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Abstract

Selecting promising queries is the key to effective active

learning. In this paper, we investigate selection techniques

for the task of learning an equivalence relation where the

queries are about pairs of objects. As the target relation sat-

isfies the axioms of transitivity, from one queried pair addi-

tional constraints can be inferred. We derive both the upper

and lower bound on the number of queries needed to con-

verge to the optimal solution. Besides restricting the set of

possible solutions, constraints can be used as training data

for learning a similarity measure. For selecting queries

that result in a large number of meaningful constraints, we

present an approximative optimal selection technique that

greedily minimizes the expected loss in each round of ac-

tive learning. This technique makes use of inference of ex-

pected constraints. Besides the theoretical results, an exten-

sive evaluation for the application of record linkage shows

empirically that the proposed selection method leads to both

interesting and a high number of constraints.

1 Introduction

Several important tasks in the area of machine learn-

ing can be formalized as finding an equivalence relation.

Clustering and record linkage are two prominent examples.

In this paper we investigate equivalence relations in gen-

eral, i.e. we do not make any assumptions about the num-

ber of equivalence classes or about class sizes in the tar-

get relation. Throughout the paper we illustrate learning an

equivalence relation by the application of record linkage.

There are many applications for record linkage like merg-

ing stocks from different e-commerce websites or finding

identical people in social networks. Estimating the target

equivalence relation is done by learning a similarity mea-

sure using training data [6, 10]. For acquiring training data,

active learning can be used that chooses the most promising

pairs [10, 11, 2] and presents it to the supervisor. The qual-

ity of a predicted relation mainly depends on the learned

similarity measure. Thus the task of active learning is to

create a good training set that generalizes well to unseen

pairs. Furthermore the queried pairs can be used as con-

straints on the target relation to restrict the set of possible

solutions [7].

The scope of this work are selection techniques for

equivalence relations. One central point of this paper is,

that by querying the right pairs of objects, additional con-

straints can be inferred to enlarge the training set. This is

motivated by the fact, that the pairs have to form an equiv-

alence relation. Thus, in the first part we will examine the

properties of constraints and derive theoretical upper and

lower bounds on the number of queries needed to converge

to the optimal solution. In the second part, we investigate

optimal loss reduction. Here we assume that a similarity

function is learned on the set of constraints. We derive a se-

lection criterion that greedily minimizes the expected loss

between the learned similarity function and the expected

equivalence relation. Finally, we show how our selection

technique can be applied to the task of record linkage. In our

evaluation we compare our method of expected loss mini-

mization to other selection techniques of the record linkage

and the semi-supervised-clustering community.

2 Related Work

Active learning is well studied in the field of classifica-

tion. Popular approaches are reducing the size of the version

space [3] or selecting by maximal uncertainty [5]. Roy and

McCallum [9] have suggested a method for minimizing the

expected error for classification. There are several impor-

tant differences between classification and predicting equiv-

alence relations which leads to other optimal selections.

Active learning for record linkage aka object identifica-



tion, duplicate detection, etc. has already been studied by

several researchers [10, 11, 2]. Tejada et al. [11] as well

as Sarawagi and Bhamidipaty [10] suggest to query the pair

that is most uncertain for a committee of classifiers. They

investigate in depth the setup of the committee, i.e. which

classifiers should be chosen. Bilenko and Mooney [2] pro-

pose a method for selecting interesting pairs to build a train-

ing set. Their selection technique is combining the selection

of the most similar pair and selecting a random pair. In to-

tal the proposed selection techniques for record linkage are

sampling by uncertainty [10, 11] and sampling by a combi-

nation of most similar and random pairs [2].

There is also research on selection techniques for active

learning in the related community of semi-supervised clus-

tering. For problems with an unknown number of classes,

Basu et al. [1] propose the EXPLORE algorithm that tries to

find as much different clusters as possible. In our evalua-

tion we will show that this approach fails for problem set-

tings with a high number of classes as mostly cannot-links

are found. Huang et al. [4] select pairs that score highest

with regard to a gain model where the gain depends on the

current clustering assignment. Their method assumes that

the number of clusters is known in advance.

