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Abstract. This paper describes our approach to the ECML/PKDD Dis-
covery Challenge 2009. Our approach is a pure statistical model taking
no content information into account. It tries to find latent interactions
between users, items and tags by factorizing the observed tagging data.
The factorization model is learned by the Bayesian Personal Ranking
method (BPR) which is inspired by a Bayesian analysis of personalized
ranking with missing data. To prevent overfitting, we ensemble the mod-
els over several iterations and hyperparameters. Finally, we enhance the
top-n lists by estimating how many tags to recommend.

1 Introduction

In this paper, we describe our approach to task 2 of the ECML/PKDD Discovery
Challenge 2009. The setting of the challenge is personalized tag recommendation
[1]. An example is a social bookmark site where a user wants to tag one of his
bookmark and the tag recommender suggest the user a personalized list of tags
he might want to use for this item.

Our approach to this problem is a pure statistical model using no content
information. It relies on a factor model related to [2] where the model parameters
are optimized for the maximum likelihood estimator for personalized pairwise
ranking [3]. Furthermore, we use a smoothing method for reducing the variance
in the factor models. Finally, we provide a method for estimating how many tags
should be recommended for a given post. This method is model independent and
can be applied to any tag recommender.

2 Terminology and Formalization

We follow the terminology of [2]: U is the set of all users, I the set of all items/
resources and T the set of all tags. The tagging information of the past is repre-
sented as the ternary relation S ⊆ U ×I×T . A tagging triple (u, i, t) ∈ S means
that user u has tagged an item i with the tag t. The posts PS denotes the set of
all distinct user/ item combinations in S:

PS := {(u, i)|∃t ∈ T : (u, i, t) ∈ S}
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Our models calculate an estimator Ŷ for S. Given such a predictor Ŷ the list
Top of the N highest scoring items for a given user u and an item i can be
calculated by:

Top(u, i,N) :=
N

argmax
t∈T

ŷu,i,t (1)

where the superscript N denotes the number of tags to return. Besides ŷu,i,t we
also use the notation of a rank r̂u,i,t which is the position of t in a post (u, i)
after sorting all tags by ŷu,i,t:

r̂u,i,t := |{t′ : ŷu,i,t′ > ŷu,i,t}|

3 Factor Model

Our factorization model (FM) captures the interactions between users and tags
as well as between items and tags. The model equation is given by:

ŷu,i,t =
∑

f

ûu,f · t̂Ut,f +
∑

f

îi,f · t̂It,f (2)

Where Û , Î, T̂U and T̂ I are feature matrices capturing the latent interactions.
They have the following types:

Û ∈ R|U |×k, Î ∈ R|I|×k,

T̂U ∈ R|T |×k, T̂ I ∈ R|T |×k

Note that this model differs from the factorization model in [2] where the model
equation is the Tucker Decomposition.

3.1 Optimization Criterion

Our optimization criterion is an adaption of the BPR criterion (Bayesian Person-
alized Ranking) [3]. The criterion presented in [3] is derived for the task of item
recommendation. Adapted to tag recommendation, the optimization function for
our factor model is:

BPR-Opt :=
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

lnσ(ŷu,i,t+ − ŷu,i,t−)

− λ(||Û ||2 + ||Î||2 + ||T̂U ||2 + ||T̂ I ||2) (3)

That means BPR-Opt tries to optimize the pairwise classification accuracy
within observed posts. Note that it differs from [2] by optimizing for pairwise
classification (log-sigmoid) instead of AUC (sigmoid).
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3.2 Learning

The model is learned by the LearnBPR algorithm [3] which is a stochastic gra-
dient descent algorithm where cases are sampled by bootstrapping. In the fol-
lowing, we show how we apply this generic algorithm to the task of optimzing
our model paramaters for the task of tag recommendation. The gradients of our
model equation (2) with respect to the model parameters Θ = {Û , Î, T̂U , T̂ I}
are:

∂BPR-Opt

∂Θ

=
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

∂

∂Θ
lnσ(ŷu,i,t+ − ŷu,i,t−)− λ ∂

∂Θ
||Θ||2

∝
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

−e−(ŷu,i,t+−ŷu,i,t− )

1 + e−(ŷu,i,t+−ŷu,i,t− )
· ∂
∂Θ

(ŷu,i,t+ − ŷu,i,t−)− λΘ

That means, we only have to compute the derivations of our model equation
ŷu,i,t with respect to each model parameter from Θ = {Û , Î, T̂U , T̂ I}:

∂

∂ûu,f
ŷu,i,t = t̂Ut,f

∂

∂îu,f

ŷu,i,t = t̂It,f

∂

∂t̂Ut,f
ŷu,i,t = ûu,f

∂

∂t̂It,f
ŷu,i,t = îi,f

These derivations are used in the stochastic gradient descent algorithm shown
in figure 1.

