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Abstract

Object identification aims at identifying different repre-
sentations of the same object based on noisy attributes such
as descriptions of the same product in different online shops
or references to the same paper in different publications.
Numerous solutions have been proposed for solving this
task, almost all of them based on similarity functions of a
pair of objects. Although today the similarity functions are
learned from a set of labeled training data, the structural
information given by the labeled data is not used. By for-
mulating a generic model for object identification we show
how almost any proposed identification model can easily
be extended for satisfying structural constraints. There-
fore we propose a model that uses structural information
given as pairwise constraints to guide collective decisions
about object identification in addition to a learned similar-
ity measure. We show with empirical experiments on public
and on real-life data that combining both structural infor-
mation and attribute-based similarity enormously increases
the overall performance for object identification tasks.

1 Introduction

Object identification is the task to identify groups of
equivalent objects in a database. This problem often arises
when merging information from multiple sources. Object
identification [11, 10] is also known among others as record
linkage [12] and duplicate detection [4, 9].

Typical adaptive object identification learns a model on
a training set and utilizes it on a separate set that belongs to
a different structure. Particularly the two sets do not share
any link. In real world applications there is usually no such
separation, but there often is a single dataset of which some
parts are known.

An example is an e-commerce scenario [2] where of-
fers from different shops should be merged. The task is
to identify offers that reference the same product. Some of
the offers are labeled by a unique product identifier like an

EAN (European Article Number), so their identification is
trivial. But others do not have this label and thus have to
be identified based on their attributes such as manufacturer,
name of product, price, etc. A classical object identification
approach would use the labeled part of the data only for
learning a pairwise decision model. Here, we propose an
compound model that can make use of any such pairwise
decision model as a component, but additionally uses ad-
vanced methods for constraint satisfaction that are applied
on top. By embedding existing object identification models
into our compound model, they can easily be extended to
solve constrained problems without having to modify their
core.

Overall, the contributions of our paper are as follows.
(i) We formulate three problem classes for object identifica-
tion, including the new class of pairwise constrained prob-
lems. (ii) We propose a generic model for object identifi-
cation that subsumes almost all common models. (iii) We
provide a new method for the collective decision stage that
utilizes constraints. (iv) We show in experiments that addi-
tionally using constraints in clustering outperforms today’s
methods which use training data only for learning a pair-
wise decision model.

2 Related Work

This work focuses on how existing object identification
solutions can be extended for handling additional structural
constraints, that are known in the field of semi-supervised
clustering.

2.1 Object Identification

Almost all models for object identification rely on pre-
dicting the equivalence of a pair of objects. Today often
an adaptive method is used where multiple heuristic simi-
larity measures over multiple attributes are combined to a
single learned similarity measure [5, 9] over pairs of ob-
jects. Here, probabilistic classifiers or conditional random
fields [10] can be used for predicting the equivalence of two



objects. The overall consistency is guaranteed by taking
the transitive closure [10] or by more sophisticated methods
such as clustering [5, 2] – usually hierarchical agglomera-
tive clustering.

For learning the models one uses a separate training set
that is assumed to be similar to the test set for which object
identities should be predicted. When Bilenko et al. [2] in-
troduce the application of online-shopping, they propose an
online learning algorithm for string similarity, because the
product database grows over time. Although they realized
the iterative nature of the problem, they did not utilize the
structural informations provided by known parts for predict-
ing new data.

2.2 Semi-Supervised Clustering

On the other hand there is the community of semi-
supervised clustering. In their work, structural constraints
are used to identify groups as we do. Recently there have
been proposals [1] to use both structural constraints and
learned metrics for clustering tasks. Other approaches [7]
bring together constrained clustering for graph and vector-
based data. In contrast to our work, these proposals use
more sophisticated clustering algorithms – for example in
terms of conjunction of K-Means with Hidden Markov Ran-
dom Fields [1]. But it is important to note that these ap-
proaches cannot be directly used on top of existing object
identification models as in our method. The first reason is
that these clustering algorithms focus on problems where
the number of classes is known in advance and usually is
small, while estimating the number of clusters often is an af-
terthought, e.g., solved by an expensive exhaustive search.
This causes major problems in object identification as here
we typically deal with many small classes and estimating
their number is an essential part of the problem. The sec-
ond reason is that the learned metrics in semi-supervised
clustering are not as rich as in object identification where
classifiers or conditional random fields are used in conjunc-
tion with expensive feature extraction methods. Further-
more algorithms in semi-supervised clustering are not de-
signed for using candidate generators like the blockers that
are essential in object identification for handling large data
sets. Finally, most approaches in semi-supervised clustering
require the pairwise similarity to comply with some condi-
tions – e.g. for Bregman divergences [1] – that similarity
measures estimated by a classifier do not meet.

