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Predicting student performance (PSP) is the problem of predicting how well a student will perform on a given task. It has

gained more attention from the educational data mining community recently. Previous works show that good results can be
achieved by casting the PSP to rating prediction problem in recommender systems, where students, tasks and performance

scores are mapped to users, items and ratings respectively. One of the most prominent approaches for rating prediction which

also performs well in PSP is matrix factorization (MF). However, the state-of-the-art MF approaches for PSP only make use
of one relationship, that is, between students and tasks or students and skills needed to solve the tasks. In fact each student

performs several tasks, and the tasks relate to the skill(s) needed to solve them, while students are also required mastering on
the skills that they have learned. In this paper we propose to exploit such multiple relationships by using multi-relational MF

methods. Experiments on three large datasets show that the proposed approach can improve the prediction results.

1. INTRODUCTION

Predicting student performance (PSP) is an important task in educational data mining, where we can give
the students early feedbacks to help them improving their study results. A good and reliable model which
accurately predicts the student performance may replace the current standardized tests, thus, reducing the
pressure on teaching and learning for examinations as well as saving a lot of time and effort for both teachers
and students [Feng et al. 2009; Thai-Nghe et al. 2011]. Precisely, PSP is the task where we would like to know
how the students learn (e.g. generally or narrowly), how quickly or slowly they adapt to new problems or if
it is possible to infer the knowledge requirements to solve the problems directly from student performance
data [Corbett and Anderson 1995; Feng et al. 2009], and eventually, we would like to know whether the
students perform the tasks (exercises) correctly (or with some levels of certainty). The benefits of PSP have
been vastly discussed in the literature [Cen et al. 2006; Feng et al. 2009; Thai-Nghe et al. 2011].

To address the problem of PSP, several works have been published, e.g. as summarized in Romero et al.
[2010], but most of them relied on traditional classification/regression techniques. For example, Corbett and
Anderson [1995] proposed the Knowledge Tracing (KT) model, which is usually used for tracing the students’
knowledge in applying their skills as well as for PSP; Cen et al. [2006] proposed a semi-automated method
for improving a cognitive model called Learning Factors Analysis that combines a statistical model, human
expertise and a combinatorial search; Yu et al. [2010] used linear support vector machines together with
feature engineering and ensembling techniques for predicting student performance. This approach, however,
requires intensive computer memory and much human effort on data pre-processing.

Recently, researchers have proposed using recommender system techniques, e.g. k-NN collaborative filtering
and matrix factorization, for PSP [Cetintas et al. 2010; Toscher and Jahrer 2010; Thai-Nghe et al. 2011].
The literature have shown that PSP can be considered as rating prediction task in recommender systems
since the student, task, and performance would become user, item, and rating, respectively. The authors also
shown that matrix factorization is a promising approach for PSP.
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In fact, learning and problem-solving are complex cognitive and affective processes that are quite different
to shopping and other e-commerce transactions, however, here we focus on the “student performance” instead
of “student preference”. Also, as discussed in Thai-Nghe et al. [2011], the factorization models in recommender
systems are able to encode latent factors of students and tasks (e.g. “slip” and “guess”) implicitly, and
especially in case where we do not have enough meta data about students and tasks (or even we have
not enough background knowledge of the domain), this mapping has shown to be a reasonable approach.
However, these published works have considered only one relationship between students and tasks.

In this work, instead of using one single relationship between students and tasks as in the literature, we
propose to exploit the possible relationships between students, tasks, and their meta data for improving
the prediction accuracy, using multi-relational matrix factorization (MRMF) and a weighted MRMF. This
approach has shown to be successful in recommender systems [Lippert et al. 2008; Singh and Gordon 2008],
however, using it in educational data mining, especially in predicting student performance is still a new topic.
Our main contributions are summarized as the following:

(1) We propose a new approach for student modeling, especially for PSP, to exploit the multiple relationships
between students, tasks, and their meta data by using multi-relational matrix factorization (MRMF).

(2) We also propose a weighted multi-relational matrix factorization (WMRMF) to take into account the
main relation which contains the target variable.

