
Scaling Record Linkage to Non-Uniform
Distributed Class Sizes

Steffen Rendle and Lars Schmidt-Thieme

University of Hildesheim, Machine Learning Lab,
Samelsonplatz 1, D-31141 Hildesheim, Germany
{srendle, schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. Record linkage is a central task when information from dif-
ferent sources is integrated. Record linkage models use so-called blockers
for reducing the search space by discarding obviously different record
pairs. In practice, important problems have Zipf distributed class sizes
with some large classes where blocking is not applicable any more. There-
fore we propose two novel meta algorithms for scaling arbitrary record
linkage models to such data sets. The first one parallelizes problems by
creating overlapping subproblems and the second one reduces the search
space for large classes effectively. Our evaluation shows that both scaling
techniques are effective and are able to scale state-of-the-art models to
challenging datasets.

1 Introduction

When data from different sources is collected, objects of different sources may
refer to the same underlying entity. For integration of the datasets, duplicates
have to be identified. This task is known among others as record linkage [1,
2], duplicate detection [3, 4] and object identification [5]. For example a price
comparison system collects offers from different shops that may refer to the
same product (see Table 1). Another example are citation strings that refer to
the same publication.

Recent models for solving this task rely on machine learning techniques [6,
3, 5, 7]. For scaling with growing problems they use blockers which restrict the
pairs that have to be regarded in time-consuming parts. The key problem with
these blockers is that they are supposed to return all positive pairs and remove
only those pairs that are obviously negative. Although this technique might scale
up for some problems with small uniformly distributed class sizes, it cannot be
utilized for other distributions of class sizes like Zipf-distribution.

The contributions of this paper are as follows: (i) We show that the class
sizes of some important linkage problems are Zipf distributed which leads to
Ω(n2/ ln2 n) positive pairs. Thus, these problems cannot be solved with standard
blocking techniques. (ii) We provide two novel scaling methods for record linkage
that efficiently scale arbitrary linkage models to Zipf distributed data sets.

Table 1. Example of price comparison data

Product Name Brand Price Class Label

Photosmart 435 Digital Camera Hewlett Packard 118.99 c1
HP Photosmart 435 16MB memory HP 110.00 c1
Canon EOS 300D black Kit 18-55 Canon 786.00 c2
EOS300D+EF-S18-55 unspecified 873.00 c2
Digital Camera, Olympus, E-300 Olympus 899.00 c3
Olympus Camedia IR-300 - Digital-Foto unspecified 273.00 c4

2 Related Work

The problem of record linkage was first formulated by Newcombe [8] and later
put into a mathematical model by Fellegi and Sunter [1]. Today state-of-the-
art methods use an adaptive approach based on machine learning techniques
like classifiers, clustering or markov logic networks [4, 7]. Almost all models for
record linkage rely on predicting the equivalence of a pair of objects. As the
number of all different pairs is n·(n−1)

2 where n is the number of all records, even
small problems are not manageable any more. To avoid this problem, record
linkage models typically use blockers, which restrict the number of pairs by
discarding all obviously different pairs. There have been many proposals for
blocking techniques like sorted neighbourhood methods [9], Canopies [10], and
adaptive blocking [11, 12]. An overview of blocking techniques is given by Baxter
et al. [13].

Blocking works fine if there are lots of classes and class sizes are small. In
fact we will show that this does not hold for some important record linkage
tasks because they have Zipf distributed class sizes which leads to Ω(n2/ ln2 n)
true pairs. This means even a perfect blocker which only returns the true pairs
would generate Ω(n2/ ln2 n) pairs. Consequentially no model exclusively relying
on blockers can scale to large problems with Zipf distributed class sizes.

There are some studies of record linkage on large datasets [2, 14], but their
problems have different characteristics in terms of only two datasets to be merged
or very small class sizes. This differs from our problem setting of non-uniformly
distributed class sizes that were built up by automatically crawling many sources,
like crawling the web. A second main difference is that they use rather simple
models for record linkage. The work of Hernández and Stolfo [9] is similar to the
above discussed research in terms of small class sizes and simple record linkage
models. Similarly to our work, Hernández and Stolfo propose to use clustering
for parallelization. They propose hard-clustering in conjunction with their own
blocking method of sorted neighborhoods. Whereas inexpensive hard-clustering
might be effective for scaling when dealing with small classes, it is difficult to
provide high quality splits in problems with large classes. Moreover, parallelizing
without any further reduction step of true pairs does not tackle the problem of
having Ω(n2/ ln2 n) true pairs.