Davidson and Ravi [6] also investigate constraints in tra-
ditional hierarchical agglomerative clustering. In contrast
to our work, they use Euclidean distance instead of learned
pairwise similarity and they also lack blockers.

3 Problem formulation

3.1 Classical Problems

In traditional object identification one assumes that there
is a set of instances X that should be grouped into equiva-
lence classes. In an adaptive setting there exists a second set
Y of labeled instances, i.e., a set Y with X∩Y = ∅ together
with an equivalence relation EY ⊆ Y 2 on Y . In general in-
stances in Y only share the same characteristics for equal-
ity as instances in X , thus the training set Y can only be
used for learning the similarity measure. So these classical
problems (Cclassic) have no restrictions on the equivalence
relation EX ⊆ X2 on X one tries to predict.

3.2 Class of Iterative Problems

The iterative problem class Citer assumes that some la-
bels of the target dataset itself are known in advance. The
labeled data can be regarded as a known partition, which
should be extended by new instances. So there is structural
information of parts Y ⊆ X of the whole data set X in
terms of an equivalence relation EY ⊆ Y 2 on Y . There-
fore, the set of admissible solutions E contains only those
equivalence relations E ⊆ X2 that are consistent with EY ,
i.e., satisfy E ∩ Y 2 = EY .

The iterative problem class has many applications – for
example predicting object identities for collections growing
over time or handling partially labeled datasets as found in
online-shopping comparison systems.

3.3 Class of Constrained Problems

The constrained problem class Cconstr assumes that sets
of must-link Rml and cannot-link Rcl pairs between prob-
lem instances X are given. Both Rml and Rcl can be seen
as binary relations over X . In this work we assume that
constrained problems are consistent. Therefore one could
extend the constraints specified in must-links Rml to the
smallest equivalence relation Eml ⊇ Rml. The cannot-
links Rcl can be assumed to be symmetric and irreflexive.
With these extensions, a consistent problem must satisfy
only Eml ∩ Rcl = ∅. Each equivalence relation E in the
set of admissible solutions E has to satisfy E ⊇ Eml and
E ∩Rcl = ∅.

There are many applications for constrained problems.
For example in a setting with supervision, a system might
be unsure about the equivalence of two items. Therefore it
presents the pair to the supervisor, whose decision is cap-
tured by a cannot- or must-link.

It can easily be shown that Cclassic ⊂ Citer ⊂ Cconstr. As the
class of constrained problems subsumes all the other prob-
lems, we will focus on methods for solving this class.
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4 Generic Object Identification Model

There are many proposed models for object identifica-
tion. As different terminologies are in use in the literature
and components of models are often not presented isolated,
we suggest a separation in three components that fits almost
all proposed models (see figure 1).

Pairwise feature extraction creates a real valued feature
vector of two objects f : X2 → Rn. For this the attributes
of the two objects are compared. Pairwise feature extrac-
tion traditionally uses distance functions like TFIDF, Lev-
enshtein or Jaccard distance.

The probabilistic pairwise decision model predicts the
probability that two objects are equivalent P [x ≡ y]. Usu-
ally, either probabilistic classifier [5, 9] or recently condi-
tional random fields [10] are used.

At last the collective decision model utilizes the likeli-
hood of pairwise decisions to create a consistent prediction,
i.e., an equivalence relation, for the whole dataset. In a con-
straint setting the space of consistent solutions is limited
to equivalence relations in E . For classical problems with-
out constraints, E is unrestricted. For this task often the
transitive closure over the predicted pairs is taken [10, 3].
Recently a more sophisticated method is used by clustering
the instances based on their pairwise probability [5, 2]. For
this purpose usually variants of hierarchical agglomerative
clustering are adapted.