(3) We evaluate the proposed methods on three large real-world data sets and compare their results with
other state-of-the-art methods in both recommender system and student modeling domains. We empir-
ically show that the proposed approach can improve the prediction results.

2. RELATED WORK

One of the state-of-the-art methods in PSP (or generally, student modeling) is the Knowledge Tracing (KT)
[Corbett and Anderson 1995]. This model is usually used to trace the students’ knowledge in applying their
skills. The KT assumes that each skill has four parameters: 1) initial (or prior) knowledge, which is the
probability that a particular skill was known by the student before interacting with the tutoring systems;
2) learning rate, which is the probability that student’s knowledge changes from unlearned to learned state
after each learning opportunity; 3) guess, which is the probability that the student can answer correctly even
if he/she does not know the required skills for the problem; 4) slip, which is the probability that the student
makes a mistake (incorrect answer) even if he/she knows the required skills. To apply the KT for predicting
student performance, the four parameters need to be estimated either by using Expectation Maximization
(EM) method [Chang et al. 2006] or by using Brute-Force (BF) method [Baker et al. 2008]. Recently, Pardos
and Heffernan [2010] propose a variant of Knowledge Tracing by taking individualization into account.

On the other hand, in recommender system area, [Cetintas et al. 2010] proposed a temporal collaborative
filtering approach to automatically predict the correctness of students’ problem solving in an intelligent math
tutoring system. This approach utilized the multiple interactions for a student-problem pair by using k-NN
method; [Toscher and Jahrer 2010; Thai-Nghe et al. 2011] proposed using recommender system techniques
(e.g. matrix factorization) for predicting student performance. The authors have shown that predicting
student performance can be considered as rating prediction problem since the student, task, and performance
would become user, item, and rating in recommender systems, respectively. However, these works have
considered only one relationship between students and tasks.

3. PREDICTING STUDENT PERFORMANCE (PSP)

The problem of predicting student performance is to predict the likely performance of the student for some
exercises (or part thereof such as for some particular steps) which we call tasks. The task could be to solve a
particular step in a problem, to solve a whole problem or to solve problems in a section or unit, etc. Detailed



descriptions can be found in [Thai-Nghe et al. 2011]. Here, we briefly summarize some concepts that will be
used in this study and extend this formulation to the multi-relational case.

Let S be a set of students, I a set of tasks, and P ⊆ R+ a range of possible performance scores. Let
Dtrain ⊆ (S × I × P ) and Dtest ⊆ (S × I × P ) be the observed and unobserved student performances,
respectively. Finally, let

πp : S × I × P → P, (s, i, p) 7→ p and

πs,i : S × I × P → S × I, (s, i, p) 7→ (s, i)

be the projections to the performance measure and to the student-task pair. Then the problem of student
performance prediction is, given Dtrain and πs,i(Dtest) (in certain cases, also given the meta data about the
students and the tasks), to find

p̂ = p̂1, p̂2, . . . , p̂|Dtest|

such that E(p, p̂) is minimal, where p := πp(Dtest) and E is an error measure such as Root Mean Squared
Error (RMSE).

As discussed in the literature [Toscher and Jahrer 2010; Thai-Nghe et al. 2011], matrix factorization is a
good choice for PSP. In that case, however, we can use only one relationship between students and tasks,
e.g. the relation “Student-Performs-Task” in Fig. 1, which can be represented as R = {(S; I)}.

In this work, we would like to exploit several possible relationships between students, tasks, and their meta
data, so the above formulation needs to be extended. We denote {E1, . . . ,EN} as a set of N entity types
(e.g. “Student”, “Task”, “Skill”,...) and {R1, . . . ,RM} as a set of M binary relation types (e.g. “Performs”,
“Requires”,...). The problem now is to predict the values of the relation type between two entity types, e.g.
Rr = {(E1r

;E2r
)} (r = 1 . . .M), while taking into account the information in the other relations. Clearly,

the multi-relational matrix factorization approach is a suitable choice for this problem.

Fig. 1. Entity relationship diagram includes useful information for predicting student performance

Fig. 1 presents an example of entity relationship diagram (ERD) which covers important information in
predicting student performance. Each student performs the task which is estimated by a performance score
and a solving duration. The number of hints that the student requests are also expressed in this relationship.
To solve the tasks correctly, the student needs to know specific skill(s), and the task itself also associates
with the skill(s) that need to be learned by the students. The “opportunity count” attribute records how
many times the student have learned the skill.