3 Learning Equivalence Relations

3.1 Constraint Inference

A common way for representing structural knowledge

on a clustering problem X is to use sets of must-link and

cannot-link constraints over pairs of objects. Let D ⊆ X2

be the set of all given constraints. Let Dm := {(x, y) ∈
D|x ≡ y} be the set of must-links in D and let Dc :=
{(x, y) ∈ D|x 6≡ y} = D \ Dm be the set of cannot-links

in D. Two objects that are constrained by a must-link are

equivalent objects, i.e. they belong to the same equivalence

class. A cannot-link constraint over two objects indicates

that the two objects are different.

Lemma 3.1 (Constraint inference) The set of all infer-

able constraints D ⊇ D from a given set D is the closure

under (1) and (2) where (1) are the equivalence axioms:

(x, x) ∈ Dm reflexive

(x, y) ∈ Dm → (y, x) ∈ Dm symmetric

(x, y) ∈ Dm ∧ (y, z) ∈ Dm → (x, z) ∈ Dm transitive

(1)

(2) are the inferable cannot-links:

(x, y) ∈ Dm ∧ (x, z) ∈ Dc → (y, z) ∈ Dc (2)

With Dm :=
(

D
)

m
and Dc :=

(

D
)

c
.
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Figure 1. Constraint inference: Querying the

pair (C,D) will either result in a must-link-

constraint (top) or a cannot-link-constraint

(bottom). Additional constraints can be in-

ferred (right). Must-links are bold lines;

cannot-link dashed ones.

The reason for this is, that first the elements in Dm have

to form an equivalence relation, i.e. have to meet the axioms

in (1). Secondly, Dm has to be the smallest equivalence

relation over must-link constraints in D. We will use the

common notation [x]E := {y|(x, y) ∈ E} for describing

the equivalence class of x for an equivalence relation E and

we write x ≡E y iff (x, y) ∈ E. Finally, one can also infer

new cannot-link constraints by combining given must-links

and cannot-links by using formula (2).

Let D∗ be the training set extended with a new labeled

pair (x∗, y∗): D∗ := D ∪ {(x∗, y∗)} We will write D+ if

we assume that x∗ ≡ y∗ otherwise D−. An example for

constraint inference can be found in Figure 1, where the

system queries the pair (C, D).

3.2 Solutions

A solution for a record linkage problem X =
{x1, . . . , xn} is an equivalence relation E over X2. Given

pairwise must-link and cannot-link constraints D = Dm ∪
Dc the set of consistent solutions is:

ED = {E ⊆ X2|E ⊇ Dm ∧ E ∩ Dc = ∅}

We will also use the term version space for the set of con-

sistent solutions ED.

3.3 Active Learning for Equivalence Rela-
tions

The objective of an active learning algorithm is to con-

verge with as little effort for the supervisor to the optimal

solution E∗. In each round of active learning, the algorithm

selects a pair of objects (x, y) ∈ X2 that should be labeled
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by the supervisor as identical x ≡ y or different x 6≡ y. In

our work we assume a faultless oracle that never fails.

Afterwards, normally [10, 11, 2] the labeled pair is used

to improve the learned similarity measure. In our work, we

also investigate the constraints that are induced by the pair.

That means, (x, y) is added to the must-links if the two ob-

jects are labeled to be equivalent x ≡E∗ y – otherwise if

x 6≡E∗ y then (x, y) is added as a cannot-link. The new

constraint will reduce the version space.

k rounds of active learning can be formalized as choos-

ing object pairs (x1, y1), . . . , (xk, yk) and obtain boolean

labels (l1, . . . , lk) from the supervisor. Active learning with

constraints infers D
1
, . . . ,D

k
that results in version spaces

E
D

1 , . . . E
D

k . If only non-trivial pairs (i.e. X2 \ D) are

queried, then the number of constraints increases strictly

monotonic and thus also the size of the version space de-

creases strictly monotonic |E
D

i | > |E
D

i+1 | until conver-

gence to E∗.

3.4 Bounds on the Number of Queries

Next we derive tight upper and lower bounds on the num-

ber of queries that are necessary to restrict the set of possible

solutions E of a problem X to a single solution E∗.

