On Benchmarking Frequent Itemset Mining AdTJ0.0027Tc-14.21-
mining contests and Frequent Itemset Mining evaluation.
In tranditional contests, there are two important meas9res:
the quality






0.1

0.01



class AlgBase{
void f(args);
}:

inline void AlgBase::f(args){ --.

class SpecAlg {
void f(args);

ialine void SpecAlg::f(args){ -.-

template <class T>
class Alg : public T{
void g()
}



Time (seconds, log—-scale)

o

rcoder—test

df-buffered

=
o

0.1

100

25

24

23 22 21
size of the itemset

20







executed on mispredicted branches and were rolled
back.

The comparison of eclat-cover and eclat-diffset gives
some really interesting results. Traditionally it is be-
lieved that di sets are well suited to dense datasets,
and covers to sparse datasets, because the respective
representation gives shorter lists to merge. However,
in the displayed case, eclat-cover and eclat-diffset
require roughly the same amount of memory accesses
(30% di erence at most, depending on which metric
we look at), while in the run time we see over 2-fold
increase. The amount of memory accesses hint that









lows: few ten KB for L1 cache (16-32 KB in Intel Pentium
4, 64-128 KB in AMD processors), while 512 KB-2 MB for
L2 cache. Non-mainstream (value market) processors may
have considerably smaller caches.

When a data that is loaded was recently used, there is
a high chance of finding it in the cache memory. However,
when the program has to process a large amount of data
(sequentially), then almost all data accesses will be cache
misses, thus the execution engine will wait for the memory,
then process the data segment it got, then issue the next
memory read request, wait for the memory, etc. The mem-
ory interface and the execution units will be alternately idle.
To overcome this, the prefetch



