. 3. Cost weight distribution of the AUC (on nf-05p data set), of B42,
and of H

Clearly, the AUC places different cost weight distributions
for `2-LR (higher at 1.0) and `2-SVM on the same “nf-05p”



data set. This means that the AUC uses different metrics to
evaluate different classifiers [1], while B42 and H use the
same distribution for all data sets and classifiers. This is the
reason why the result of `2-LR significantly outperforms `2-
SVM regarding the AUC while it only ties regarding B42.
The same situation happens with other data sets e.g, “nf-
005p”, “nf-1p” and “ann”.

Furthermore, Figure 4 shows four typical results of the
AUC, the true positive rate, and the B42. We can see that
the AUC evaluates the `2-LR outperforming the `2-SVM,
however, the true positive rate and the B42 show the reversed
results.

Fig. 4. Typical results of the AUC, the True positive rate, and the B42

The B42 is consistent with the true positive rate while the
AUC is not. Thus, if we would like to take the minority class
into account then the B42 is a better choice.

In addition, the empirical results also show that B42 is
not only suitable for evaluating on imbalanced data but also
for evaluating on balanced data sets (in group 3 in Table I,
its results are also consistent with other metrics, e.g the H
measure).

D. The Influence of Class Imbalance on Large Data Sets

We analyzed on 7 large data sets from Table I (the bold
names). The results are reported in Table V. We compared

learning on the original data with two other methods: the
RUS-balance and the weighting. While the weighting method
works fine, the RUS-balance degrades the classifier signifi-
cantly. This could be because of much information is dis-
carded by undersampling. These results contradict previous
studies (e.g, in [22], [23]) which conducted experiments on
small data sets. However, more works are needed to be done
here.

When the data set is highly imbalanced (e.g, 0.05% minor-
ity as in nf-005p), the B42 score is low (e.g, 0.005 on original
data). The B42 score increases when the imbalance ratio
decreases (e.g, to 0.226 at 10% minority). This phenomenon
happens not only for the original data but also for the
weighting. Thus, this means that the class imbalance affects
the classifiers systematically.

To find out why RUS-balance did not work on large data
sets, we also looked at the true positive rate and true negative
rate before and after dealing with class imbalance. We found
that the true positive rate increases while the true negative
rate decreases significantly. Typical results are shown in
Figure 5.

Fig. 5. True positive rate (left) and true negative rate (right)

This phenomenon shows that in the small data sets, the
number of false positive is small so we could not see the
negative effect on the results, but in case of large data, this
number may also be large if we highly focus on minority
class examples. Thus, the performance of overall model
degrades significantly although the number of false negatives
has decreased by dealing with class imbalance.

To this end, one can see that the trade-off between the
false negative and the false positive should be taken into
account when learning on large and imbalanced data, and the
RUS-balance is not a solution on large data sets. We propose
treating the undersampling ratio as a hyperparameter, and
search for the best one. This method does not significantly
improve the classifier performance but at least does not
worsen the classifier performance and can reduce the memory
consumption.

V. CONCLUSION

We propose the asymmetric Beta distribution B42 to
evaluate classifiers when learning from imbalanced data sets,
instead of using the AUC, which has known shortcomings,
and the H measure, which fixes the AUC’s deficiencies,
but is more suitable for balanced class distributions. The



TABLE V
THE INFLUENCE OF CLASS IMBALANCE ON LARGE DATA SETS. RESULTS OF THE B42 USING `2-LR

Data set #Examples #Features Size %Minority Original Data RUS-balance Weighting
appetency 87,904 15,000 1.6GB 1.78 0.026±0.007 0.001±0.001 0.031±0.007
churn 87,904 15,000 1.6GB 7.34 0.023±0.005 0.001±0.000 0.030±0.005
nf-005p 480,189 17,770 2.6GB 0.05 0.005±0.003 0.001±0.000 0.002±0.003
nf-05p 480,189 17,770 2.6GB 0.50 0.022±0.003 0.001±0.000 • 0.005±0.001
nf-1p 480,189 17,770 2.6GB 1.00 0.039±0.002 0.001±0.000 • 0.081±0.005 ◦
nf-5p 480,189 17,770 2.6GB 5.00 0.126±0.005 0.001±0.000 • 0.166±0.005 ◦
nf-10p 480,189 17,770 2.6GB 10.0 0.226±0.010 0.003±0.001 • 0.329±0.004 ◦

◦, • statistically significant improvement or degradation

experiments show that the results for the AUC and B42 are
reversed for highly imbalanced data and the B42 can take the
minority class into account when evaluating. We also analyze
how the class imbalance affects the behavior of classifiers
and find out why the RUS-balance fails when learning from
large data sets. In the future, we will study how to directly
optimize the B42 and H measures.
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