Fig. 2. An example of matrix representations (p is a performance score, e.g. p ∈ [0..1])

Fig. 2 is an example of how to represent parts of the above ERD into matrices. The first matrix represents
student performance on the given tasks (Student-Performs-Task relation); the second matrix represents
whether the task requires the skills (Task-Requires-Skill relation); and the third matrix represents the number
of opportunities that the student has encountered the skills (Student-HasLearnt-Skill relation).

4. METHODS

4.1 Matrix Factorization (MF)

Matrix factorization is the task of approximating1 a matrix R by the product of two smaller matrices W1

and W2, i.e. R ≈W1WT
2 . W1 ∈ RS×K is a matrix where each row s is a vector containing the K latent

factors describing the student s and W2 ∈ RI×K is a matrix where each row i is a vector containing the K
latent factors describing the task i. Let w1sk

and w2ik
be the elements and w1s

and w2i
the vectors of W1

and W2, respectively, then the performance p given by student s to task i is predicted by:

p̂si =
K∑

k=1

w1sk
w2ik

= w1sw
T
2i

(1)

W1 and W2 are the model parameters (latent factor matrices) which can be learned by optimizing the
objective function (2) given a criterion, e.g. root mean squared error (RMSE), using stochastic gradient
descent.

OMF =
∑

(s,i)∈R

(
(R)si −w1s

wT
2i

)2
+ λ(||W1||2F + ||W2||2F ) (2)

where || · ||2F is a Frobenius norm and λ is a regularization term which is used to prevent over-fitting (please
refer to the articles [Koren 2010; Thai-Nghe et al. 2011] for more details).

4.2 Multi-Relational Matrix Factorization (MRMF)

In previous section, we have briefly described the matrix factorization which uses only one relation type
between two entity types (e.g. the relation “Performs” between “Student” and “Task” in Fig. 1). Multi-
Relational Matrix Factorization (MRMF) [Lippert et al. 2008] is a general case of matrix factorization where
we can include more than one relationship and more than two entity types.

In this study, we propose using MRMF for exploiting the multi-relational aspects in the nature of educa-
tional data, especially for predicting student performance.

1It has been shown that this technique works well even when R is very sparse [Koren 2010], which is usually the case in the

PSP problem [Thai-Nghe et al. 2011]



Taking into account the multiple relationships between the entity types, the objective function of the
MRMF is presented by:

OMRMF =
M∑

r=1

∑
(s,i)∈Rr

(
(Rr)si −wr1swT

r2i

)2
+ λ

 N∑
j=1

||Wj ||2F

 (3)

where M is the number of relation types and {Wj}j=1...N are the latent factor matrices of N entity types.
Please note that equation (3) is not the sum of independent terms. When learning the model parameters,
every factor matrix is updated with respect to all relation types it involves until a common convergence is
met [Lippert et al. 2008] or reaching the maximum number of predefined iterations.

4.3 Weighted Multi-Relational Matrix Factorization (WMRMF)

Using MRMF, we can utilize many relationships between many entities. However, this method treats the
important role of all relations equally. Clearly, we can see that the main relation which contains the target
variable (e.g. “Student-Performs-Task” in Fig. 1) is more important than the other supplement relations (e.g
“Task-Requires-Skill”), thus it should have more weight. We propose the Weighted Multi-Relational Matrix
Factorization (WMRMF) to take into account the importance of the main relation. So, the objective function
in equation (3) now becomes:

OWMRMF =
M∑

r=1

Θr

∑
(s,i)∈Rr

(
(Rr)si −wr1swT

r2i

)2
+ λ

 N∑
j=1

||Wj ||2F

 (4)

where Θr is the weight function, for example, it sets the weight to maximum for the main relation and
reduces the weight for the rest, as in equation (5). However, some other choices could also be considered.

Θr =

{
1, if r is the main relation
θ, else (0 < θ ≤ 1)

(5)

where θ is a hyper parameter which can be determined from the training data. Another important property
of the WMRMF is that in an extreme case (θ = 1), the WMRMF is equivalent to the MRMF.