The method presented so far has the following hyperparameters:

– α ∈ R+ learning rate
– λ ∈ R+

0 regularization parameter
– µ ∈ R mean value for initialization of model parameters
– σ2 ∈ R+

0 standard deviation for initialization of model parameters
– k ∈ N+ feature dimensionality of factorization

Reasonable values for all parameters can be searched on a holdout set. The
learning rate and the initialization parameters are only important for the learning
algorithm but are not part of the optimization criterion or model equation.
Usually, the values found for α, µ, σ2 on the holdout generalize well.

In contrast to this, the regularization and dimensionality are more important
for the prediction quality. In general, when the regularization is chosen properly,
the higher the dimensionality the better. In our submitted result, we use an
ensemble of models with different regularization and dimensionality.
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1: procedure LearnBPR(PS , Û , Î, T̂
U , T̂ I)

2: draw Û , Î, T̂U , T̂ I from N(µ, σ2)
3: repeat
4: draw (u, i, t+, t−) uniformly from PS × T+

u,i × T
−
u,i

5: d← ŷu,i,t+ − ŷu,i,t−

6: for f ∈ 1, . . . , k do

7: ûu,f ← ûu,f + α
“

e−d

1+e−d · (t̂Ut+,f − t̂
U
t−,f ) + λ · ûu,f

”
8: îi,f ← îi,f + α

“
e−d

1+e−d · (t̂It+,f − t̂
I
t−,f ) + λ · îi,f

”
9: t̂Ut+,f ← t̂Ut+,f + α

“
e−d

1+e−d · ûu,f + λ · t̂Ut+,f

”
10: t̂Ut−,f ← t̂Ut−,f + α

“
e−d

1+e−d · −ûu,f + λ · t̂Ut−,f

”
11: t̂It+,f ← t̂It+,f + α

“
e−d

1+e−d · îi,f + λ · t̂It+,f

”
12: t̂It−,f ← t̂It−,f + α

“
e−d

1+e−d · −îi,f + λ · t̂It−,f

”
13: end for
14: until convergence
15: return Û , Î, T̂U , T̂ I

16: end procedure

Fig. 1. Optimizing our factor model for equation (3) with bootstrapping based stochas-
tic gradient descent. With learning rate α and regularization λ.

3.3 Ensembling Factor Models

Ensembling factor models with different regularization and dimensionality is
supposed to remove variance from the ranking estimates. There are basically
two simple approaches of ensembling predictions ŷl

u,i,t of l models:

1. Ensemble of the value estimates ŷl
u,i,t:

ŷev
u,i,t :=

∑
l

wl · ŷl
u,i,t (4)

2. Ensemble of the rank estimates r̂l
u,i,t:

ŷer
u,i,t :=

∑
l

wl · (|T | − r̂l
u,i,t) (5)

That means tags with a high rank (low r̂) will get a high score ŷ.

Where wl is the weighting parameter for each model.
Whereas ensembling value estimates is effective for models with predictions

on the same scale, rank estimates are favorable in cases where the ŷ values of
the different models have no direct relationship.

Ensembling Different Factor Models For our factor models the scales of ŷ
depend both on the dimensionality and the regularization parameter. Thus we
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use the rank estimates for ensembling factor models with different dimensionality
and regularization. In our approach we use a dimensionality of k ∈ {64, 128, 256}
and regularization of λ ∈ {10−4, 5 · 10−5}. As the prediction quality of all of our
factor models are comparable, we have chosen identical weights wl = 1.

Ensembling Iterations Within each factor model we use a second ensembling
strategy to remove variance. Besides the hyperparameters, another problem is
the stopping criterion of the learning algorithm (see figure 1). We stop after
a predefined number of iterations (2000) – we have chosen an iteration size of
10 · |S| single draws. In our experiments the models usually converged already
after about 500 iterations but in the following iterations the ranking alternates
still a little bit. To remove the variance, we create many value estimates from
different iterations and ensemble them. I.e. after the first 500 iterations we create
each 50 iterations a value estimate for each tag in all test posts and ensemble
these estimates with (4). Again there is no reason to favor an iteration over
another, so we use identical weights wl = 1. This gives the final estimates for
each model. The models with different dimensionality and regularization are
ensembled as described above.

4 Baseline Models

Besides our factorization model we also consider several baseline models and
ensembles of these models. The models we pick as baselines are most-popular by
item (mpi), most-popular by user (mpu), item-based knn (knni) and user-based
knn (knnu).

The most-popular models are defined as follows:

ŷmpi
u,i,t = |{u′ ∈ U : (u′, i, t)}|
ŷmpu

u,i,t = |{i′ ∈ I : (u, i′, t)}|

The k-nearest-neighbour models (knn) are defined as follows:

ŷknni
u,i,t =

∑
(u,i′,t)∈S

simi,i′

ŷknnu
u,i,t =

∑
(u′,i,t)∈S

simu,u′

To measure simi,i′ and simu,u′ respectively, we first fold/ project the observed
data tensor in a two dimensional matrix FU and F I :

f I
i,t = |{u : (u, i, t) ∈ S}|
fU

u,t = |{i : (u, i, t) ∈ S}|
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After the folding we apply cosine similarity to compare two tag vectors:

simi,i′ =

∑
t f

I
i,t · f I

i′,t√∑
t(f

I
i,t)2 ·

√∑
t(f

I
i,t)2

simu,u′ =

∑
t f

U
u,t · fU

u′,t√∑
t(f

U
u,t)2 ·

√∑
t(f

U
u,t)2

We tried different weighted ensembles of the baseline models using the value
estimate ensembling method. Even though these ensembles produce quite good
results, in our experiments they did not outperform the factor models and fur-
thermore adding baselines to the factor models did not result in a significant
improvement of the factor models. Thus our final submission only consists of
the factor models.