Reducing the size and complexity of a graph has already been studied in mul-
tilevel graph partitioning [15]. In their work a graph G0 = (V0, E0) is iteratively

0

50

100

150

200

250

300

350

400

C
la

ss
 s

iz
e

Camera

Classes
0

10

20

30

40

50

60

70

C
la

ss
 s

iz
e

Cora

Classes

Fig. 1. Distribution of class sizes for the Camera and Cora dataset.

coarsened to graphs Gi = (Vi, Ei) with |Vi| > |Vi+1|. Then partitioning is done
on the coarsest graph and afterwards the partitioned graph is uncoarsened. Our
proposed method for object reduction is related to coarsening as we also reduce
the number of objects, perform the expensive calculations on a the small prob-
lem and finally expand the solution. Besides this, graph partitioning and record
linkage have different problem settings. The differences to record linkage are that
in graph partitioning (1) the number of classes is known, (2) all clusters should
have roughly equal size and (3) a sparse set of vertices is given in advance.

3 Problem

Figure 1 shows the distribution of class sizes for the bibliographic Cora [10]
and the Camera dataset from a price comparison system1. Cora contains 1,295
citations to 112 different papers and has 17,184 true pairs. Camera has 15,481
offers on 608 digital cameras and has 956,957 true pairs. The classes are sorted
by size in descending order. As one can see, the class sizes for both datasets are
Zipf-like distributed. Zipf’s law2 states that the most frequent item occurs twice
as often as the next frequent one. The third one’s frequency is one third of the
most frequent class, etc. Applied to class sizes Zipf’s law states that the class
size of the i-th class is 1/i of the size of the largest class, that means the i-th
class contains about kmax

i objects where kmax is the size of the largest class.
The potential reduction rate of all blocking-based scaling techniques depends

on the number of true pairs – that means pairs of records referring to the same
entity. In Zipf distributed problems, the number of true pairs correlates to the
size of the largest class. Thus, we want to estimate the complexity of the largest
class kmax. Because all class sizes have to sum up to the number of records n,

1 Mentasys GmbH, Karlsruhe, Germany, http://www.mentasys.de/
2 For the sake of simplicity, we use an exponent of 1 in all Zipf formulas.

Parallel Record Linkage

Split into Subproblems

Object Reduction

X1

Merge Partial Solutions

X

Central
Model

Reduce

Expand

Y1

SY1

SX1

Object Reduction

Xn

Central
Model

Reduce

Expand

Yn

SYn

SXn

S

...

Fig. 2. Combining parallel record link-
age with object reduction for scaling a
central model.

Split into Subproblems

Record
Linkage
Model

Record
Linkage
Model

Record
Linkage
Model

...

X1 X2 Xn

S1 S2 Sn

Merge Partial Solutions

X

S

Fig. 3. Parallel Record Linkage: A prob-
lem X is split into overlapping subprob-
lems X1, . . . Xn. The subproblems are
solved independently in parallel and af-
terwards are merged to a global solution
S.

we can state with Zipf’s law:

n =
m∑

i=1

kmax

i
= kmax ·

m∑
i=1

1
i
≈ kmax · (ln(m) + γ)

and thus kmax ≈
n

ln(m) + γ

Where m is the number of all classes, which is unknown in advance and γ is the
Euler-Mascheroni constant (γ ≈ 0.577). Now, we can estimate the complexity
of kmax. As m ≤ n also ln(m) ≤ ln(n) and so we can conclude, that kmax grows
approximately linear in n. This means, that the size of the largest class kmax is
in Ω(n/ lnn). One can conclude that there are Ω(n2/ ln2 n) true pairs in a Zipf
distributed record linkage problem.

4 Method

4.1 Scalable Framework

The objective of our framework is to scale up arbitrary record linkage models.
In general a record linkage model is a function fRL that generates a partition
fRL(X) ⊆ P(X) of a set of objects X.