The WMRMF updates its latent factors for each relation at iteration n via equations (6) and (7):

wn
r1s = wn−1

r1s − β
(
∂OWMRMF

si

∂wn−1
r1s

)
(6)

wn
r2i = wn−1

r2i − β

(
∂OWMRMF

si

∂wn−1
r2i

)
(7)

where β is a learning rate; and the gradients ∂OWMRMF
si

∂wr1s
and ∂OWMRMF

si

∂wr2i
are determined by

∂OWMRMF
si

∂wr1s
= λwr1s − 2Θr

(
(Rr)si −wr1swT

r2i

)
wr2i (8)

∂OWMRMF
si

∂wr2i
= λwr2i − 2Θr

(
(Rr)si −wr1swT

r2i

)
wr1s (9)

The WMRMF’s learning process is summarized in algorithm (1). We initialize the latent factor matrices
from the normal distribution N (µ, σ2), e.g. mean µ = 0 and standard deviation σ2 = 0.01, and initialize the



weight value for each relation types. While the stopping condition is not met, e.g. reaching the maximum
number of iterations or converging (OWMRMF

Iter(n−1)
−OWMRMF

Itern
< ε), the latent factors are updated iteratively.

ALGORITHM 1: LearnWMRMF(E1, . . . ,EN : Entity types; R1, . . . ,RM : Relation types; λ: Regularization term;

β: Learning rate; K: #Latent factors; θ: Weight value; Stopping criterion)

for j ← 1 . . . N do
Wj ← Draw randomly from N (µ, σ2)

end
for r ← 1 . . .M do

Initialize Θr using equation (5)
end
while (Stopping criterion is NOT met) do

for each relation Rr = {(E1r ;E2r )} in {R1, . . . ,RM} do
for l← 1 . . . |Rr|, do

Draw randomly (s, i) in Rr

wr1s ← wr1s − β
(

∂OWMRMF
si
∂wr1s

)
wr2i ← wr2i − β

(
∂OWMRMF

si
∂wr2i

)
end

end
end
return {Wj}j=1...N

After the learning process, the model parameters {Wj}j=1...N are obtained, then we can generate the
prediction for any relation using the same equation (1).

5. EXPERIMENTS

5.1 Data sets

In the experiments described here, we use the data sets from the KDD Challenge 20102 [Koedinger et al.
2010] and the ASSISTments Platform3 [Feng et al. 2009]. The original information of these data sets are
described in Table I. These data represent the log files of interactions between students and the tutoring
system. While students solve the problems in the tutoring system, their activities, success and progress
indicators are logged as individual rows in the data sets.

Table I. Original data sets
Data set #Instances

Algebra-2008-2009 (Algebra) 8,918,054

Bridge-to-Algebra-2008-2009 (Bridge) 20,012,498

Assistments-2009-2010 (Assistments) 1,011,079

In the KDD 2010 data sets, namely Algebra and Bridge, the central element of interaction between
the students and the tutoring system is the problem. Every problem belongs into a hierarchy of unit and
section. Furthermore, a problem consists of many individual steps such as calculating a circle’s area, solving
a given equation, entering the result and alike. The field problem view tracks how many times the student
already saw this problem. Additionally, a different number of skills (or knowledge components - KCs) and
associated opportunity counts is provided. The KCs represent specific skills used for solving the problem

2http://pslcdatashop.web.cmu.edu/KDDCup/
3http://teacherwiki.assistment.org/wiki/Assistments 2009-2010 Full Dataset



(where available) and opportunity counts encode the number of times the respective knowledge component
has been encountered before. The Assistments data set is quite similar to the above data sets. Here, we have
used four attributes: Student ID, ASSISTment4 ID, Problem ID, and the Skill.

Target of the prediction task in these data sets is the correct first attempt (CFA) information which encodes
whether the student successfully completed the given step (or problem in Assistments data set) on the first
attempt (CFA = 1 indicates correct, and CFA = 0 indicates incorrect). The prediction would then encode
the certainty that the student will succeed on the first try.