For speedup, often a candidate pair generator b :
P(X)→ P(X2) with b(Y ) ⊆ Y 2, called blocker, is added.
It restricts the number pairs to regard in the time-consuming
parts. As the number of pairs is O(n2) in the number of
instances, large datasets have to use such a blocking com-
ponent.

5 Handling Constraints

There are two stages where the additional knowledge
of constraints might be used. First, there is the pairwise
decision model that could be learned from must-links and
cannot-links. Second, in the collective decision process the
must-links and cannot-links can additionally guide a clus-
tering algorithm.

As the pairwise decision models have already been in-
vestigated by several researchers [5, 9, 3, 10], we will not
deal with this step in more detail. However, the second step
has not been analyzed yet, so utilizing constraints in the col-
lective decision model is the topic of the remaining section.

5.1 Collective decision model with con-
straints

The constrained problem easily fits into the generic
model by extending the collective decision layer by con-

input: set of instances X
constraints Rcl, Rml

output: equivalence relation E

input: pair (x,y) of instances
output: P[x≡y]

probabilistic pairwise
decision model

collective decision model

input: pair (x,y) of instances
output: f(x,y)  ℝn

pairwise feature extraction

 1 : n

 1 : 1

input: set of instances X
output: set of pairs (x,y)

candidate generator

1 : 1     

input: pair (x,y) of instances
output: P[x≡y]

probabilistic pairwise
decision model

input: pair (x,y) of instances
output: f(x,y)  ℝn

pairwise feature extraction

 1 : n

 1 : 1

Core Speedup

Figure 1. Generic Object Identification Model

straints. As this stage might be solved by clustering algo-
rithms in the classical problem, we propose to solve the con-
strained problem by a constraint based clustering algorithm
as well. To enforce the constraint satisfaction we suggest
a constrained hierarchical agglomerative clustering (HAC)
algorithm. Because in an object identification task the num-
ber of equivalence classes is almost never known, we sug-
gest model selection via a learned threshold to stop merging
clusters.

5.2 Constrained HAC Algorithm

A simplified representation of our HAC algorithm for
constrained object-identification problems is shown in Al-
gorithm 1. First, the algorithm initializes each instance in
an own cluster as usual in HAC methods. Second, the must-
link constraints are applied to form a partition of the objects
given in Rml. As mentioned before we assume the prob-
lem to be consistent, so the must-links induce an equiva-
lence relation over a subset of all problem instances. After
that the main loop merges the two closest clusters until the
similarity of the closest clusters drop below the threshold
θ. In contrast to standard HAC algorithms the cannot-links
are taken into account when choosing the closest pair of
clusters. For calculating the similarity between two clusters
standard HAC variations may be used. Well known varia-
tions are:

simsl(c1, c2) = max
x∈c1,y∈c2

sim(x, y) single linkage

simcl(c1, c2) = min
x∈c1,y∈c2

sim(x, y) complete linkage

simal(c1, c2) = avg
x∈c1,y∈c2

sim(x, y) average linkage

The similarity sim(x, y) = P [x ≡ y] between two in-
stances is given by a probabilistic pairwise model which is
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trained by the given must-link and cannot-link constraints.
The only degree of freedom in the constrained HAC algo-
rithm is θ. This threshold is responsible for stopping the
merging of clusters. As the number of clusters is not known,
θ has to be found by model selection. In our experiments we
searched for optimal values of θ by repeated holdout on the
training data.

For real-world object identification problems that have a
huge number of instances, the proposed algorithm can eas-
ily be extended by several optimizations. In our implemen-
tation we (i) compute the cluster similarities by dynamic
programming, (ii) use a blocker for reducing the number of
pairs and (iii) prune cluster pairs with low similarities.

6 Evaluation methods for constrained prob-
lems

Mostly the F-Measure between recall and precision on
all pairs PX := X2 \ {(x, x)|x ∈ X} is used for evaluating
the performance of a solution for a problem in Cclassic. In it-
erative and constrained problems, there are different choices
for the set of pairs PX to measure performance on:

1. Test instances PX := (X \ Y )2

An iterative problem can be measured on the test in-
stances only. The drawback is that the links between
training and test data, which should also be predicted,
are not considered by this method.