We provide two meta algorithms for record linkage that decrease complexity
by splitting a problem X in many subproblems X1, . . . Xn and by reducing the
number of objects within a problem X. Both meta models need a record linkage
model for solving the modified problems. Basically, our parallelization technique

Algorithm 1 Parallelizing by Canopy-Clustering
1: procedure CanopyClustering(X)

outputs a set P of subproblems for objects X
2: P ← ∅
3: C ← X . C is the set of possible centers
4: while C 6= ∅ do
5: x← randomC
6: Canopy(x)← {y ∈ X| sim(x, y) > θloose}
7: P ← P ∪ {Canopy(x)}
8: C ← C \ {y ∈ X| sim(x, y) > θtight}
9: end while

10: return P
11: end procedure

targets problems with many classes whereas our object reduction method targets
problems with large classes. Although both algorithms can be used separately,
we recommend to combine them so that both aspects are regarded. A useful
combination (see figure 2) would be to use parallelizing as outer model, then
use object reduction in each parallelized subproblem and solve each reduced
subproblem with the record linkage model of your choice – e.g. a classifier based
approach like we use in the evaluation chapter.

4.2 Parallel Record Linkage

In general one of the most popular approaches for scaling up systems is paral-
lelizing. Instead of solving one big problem at once, the problem is split in many
small problems. These small problems are solved separately and afterwards are
merged to a global solution. Our meta model for parallelizing record linkage
models work the same way (see figure 3). First, the problem is split into over-
lapping subproblems. Then each subproblem is solved by another record linkage
model and finally the solutions are merged.

Split into Subproblems Parallelizing is a function fP that generates a parti-
tion of overlapping sets, s.t.:⋃

Xi∈fP (X)

Xi = X, ∅ 6∈ fP (X) (1)

An optimal parallelizing function should generate a large number of subproblems,
that have few overlaps, and all objects of the same class should share at least
one subproblem.

For splitting a problem into a set of subproblems, clustering with a cheap
distance metric can be applied. We suggest to use soft-clustering instead of hard-
clustering. This way an object can be placed in several subproblems. The main
reason for using soft clustering is that parallelizing has to be fast such that

A
C

F G

H
IB

D
E

A
C

B
D
E

F

H
I

E

S1 S2

X1
X2

S

1.

2.

3.

4.

pmrg

Smrg5.

A
C

H
IB

S6.

F

D

G

A
C

B
D
E
F

H
I

G

D
E
F G

D
E
F G

D
E
F G

Fig. 4. Merge partial solutions: (1) A problem X was parallelized into overlapping sets
X1 and X2. (2) Solutions S1 for X1 and S2 for X2 are predicted in parallel. (3) The
combined solution S overlaps for objects D,E, F,G. (4) A new problem pmrg is created
for the overlaps and (5) a solution Smrg is predicted. (6) Now the overall solution S is
hard clustered.

decisions have to be as simple as possible. Especially at the borders of clusters,
the degree of uncertainty is high. These serious decisions should not be made
by a fast and approximative algorithm. With soft-clustering the algorithm can
defer this decision to the more powerful central model.

A possible algorithm for parallelizing is clustering by canopies (see Algo-
rithm 1). The design of this algorithm is inspired by the canopy blocker of
McCallum et al. [10]. In contrast to the canopy blocker of McCallum et al.,
our Canopy-Clustering algorithm returns overlapping sets of objects. This
way, the space complexity is O(n) instead of O(n2). For Canopy-Clustering
a cheap distance-function like TFIDF-cosine-similarity can be used. An efficient
implementation should use an inverted index so that Canopy(x) can be calcu-
lated quickly. When training data is available, optimal values for θloose and θtight
can be found by maximizing both recall and reduction rate.

Merge Partial Solutions Using soft-clustering for parallelizing comes to the
price, that solutions of subproblems may overlap and have to be merged. An
example can be found in figure 4. Here, parallelizing puts the object D,E, F both
in problem X1 and X2. The two central models predict different equivalences,
i.e. the predicted clusters overlap. To solve these overlaps, we suggest to identify
overlapping parts and collectively reestimate the class memberships of many
overlapping objects. In step 3 of figure 4 the solution S is unsure about the
equivalences of D,E, F and G. Thus, a new problem pmrg = {D,E, F,G} is
created (figure 4, step 4) and is solved by an expensive central model (figure 4,
step 5).