For Algebra and Bridge data sets, the task refers to a solving-step, which is a combination (concatenation)
of problem hierarchy, problem name, step name, and problem view. For Assistments data set, the task refers
to the problem. All empty values of the skill are considered as a new skill ID. Information of student, task,
and performance (CFA) is summarized in Table II.

Table II. Information of students, tasks, and performances (CFAs)

Data set #Student #Task #Skill (KC) #Performance

Algebra 3,310 1,422,200 2,979 8,918,054

Bridge 6,043 888,834 1,458 20,012,498

Assistments 8,519 35,978 348 1,011,079

ERD revisions: In these specific data sets, several information, e.g. “#Hints” and “Durations” (start
time, end time), are not provided in the test sets (KDD Cup 2010 data). Thus, for applying the MRMF and
WMRMF, the ERD in Fig. 1 needs to be narrow down. We propose two different ERDs for experiments as
in Fig. 3. In each ERD, we also present which relation can be used as the main relation (filled by gray color),
which has higher weight for the WMRMF. Moreover, the relation “Has learnt” in Fig. 1 is also revised.
Instead of using “opportunity counts” as the values for this relation, we could use “average performance” of
the students on the skills. By this way, we can also predict “how the students master on the given skills”.

Fig. 3. ERDs are used for experiments

5.2 Baselines and experimental setting

Baselines: The proposed methods are compared with global average, student average, and biased-student-
task5 (this originally is user-item-baseline in Koren [2010]). Moreover, we also compare the proposed approach
with matrix factorization (MF) since previous works [Toscher and Jahrer 2010; Thai-Nghe et al. 2011] shown

4ASSISTments are composed of questions and associated hints, solutions, web-based videos, etc.). Each ASSISTment consists

of one or more problems (source: http://teacherwiki.assistment.org/wiki/About).
5Please see the article [Thai-Nghe et al. 2011] for details



that MF can produce competitive results. The MF also uses the same information of user (student), item
(task), and rating (performance) as in Table II. Furthermore, the proposed methods are also compared with
the state-of-the-art in student modeling - the Knowledge Tracing using Brute Force method (KT-BF) [Baker
et al. 2008; Corbett and Anderson 1995].

Evaluation schema: Root mean squared error (RMSE) are used for evaluation. We would like to simulate
the prediction results of the proposed methods by using a real system from KDD Challenge 2010 to see how
far our models can improve compared to the others on the given data sets. Thus, the RMSE reported in this
study are obtained from this website (it is still opened for submission after the challenge). Moreover, we also
evaluated them on the validation sets (e.g. splitting the training set to sub-train and sub-test in the same
way as described on this website).

Hyper parameter setting: Four hyper parameters of the Knowledge Tracing (prior knowledge, learn
rate, slip, and guess) need to be determined. Since the Expectation Maximization (EM) method [Chang
et al. 2006] runs quite slow on large data sets (even intractable on Bridge), we use the Brute-Force (BF)
method [Baker et al. 2008]. The BF uses an exhaustive search to determine the hyper parameters. First, it
starts a coarse search from 0.01 to 0.99 with the increment of 0.01. After the hyper parameters are found, a
fine-grained search is again applied (from -0.009 to 0.009 with the increment of 0.001).

For our approach and the other baselines, the hyper parameter search is also applied (e.g., optimizing the
RMSE on the validation set). However, due to the large spaces of the hyper parameters, we just did a raw
search for the proposed methods, e.g. β ∈ (10−4, 10−3, 10−2, 5·10−5, 5·10−4, 5·10−3), θ ∈ (0.7, 0.75, 0.8, 0.85),
λ ∈ (15 · 10−4, 15 · 10−3, 55 · 10−5, 55 · 10−4, 55 · 10−3), K ∈ (24, . . . , 28). The number of iterations depend on
each data set, e.g. the algorithms stop iterating when converging or over-fitting. Other choices may produce
better results, though.

Dealing with cold-start problem: To deal with the “new user” (new student) or “new item” (new
task), e.g., those that are in the test set but not in the train set, we simply provide the global average score
for these new users or new items. However, using more sophisticated methods, e.g. in [Gantner et al. 2010],
can improve the prediction results. Moreover, in the educational environment, the cold-start problem is not
as harmful as in the e-commerce environment where the new users and new items appear every day or even
hour, thus, the models need not to be re-trained continuously [Thai-Nghe et al. 2011].