Lemma 3.2 (Bounds on the number of queries) The

number |D| of queries obeys the following bounds:

|X| +
1

2
k · (k − 3) ≤ |D|

≤
1

2
|X|·(|X| + 1) − k −

k
∑

i=1

|ci| · (|ci| − 1)

2

Where the perfect solution E∗ consists of the classes

c1, . . . , ck. Both bounds are tight.

For the lower bound, at least one cannot-link constraint be-

tween two instances of each class is necessary to separate

them. Additionally in each class there has to be a chain of

must-link constraints that links all objects inside the class.

The exact upper bound on the number of constraints is given

by the worst selection technique that first selects all non-

equivalent pairs and then the equivalent pairs.

To give a practical example, the 112 class Cora dataset

with 1295 objects would need at least 7399 queries to con-

verge to a single solution. The worst selection technique

would present 821,864 pairs before converging.

4 Optimal loss reduction for active learning

First we show how reduction of expected loss can be

used in a general classification setting. Afterwards we de-

rive a method for the task of learning equivalence relations.

4.1 Loss reduction for classification

The general classification task is to assign a class c ∈ C

to each object x ∈ X . Roy and McCallum [9] define the

classification error for the finite data set S and a labeled set

D as follows:

E
P̂D

=
1

|S|

∑

x∈S

L(P (c|x), P̂D(c|x)) (3)

Where L is an arbitrary loss function and P (c|x) is the true

but unknown class assignment of an instance x.

The task of active learning is to converge to the best

quality (lowest error) with as few effort for the supervisor

as possible. An optimal greedy selection, selects in each

round the object x that will result in the minimal possible

error. We suggest to use averaging over the class probabili-

ties which corresponds to calculating the expected value:

argmin
x∈X

∑

c∈C

P (c|x)E
P̂D∪{(x,c)}

(4)

Our formulation differs from the approach of Roy and Mc-

Callum who instead use an optimistic estimate of c and min-

imize the following objective:

argmin
x∈X

min
c∈C

E
P̂D∪{(x,c)}

As P is never observed, we can estimate it by P̂D∪{x,c}.

With this estimate of P our minimization criterion (4) cor-

responds to minimizing the expected error.

4.2 Loss reduction for equivalence rela-
tions

Now we derive an optimal loss minimization for equiva-

lence relations. As we will see, the inference of constraints

plays an important role in the minimization.

For equivalence relations, the items are pairs of objects

(x, y) ∈ X2 and the class is binary, stating the equivalence

of a pair, i.e. x ≡ y or x 6≡ y. With this binary relation over

X2 the pool-based error (3) can be reformulated as:

E
P̂D

=
1

|X2|

∑

(x,y)∈X2

L(P (x ≡ y), P̂D(x ≡ y))

For L a loss function like 0-1 loss (L0) or log-loss (Ll) can

be used:

L0(p, p̂) := p · δ(p̂ > 0.5) + (1 − p) · δ(p̂ ≤ 0.5)

Ll(p, p̂) := −p ld p̂ − (1 − p) ld(1 − p̂)

Here δ is an indicator function that evaluates the truth of a

statement:

δ(s) :=

{

1, if s is true

0, otherwise
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4.2.1 Constraints on the target relation

The probability P̂D is estimated not only from D but also

from set of all inferable constraints D (see section 3.1). For

unseen data, the estimate P̂D can be generated by an arbi-

trary probabilistic classifier. To summarize, the estimated

probability P̂D is defined as:

P̂D(x ≡ y) :=











0, (x, y) ∈ Dc

1, (x, y) ∈ Dm

P̂ ′
D(x ≡ y), otherwise

Where P̂ ′
D is the pairwise similarity estimated by a classi-

fier.

With this definition, the error (3) can be simplified to1:

E
P̂D

=
1

|X2|

∑

(x,y)∈X2\D

L(P (x ≡ y), P̂ ′
D(x ≡ y))

4.2.2 Approximating the optimal selection

In an active learning setting, we present the supervisor the

pair (x∗, y∗) that will result in the minimum expected error.