Our method for merging subsolutions iteratively eliminates overlaps until a
hard clustered solution – that is a partition – is found. Inside each iteration, first

Problem: X

Clustering: PX

Reduced Problem: Y

Record Linkage on Y: Sy

Expand Solution Sy to X: Sx

Fig. 5. Object reduction: Problem X is reduced to Y by clustering PX and creating
representatives for each cluster. Record linkage is performed on Y to create a solution
SY . At last SY is expanded to SX .

of all overlapping regions are identified and subproblems are generated. A new
problem p is generated by picking a random object cluster c with overlaps and by
extending it with other overlapping object clusters c′. Enlarging the problem p
is stopped as soon as no other overlaps with this problem are found or the size of
the problem extends a threshold θmrg. This threshold prevents the new problem
to become too large and ensures that it can be solved by the central record
linkage model. The set of subproblems P is extended until no more subproblems
can be found. Then the subproblems are solved separately and afterwards are
merged with the current solution. For finding maximal overlapping clusters, the
overlap coefficient can be used:

overlap(c1, c2) =
|c1 ∩ c2|

min{|c1|, |c2|}
(2)

It is easy to show that the proposed algorithm terminates and outputs a hard
clustered solution. In each iteration at least one subproblem is generated out of
two overlapping object clusters. After solving the subproblem with the central
record linkage model, the solution to this subproblem contains no overlaps. So
after each iteration the number of overlapping objects decreases.

4.3 Meta Model for Object Reduction

The second scaling technique targets large classes. If we look at problems with
lots of classes, parallelizing is an efficient way to generate many subproblems,
containing only a few different classes. But in problems with large classes, like in
problems with Zipf distributed class sizes, another reduction step is necessary.
The reason is that all objects of the largest class will be completely inside one
subproblem – under the assumption that parallelizing was effective. In a problem
with Zipf-distributed class sizes, the size kmax of the largest class is in Ω(n/ lnn),
so this subproblem will have Ω(n2/ ln2 n) true pairs. Thus we suggest to reduce

A B C D

A B C D

A B C D A C B D A D B C A B C D A B D C A B C D

A B C D A C B D A D B C A B C D A B D C A C D B B C D A

m
o

re
 c

la
ss

e
s

A B C D

A B C D A D B C A B C D A B D C A B C D

A B C D A D B C A B D C B C D A

m
o

re
 c

la
ss

e
s

Blocker: A distinct from C

A B C D

A B D C

A C B D A B D C B C D A

m
o

re
 c

la
ss

e
s

Object reduction: B and D are identical

A B D C

A B D C B C D A

m
o

re
 c

la
ss

e
s

Object reduction: B and D are identical

Blocker: A distinct from C

Fig. 6. Hypothesis space for a problem with four objects: A, B, C and D. A blocker
reduces the space top-down – here the combination (A,C) is eliminated. Object reduc-
tion reduces the space bottom-up – here B and D are identified as identical. Combining
object reduction and blocking results in a much smaller hypothesis space – here only
three possibilities.

the problem size by eliminating pairs that are obviously identical. This will be
done by merging these identical objects before applying an expensive model.

Method The overall method for solving a problem using object reduction is
shown in figure 5. First we start with objects X. These objects are reduced to
a subset Y . For this task one can use standard clustering techniques. In our
experiments, we choose a HAC algorithm with complete-linkage and a very high
threshold. As distance measure, we use the overlap coefficient over 2-grams. The
objective of the reduction process is to produce a partition with perfect precision.

After having clustered X to a partition PX , each cluster of PX is regarded
as an “object”. The reduced object set Y composes of these objects. When
sets of objects (= clusters of PX) should be used as objects in a record linkage
problem Y , the question arises how to represent each cluster by a single object.
We propose to randomly pick one of the objects of each cluster in PX , use it as
a representative and put it into Y . Normally a random object of a cluster might
not be a good representative because clusters might be diverse, but in our case
clusters only contain very similar objects. Another approach would be to build
prototypes, e.g. cluster centers and use them to built up Y .

Afterwards, the reduced problem Y is solved by an arbitrary record linkage
model fOI, that returns a solution on SY . The reduced solution SY is then
expanded to all objects in X, so that a solution SX results.

Object Reduction and Blockers When combining our object reduction
method with a blocker, the set of potential hypotheses is reduced in two di-
rections (see figure 6). The unrestricted hypothesis space contains all possible
solutions, that is all partitions of X. A blocker reduces this space top-down by
eliminating object combinations that are obviously different. Object reduction
works bottom-up and searches for pairs that are very likely identical. Combining
both reduction methods of blocking and object reduction results in a hypothesis
space that only contains non-trivial hypotheses. Only these hypotheses have to
be regarded by an expensive decision model.