2. All instances PX := X2

This method would factor in the problem of measuring
links between both datasets. But as the given inner
links of training data Y 2 are used for the evaluation, it
generally is too optimistic.

3. Unknown pairs PX := X2 \ Y 2

The third method is basically the same as the second
one, but skips all links for evaluation that are among
two data points of the training set.

We think that for evaluating constrained data the second
method is the most practical one, because the user is nor-
mally interested in good overall results. When using algo-
rithms that do not violate any given constraint, the second
and third evaluation method only differ in a constant fac-
tor. As we will compare constrained methods to classical
methods, which do not utilize the structural informations of
constraints, all three evaluation methods are important. The
first evaluation method allows only to assess if methods that
factor in constraints do also perform better on pairs that are
not directly connected to any labeled instance. Otherwise
one might argue, that only fully or partially labeled pairs
benefit from constraints.

Algorithm 1 Constrained HAC Algorithm
1: procedure CLUSTERHAC(X , Rml, Rcl)

outputs a partition P for X satisfying Rml and Rcl

initialize a new cluster for each instance:
2: P ← {{x}|x ∈ X}

apply must-link constraints:
3: for all (x, y) ∈ Rml do
4: c1 ← c where c ∈ P ∧ x ∈ c
5: c2 ← c where c ∈ P ∧ y ∈ c
6: P ← (P \ {c1, c2}) ∪ {c1 ∪ c2}
7: end for

repeat merging the most similar clusters:
8: repeat
9: (c1, c2)← argmax

c1,c2∈P∧(c1×c2)∩Rcl=∅
sim(c1, c2)

10: if sim(c1, c2) ≥ θ then
11: P ← (P \ {c1, c2}) ∪ {c1 ∪ c2}
12: end if
13: until sim(c1, c2) < θ

14: return P
15: end procedure

7 Experiments

The evaluation section deals with the following ques-
tions: (i) Are constrained models superior to classical mod-
els for solving problems with given structure (e.g. iterative
or constrained problems)? (ii) How much knowledge is nec-
essary for constrained models to solve a task satisfactorily?

7.1 Data sets and model setup

For evaluation we used three data sets. The first one is
the public Cora dataset [8] containing citations. The other
ones are two product groups (namely DVD player and Cam-
eras) of the online-shopping dataset of Mentasys GmbH1.

The Cora model uses the TFIDF cosine similarity, Lev-
enshtein string distance and Jaccard distance between every
single attribute. The Mentasys models use three composite
variations of the attributes manufacturer, productname and
description with TFIDF cosine similarity, a boolean fea-
ture for comparing the merchant, the relative difference for
prices and four other comparison functions, handtuned for
the domain of product deduplication. As decision model
a C-SVM from libSVM 2 is used. For collective overall
decisions we report results for different HAC methods. A

1Mentasys GmbH, Karlsruhe, Germany, http://www.mentasys.de.
2http://www.csie.ntu.edu.tw/ cjlin/libsvm
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Data set Cora DVD player Camera
F-Measure for best classic method 0.88/0.90/0.89 0.87/0.87/0.87 0.67/0.67/0.67
F-Measure for best constrained method 0.92/0.94/0.93 0.92/0.96/0.95 0.81/0.90/0.86
absolute error reduction on F-Measure 0.04/ 0.04/ 0.04 0.05/ 0.09/ 0.08 0.14/ 0.23/ 0.19
absolute error reduction with at least 97.5% confidence 0.01/ 0.01/ 0.01 0.03/ 0.06/ 0.05 0.09/ 0.19/ 0.16
relative error reduction on F-Measure 33%/ 40%/ 36% 38%/ 69%/ 62% 42%/ 70%/ 58%
number of clusters mentioned in training data 83 ±1.89 119 ±2.08 319 ±4.12
total number of clusters to find 112 147 399

Table 1. F-Measure of classic and constrained methods for each of the three evaluation methods.
Reduction of error when switching from best classic method to best constrained one.

simple canopy blocker [8] reduces the candidate pairs. With
this setup both models are state-of-the-art in object identifi-
cation. The Mentasys model is comparable to [2], but uses a
more expressive classifier. The Cora model is similar to [5],
but with more sophisticated clustering methods, a more ex-
pressive classifier and partly different similarity functions.