5.3 Experimental Results

Fig. 4 presents the RMSE of the proposed methods and the other baselines (using “Student-Performs-Task”
as the main relation, presented in Fig. 3a). The MRMF and WMRMF, which take into account the multiple
relationships between entities, have improvements compared to the others. The WMRMF also outperforms
the baseline (MF) on the validation sets (the right side of Fig. 4). These results also consist with previous work
[Lippert et al. 2008] which shown that the multi-relational approach can improve over the single relational
MF. Since the Bridge data set is less sparse (22.52 performances/task, on average) than the Algebra (6.27
performances/task), the factorization models perform better on Bridge.

Fig. 5 presents the RMSE results of using “Student-Applies-Skill” as the main relation (presented in
Fig. 3b). In this case, instead of predicting student performance on particular task directly, we predict the
student performance on the required skills associated with the task. This has been done in the literature,
e.g. in [Baker et al. 2008; Corbett and Anderson 1995], for student modeling to trace how students apply
their gained knowledge/skill on the given tasks. Thus, we have also experimented the KT-BF [Baker et al.
2008] on these data to understand how far our models are improved. However, it is quite expensive to obtain
the KTs’ hyper parameters using the Brute-Force method.

Clearly, the RMSE of the proposed methods also have improvements compared to the KT-BF. Some recent
works, e.g. Performance Factors Analysis [Pavlik et al. 2009] and Prior Per Student [Pardos and Heffernan



Fig. 4. RMSE of using Student-Performs-Task as the main relation (right side: RMSE on the validation sets)

Fig. 5. Using Student-Applies-Skill as the main relation: RMSE of KT-BF vs. MRMF and WMRMF

2010], have been shown to be better performance than the KT, however, the comparison with them leaves
for future work.

For referencing, we report the hyper parameters found in Table III. Running time of the WMRMF using
these hyper parameters is ≈6.0 hours on the largest data set (Bridge), however, in educational environment
where the models need not to be retrained continuously, this running time would not be an issue.

Table III. Hyper parameters are used for experiments
Method Data set Hyper parameters
Matrix Factorization (MF) Algebra β=0.005, #iter=120, K=16, λ=0.015
Multi-Relational Matrix Factorization (MRMF) Algebra β=0.0005, #iter=1000, K=16, λ=0.00055
Weighted Multi-Relational Matrix Factorization (WMRMF) Algebra β=0.001, #iter=550, K=16, λ=0.00125, θ=0.85
Matrix Factorization (MF) Bridge β=0.01, #iter=80, K=64, λ=0.015
Multi-Relational Matrix Factorization (MRMF) Bridge β=0.0005, #iter=700, K=40, λ=0.00055
Weighted Multi-Relational Matrix Factorization (WMRMF) Bridge β=0.001, #iter=550, K=80, λ=0.001, θ=0.7
Matrix Factorization (MF) Assistments β=0.01, #iter=80, K=64, λ=0.015
Multi-Relational Matrix Factorization (MRMF) Assistments β=0.005, #iter=20, K=64, λ=0.015
Weighted Multi-Relational Matrix Factorization (WMRMF) Assistments β=0.0015, #iter=60, K=16, λ=0.005, θ=0.7

6. CONCLUSION

We have proposed a new approach which uses multi-relational matrix factorization (MRMF) to exploit
the relationships between students, tasks, and other meta data in predicting student performance. We also
propose a weighted MRMF (WMRMF) to take into account the main relation that contains the target
variable. We show how to present the relationships of the student performance data to multiple matrices and
validate the proposed approach using three large data sets. Experimental results show that this approach
can perform nicely compared to the other methods.



In future work, incorporating specific latent factors for the entities, e.g. as described in [Toscher and Jahrer
2010], and combining the results of different parameters using ensemble methods may produce better results.
Moreover, adding more data relationships to the models (if applicable, e.g., the durations of performing the
tasks, which highly reflect the task’s difficulty; the number of hints that the student requested;...) may also
lead to further improvement.
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