Object reduction is effective particularly with regard to large classes, that
appear in problems with non-uniformly distributed class sizes. In this case, it is
very likely that many objects of a large class are very similar. This will result
in many reductions and a smaller hypothesis space. With this reduction an
expensive model can be applied to such problems.

It is important to note, that our proposed model for object reduction only
performs the bottom-up step of figure 6. The blocking of obviously false pairs
should be done by the central model of your choice. The reason is that blocking
is already a standard technique in most models.

5 Evaluation

5.1 Dataset and Model Setup

In our experiments, we evaluate methods for scaling a state-of-the-art record
linkage model. We evaluate on the Cora and the Camera dataset which are de-
scribed in section 3. As expensive central model, we use the popular approach
of training a probabilistic classifier and use it as a learned similarity measure for
clustering the objects into sets of equal objects [6, 3, 16, 5]. Analogous to [5], the
model uses constrained hierarchical agglomerative clustering with average link-
age for collective decisions and as classifier a SVM (for Cora) and logistic regres-
sion (for Camera), respectively. As pairwise features over the textual attributes,
this model uses several heuristic similarity measures, that are TFIDF-cosine-
similarity, Overlap-coefficient over tokens, 2-grams and 3-grams; the model for
the Camera dataset additionally uses some domain specific measures.

In each experiment, we randomly label 50% of the objects with their true
class label and predict the whole dataset. We report the runtime and the F-
Measure on the pairs between unlabeled objects. All experiments were run on
a single standard PC. The parallel scaling method would considerably benefit
from using more machines because each subproblem could be solved in parallel
on another machine. Even though, also with the parallel scaling technique we
only use one PC and solve all subproblem sequentially one after another on the
same machine.

Table 2. Runtime and quality results for several scaling methods on the Cora dataset.

Cora

Scaling Method F-Measure Runtime (min)

None 0.948± 0.008 206

Blocking 0.954± 0.011 121

Object Reduction + Blocking 0.948± 0.011 52

Parallelizing + Blocking 0.936± 0.011 20

Parallelizing + Object Reduction + Blocking 0.944± 0.009 8

5.2 Comparison of Scaling Techniques

In the first experiment, we compare our two novel scaling techniques to the
popular Canopy-Blocker [10]. As both parallelizing and object reduction are
meta models, they can be used in compound models. In all we have five different
scaling setups: (1) no scaling, (2) scaling by blocking, (3) scaling by parallelizing
with blocking, (4) scaling by object reduction with blocking and (5) scaling
by parallelizing and object reduction with blocking (see figure 2). We run all
experiments five times with random train/ test splits.

Table 2 shows the average F-Measure quality with standard deviation and
the average runtime for the five scaling approaches on the Cora dataset. As one
can see, the runtime decreases from 121 minutes to 8 minutes when adding par-
allelizing and object reduction to a blocker based model. This corresponds to
a speedup of 15 or in other words the runtime decreases by 93%. It is inter-
esting, that parallelizing is so effective even though all subproblems are solved
sequentially on the same machine. The reason is, that the cost of solving k small
problems of the size n/k is much less than solving one problem of the size n.

On the other hand, our proposed scaling methods are also effective in terms
of quality. Scaling the blocker based model with both parallelization and ob-
ject reduction decreases the F-Measure only little from 95.4% to 94.4%. This
difference is not statistically significant.

5.3 Scaling a Large Dataset with Parallelizing and Object
Reduction

In the second experiment, we examine the components of the scaling framework
in more detail on the Camera dataset with 15,481 objects and 956,957 true pairs.

Canopy-Clustering returned 90 subproblems and achieves a recall of 98%.
Because a lot of these subproblems are very small, we automatically merged the
smallest subproblems, so that each subproblem contains at least 200 objects.
This is done, because we have to assure that in each subproblem is enough
labeled data for training a pairwise model. Subproblems with more than 200
objects were not modified. In total 50 subproblems remain. In each subproblem
object reduction is applied. Reduction achieved a precision of at least 98% in each
subproblem. Afterwards the central model is applied on each reduced problem.

As Canopy-Clustering produces a lot of overlaps, merging the subprob-
lems is no trivial task. The 50 subproblems contain in total 37, 780 objects, that
means on average each of the 15, 481 objects is mentioned in 2.4 subproblems.
The local models predict 3098 distinct classes in total for all subproblems. Still
there are lots of overlaps, that have to be resolved by the merging process de-
scribed in section 4.2. Merging needs 3 iterations to resolve all these overlaps
and outputs a consistent solution. The F-Measure for the overall solution after
all merging iterations is 93%.