5 Adaptive List Length

In contrast to the usual evaluation scheme of tag recommendation, in this chal-
lenge the recommender was free to choose the length of the list of the recom-
mendations in a range from a length of 0 to 5. The evaluation functions are:

Prec(Stest) := avg
(u,i)∈PStest

|Top(u, i,min(5,#u,i)) ∩ {t|(u, i, t) ∈ Stest}|
min(5,#u,i)

Recall(Stest) := avg
(u,i)∈PStest

|Top(u, i,min(5,#u,i)) ∩ {t|(u, i, t) ∈ Stest}|
|{t|(u, i, t) ∈ Stest}|

F1(Stest) :=
2 · Prec(Stest) · Recall(Stest)
Prec(Stest) + Recall(Stest)

Where #u,i is the number of tags the recommender estimates for a post.
There are three simple ways to estimate #u,i:

– Global estimate:

#G
u,i :=

|S|
|PS |

– User estimate:

#U
u,i :=

|{(i′, t) : (u, i′, t) ∈ S}|
|{i′ : (u, i′, t) ∈ S}|

– Item estimate:

#I
u,i :=

|{(u′, t) : (u′, i, t) ∈ S}|
|{u′ : (u′, i, t) ∈ S}|
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Based on these simple estimators, a combined post size can be produced by a
linear combination:

#E
u,i := β0 + βG#G

u,i + βU#U
u,i + βI#I

u,i

In our approach we use #E
u,i and optimize β on the holdout set for maximal F1.

We found that choosing an adaptive length of the recommender list significantly
improved the results over a fixed number.

6 Experimental Results

6.1 Sampling of Holdout Set

As the test of the challenge was released two days before the submission dead-
line, we tried to generate representative holdout-sets. We created two test sets,
one following the leave-one-post-per-user-out protocol [1] and a second one by
uniformly sampling posts with the constraint that the dataset should remain a
2-core after moving a post into the test set. These two sets were used as holdout
sets for algorithm evaluation and hyperparameter selection. In the following, we
report results for the second holdout set, because its characteristics (in terms of
number of users, items and posts) are closer to the real test set.

6.2 Results

The results of the method presented so far can be found in table 2 and 3. As
you can see, the single baseline models result in low quality but ensembles can
achieve a good quality. In contrast to this, our proposed factor models generate
better recommendations. The best possible ensemble (optimized on test!) of
the baselines achieves a score of 0.330 on the challenge set whereas our factor
ensemble (not optimized on test) results in 0.345.

mpu mpi mp-ens knni knnu knn-ens knn+mp-ens

holdout 0.249 0.351 -/0.423 0.401 0.371 -/0.445 -/0.473

challenge 0.098 0.288 0.290/0.317 0.209 0.295 0.293/0.320 0.299/0.330

Fig. 2. F-Measure quality for the baselines methods. For the ensembles, we report two
results: one for an ensemble with identical weights and one with optimal weights that
have been optimized on the test! set. For sure this is an optimistic value that might
not be found using the holdout split.

An interesting finding is that the results on the challenge test set largely dif-
fers from both of our holdout sets. But as all methods suffer, we assume that the
tagging behavior in the challenge test set is indeed different from the one in the
training set. Especially, the baseline most-popular-by-user dropped largely from
24.9% to 9.8% – this might indicate that personalization is difficult to achieve on
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single FM FM-ens FM-ens adaptive list length

holdout 0.495± 0.002 0.498 0.522

challenge - 0.345 0.356

Fig. 3. F-Measure quality for the factorization methods. Single FM reports the average
quality of each factorization model. FM-ens is the unweighted ensemble and finally we
report the ensemble with the adaptive list length, i.e. predicting sometimes less than
5 tags.

the challenge test set using the provided training set. Non-personalized meth-
ods or content-based methods could benefit from the difference in both sets.
Also methods that can handle temporal changes in the tagging behaviour might
improve the scores.

7 Conclusion

In this paper, we have presented a factor model for the task of tag recommen-
dation. The model tries to describe the individual tagging behavior by four
low-dimensional matrices. The model parameters are optimized for the person-
alized ranking criterion BPR-Opt [3]. The length of the recommended lists is
adapted both to the user and item. Our evaluation indicates that our approach
outperforms ensembles of baseline models which are known to give high quality
recommendations [1].
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