With the notation of section 3.1 the optimization criterion

(4) can be rewritten as:

argmin
(x∗,y∗)∈X2

(

P (x∗ ≡ y∗)E
P̂

D+
+ P (x∗ 6≡ y∗)E

P̂
D−

)

(5)

Lemma 4.1 (Optimal selection) If one approximates P̂ ′
D∗

with P̂ ′
D the optimal query w.r.t. (5) and a given loss func-

tion L is:

argmax
(x∗,y∗)∈X2,

(x∗,y∗) 6∈D

∑

(x,y)∈D−\D

L(P (x ≡ y), P̂ ′
D(x ≡ y))

+P (x∗ ≡ y∗)
∑

(x,y)∈D+\D−

L(P (x ≡ y), P̂ ′
D(x ≡ y))

(6)

The first part sums the loss over all pairs between the two

equivalence classes [x]Dm
and [y]Dm

. The second part

sums the loss between all pairs additionally inferred by (2)

under the assumption that x is equivalent to y.

For performing the optimal selection in formula (6) a fur-

ther improvement can be made. Instead of searching the

best pair (x∗, y∗) on an object level (i.e. X2 \ C(D)), the

search can be performed on the level of equivalence classes.

Thus for each pair ([x∗]Dm
, [y∗]Dm

) of equivalence classes

induced by the current constraint set D the optimization cri-

terion has only to be computed once. In this case, the prob-

ability P (x∗ ≡ y∗) outside the sums of formula (6) can be

1Assuming that the loss is 0 for correct predictions.

estimated by the mean of the similarities between [x∗]Dm

and [y∗]Dm
:

P
(

[x]Dm
≡ [y]Dm

)

:= avg
x′∈[x]Dm

,

y′∈[y]
Dm

P (x′ ≡ y′)

As P is unobserved, similar to Roy and McCallum we

suggest to approximate it with the current estimate P̂D. In

total, two approximations have been performed for optimiz-

ing formula (5):

1. P is approximated by P̂D. This approximation is done

as P is unobserved.

2. P̂ ′
D∗ is approximated by P̂ ′

D. This is done to simplify

the optimization criterion and to prevent retraining the

classifier for each unlabeled pair, which would require

retraining the model O(X2 \ D) times.

5 Experiments

To evaluate the proposed selection methods, we apply

them to a (semi-)supervised problem of record linkage [6,

10, 7].

5.1 Evaluation Scenarios

There are basically two application scenarios for active

learning for equivalence relations:

1. Optimal overall quality: A problem X is given and

one is interested in the optimal solution on X . E.g. a

company has some domain experts that should dedu-

plicate one of their databases. The goal is to get maxi-

mal quality on X with a minimal amount of queries.

2. Generalization task: One could also be interested in

the generalization ability of the learned similarity mea-

sure on a further dataset. E.g. a model for a certain do-

main should be learned on some parts of X and after

the active learning phase is applied to new data X2.

The difference between the ‘optimal quality’ and the ‘gen-

eralization task’ is that in the optimal quality task one can

ask questions on the same dataset where the evaluation takes

place.

5.2 Datasets and Model Setup

We evaluate on the bibliographic Cora dataset2 and on

the product dataset Camera of a price comparison system3.

As both datasets contain many trivial identical records,

2http://www.cs.cmu.edu/˜wcohen/match.tar.gz
3Mentasys GmbH, Germany, http://www.mentasys.de/
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Figure 2. AUC performance and number of queried+inferred constraints of the proposed EXPECTED

LOSS technique in comparison to PAIR UNCERTAINITY similar to Sarawagi and Bhamidipaty 2002 [10]

and Tejada et al. 2002 [11], EXPLORE of Basu et al. 2004 [1], STATIC + RANDOM of Bilenko and Mooney

2003 [2] and the baseline RANDOM.

we generated reduced datasets by performing the reduc-

tion steps proposed by Rendle and Schmidt-Thieme [8].

The reduction results in two smaller subsets containing all

challenging objects where Cora consists of 655 objects and

Camera of 12722 objects.

The models for Cora and Camera are set up as follows.