The overall execution time was 8 hours and 10 minutes on a single ma-
chine. The runtime for splitting the problem into subproblems using Canopy-
Clustering was about 5 minutes. Solving all 50 subproblems took 3 hours and
10 minutes. The largest subproblem was solved in less then 30 minutes. We run
all parallelized subproblems one after another on a single machine, so runtime
would decrease a lot if multiple machines were used in parallel. Theoretically
the runtime for solving the subproblems in parallel can be lowered to 30 minutes
using 7 machines of this type.

6 Conclusion and Future Work

We have shown that some important record linkage problems have Zipf-like
distributed class sizes and that the standard technique of blocking does not scale
with such problems. Thus we have proposed two techniques for scaling arbitrary
record linkage models to large problems with non-uniformly distributed class
sizes. The first one parallelizes a problem in many overlapping subproblems,
so that each subproblem can be solved independently with an arbitrary record
linkage model. Afterwards the solutions are merged by iteratively reestimating
regions with uncertainty. The second scaling technique reduces the number of
objects when dealing with large class sizes. By combining both techniques, record
linkage models scale to problems having many classes as well as large classes.
We have shown by experiments that our scaling techniques can scale a state-
of-the-art record linkage model to challenging datasets and is efficient both in
runtime and quality. As far as we know, our framework is the first approach that
is able to efficiently solve large record linkage problems with both many classes
and large class sizes.

One promising point for future work would be to develop other domain-
independent parallelization methods that generate less overlaps than Canopy-
Clustering. This might be achieved by transferring work on adaptive blocking
[11, 12] to parallelizing.

Acknowledgements

This work was funded by the X-Media project (www.x-media-project.org) spon-
sored by the European Commission as part of the Information Society Technolo-
gies (IST) programme under EC grant number IST-FP6-026978.

References

1. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64 (1969) 1183–1210

2. Jin, L., Li, C., Mehrotra, S.: Efficient record linkage in large data sets. Pro-
ceedings of the 8th International Conference on Database Systems for Advanced
Applications (DASFAA) (2003)

3. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proceedings of the 9th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-2003), Washington, DC
(2003)

4. Culotta, A., McCallum, A.: Joint deduplication of multiple record types in rela-
tional data. In: CIKM ’05: Proceedings of the 14th ACM international conference
on Information and knowledge management, New York, NY, USA, ACM Press
(2005) 257–258

5. Rendle, S., Schmidt-Thieme, L.: Object identification with constraints. In: Pro-
ceedings of the 6th IEEE International Conference on Data Mining (ICDM-2006),
Hong Kong (2006)

6. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD-2002),
Edmonton, Alberta (2002) 475–480

7. Singla, P., Domingos, P.: Entity resolution with markov logic. In: Proceedings of
the 6th IEEE International Conference on Data Mining (ICDM-2006), Hong Kong
(2006)

8. Newcombe, H., Kennedy, J., Axford, S., James, A.: Automatic linkage of vital
records. Science 130 (1959) 954–959

9. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:
Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data (SIGMOD-95), San Jose, CA (1995) 127–138

10. McCallum, A.K., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional
data sets with application to reference matching. In: Proceedings of the 6th In-
ternational Conference On Knowledge Discovery and Data Mining (KDD-2000),
Boston, MA (2000) 169–178

11. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up
record linkage. In: Proceedings of the 6th IEEE International Conference on Data
Mining (ICDM-2006), Hong Kong (2006)

12. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
Proceedings of AAAI-2006. (2006)

13. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods
for record linkage. In: Proceedings of the 2003 ACM SIGKDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, Washington, DC (2003) 25–
27

14. Christen, P., Churches, T., Hegland, M.: A parallel open source data linkage
system. In: Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD-2004), Sydney (2004)

15. Karypis, G., Kumar, V.: Parallel multilevel graph partitioning. In: Proceedings of
the 10th International Parallel Processing Symposium (IPPS-1996). (1996)

16. Bilenko, M., Basu, S., Sahami, M.: Adaptive product normalization: Using online
learning for record linkage in comparison shopping. In: Proceedings of the 5th
IEEE International Conference on Data Mining (ICDM-2005). (2005)