We use the same features and blocker as in [8]. For learn-

ing the similarity measure P ′
D we use stacking with logistic

regression as meta-classifier and as base-classifiers we use

an ADTree, a J48 tree and logistic regression from Weka4

and a C-SVM from libSVM5. The features for the meta-

classifier consist of the probabilistic estimates of the four

base-classifiers. When learning the similarity measure from

a set of constraints D, we first split D in 10 folds and gen-

erate cases for the meta-classifier by training each base-

model on 9 folds and predicting the remaining part. This

is repeated for all 10 folds and results in training cases for

the meta-model on the complete set D. After training the

meta-model on the generated cases, each base-classifier is

retrained on D.

4http://www.cs.waikato.ac.nz/ml/weka/
5www.csie.ntu.edu.tw/˜cjlin/libsvm/

5.3 Experimental Methodology

First, we randomly divide the data set X in two parts of

equal size: one part Xsel where selections can be performed

and one part Xgen where the generalization is measured.

We start our experiments with randomly picking 25 equiva-

lent and 25 non-equivalent pairs from Xsel, |Dm| = 25 and

|Dc| = 25. This is done to have enough training data to ini-

tialize the learned similarity measure. Now active learning

starts and in each round the model selects one object pair

(x∗, y∗) ∈ X2
sel \ D with its selection technique. This pair

is then labeled by a faultless oracle and added to the train-

ing set D∗. New constraints are inferred from the labeled

pair and existing pairs using the rules (1) and (2). Then, the

labeled data including inferred constraints is used to retrain

the similarity measure.

In each round of active learning, we measure the qual-

ity of the similarity measure and the number of constraints.

As quality measure we use the area-under precision-recall-

curve (AUC) on pair level with respect to the learned sim-

ilarity measure P̂D. The quality is both measured on Xsel

and Xgen. The quality on Xsel measures the success in terms

of the ‘Optimal overall quality’ task and the quality on Xgen
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gives information about the generalization capabilities of

the learned model.

We repeat all experiments 10 times and report the mean.

For Cora we use different initializations of the random seed

generator and run the experiments on all 655 items. For

Camera we run the experiments on ten non-overlapping

subsets with each about 1272 items. In total our evaluation

is quite extensive and took about 90 days of CPU time.

5.4 Results and Discussion

Figure 2 on the right shows the number of all con-

straints depending on the rounds of active learning. As one

can see, our selection technique EXPECTED LOSS leads to

much more constraints than any other technique. Figure 2

also shows the AUC of both evaluation scenarios. First of

all, one can see that EXPECTED LOSS and PAIR UNCER-

TAINTY outperform the other selection techniques on both

datasets and evaluation schemes. For the task of minimiz-

ing the overall error, EXPECTED LOSS clearly outperforms

PAIR UNCERTAINTY on both datasets. For example, after

100 rounds of active learning EXPECTED LOSS reaches an

AUC-score of 0.64 on the Camera dataset whereas PAIR

UNCERTAINTY has only 0.54 – likewise after 200 rounds

EXPECTED LOSS reaches 0.74 and outperforms PAIR UN-

CERTAINTY with 0.64. On the much easier Cora dataset, the

difference in the first 200 rounds is again large, before both

techniques converge to an AUC of almost 1.0. For the task

of generalization, one can see that both EXPECTED LOSS

and PAIR UNCERTAINITY converge to the equivalence re-

lation that could be achieved when training on the whole set

X2
sel (see dashed line in figure 2). On Camera the gener-

alization capabilities of both methods are almost the same,

whereas on Cora EXPECTED LOSS outperforms PAIR UN-

CERTAINITY clearly on the first 100 rounds. Another inter-

esting result is that EXPLORE [1] is very inefficient for both

record linkage tasks and is even outperformed by RANDOM.

The reason for this is that mostly cannot-links are selected.

6 Conclusion

In this paper we have investigated active learning for pre-

dicting equivalence relations. First we have analyzed the

problem setting and the implications of constraints. We

have shown that by selecting certain pairs additional con-

straints can be inferred to enlarge the training data. We

have derived both upper and lower bounds on the number of

queries needed to converge to a single solution. The main

contribution of this paper is the presented approximative op-

timal selection technique for minimizing the expected loss.

In our evaluation we have shown that our proposed selec-

tion technique outperforms other state-of-the-art techniques

in terms of finding many constraints and prediction quality.
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