All parameters in the decision model – including the
stopping threshold θ – were tuned on holdout parts of the
training data for optimal F-Measure. The thresholds for the
canopy blocker were tuned for optimal weighted harmonic
mean between Pair Completeness (weight = 0.75) and Re-
duction Ratio. All experiments were repeated 4 times.

7.2 Influence of constraints

For this experiment we placed randomly 50% (25% for
Cora) of the instances into the training set. The rest (50%
and 75% for Cora) is assumed to be unknown. First we
learned the pairwise decision model on the training set. Af-
terwards both classic and constrained versions of the HAC
variations single, complete and average linkage made an
overall decision of the whole dataset. The classic versions
use no constraints and only made decisions based on the
trained pairwise decision model. So the classic method
corresponds to state-of-the-art object identification with-
out constraints. The constrained versions are additionally
guided by the given constraints in the training set.

Table 1 shows the performance of the best classic and the
best constrained linkage method. As you can see on all data
sets and evaluation methods, the best constrained method
outperforms the best classic one dramatically. For example
the constrained single linkage result for the Camera dataset
is 14% above the best classical method on the test set, 23%
on the whole dataset and 19% on all unknown pairs. Table
1 also shows that the absolute error reduces significantly.
Another result of this experiment is that the given problems
cannot be seen as a typical classification task because many
classes are not mentioned in the randomly drawn training
set. E. g. in the 112-class problem of the Cora data set 29
classes (about 26%) are unknown in advance on average.

7.3 Amount of training data

To see how constrained models depend on the amount
of training data, we varied the number of known instances
from 10% to 60% on the Camera data set. The F-Measure
for the evaluation method on all unknown pairs is shown
in figure 2. As you can see, constrained average link-
age always outperforms the best classic method, whereas
constrained complete linkage has always the worst perfor-
mance. It is interesting that the best classical method has
already its peak at 20% known instances and does not profit
noticeable from more labeled instances. This could indi-
cate that the pairwise features are exhausted by the SVM at
20% and that they are not rich enough to describe the data
in more detail. On the other hand, the constrained meth-
ods average and single linkage always benefit from more
knowledge. Although they are using the identical, learned
similarity measure as the classic method, they profit from
the additional structural information that they take into ac-
count. When comparing both constrained methods to each
other, one recognizes that average linkage is more effective
than single linkage if few instances are known. The reason
is that the single linkage strategy tend to make many mis-
takes of the type ‘false positive’ when the cannot-links are
too sparse. As the knowledge increases, single linkage be-
comes better and at about 30% percent it outperformes all
other strategies.

8 Future Work

In our evaluation we have drawn the training data ran-
domly to simulate the fact that often some parts of the data
are labeled in advance. In other cases no labeled data is
given or the labeled data should be improved by a super-
visor. In this case a rating function is necessary to propose
those instances that are likely to increase the performance at
most. There are different types of data the supervisor could
label. For instance a pair of two objects or two whole clus-
ters could be asked to be labeled as equivalent or not. The
decisions of both methods could easily be formulated with

5



10% 20% 30% 40% 50% 60%
0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

F-Measure on unknown pairs

best classic
constrained average 
linkage
constrained single 
linkage
constrained complete 
linkage

F-
M

ea
su

re

known instances

Figure 2. F-Measure on Camera dataset when
evaluating on all unknown pairs.

must-link and cannot-link constraints, so that the algorithms
proposed in this work could directly be used.

Although there has been research on active learning for
classic object identification [11, 9], we hope that addition-
ally utilizing constraints results in faster convergence and
consequently in less effort for the supervisor, because our
results have shown that constrained models improve much
more with increasing known data than classic models.

9 Conclusions

We have presented the new problem class of constrained
objective identification which is a generalization of the iter-
ative problem. To solve this problem, we extended the tra-
ditional object identification model by collective decision
models that can handle constraints. This way almost any
proposed object identification model can be extended for
constraint satisfaction. For this task we suggest a HAC al-
gorithm that satisfies sets of must-link and cannot-link con-
straints. Altogether our overall model utilizes the structural
knowledge for training a pairwise decision model as well as
for guiding the collective decision process.

In our evaluation chapter we have shown that consid-
ering structural information outperforms the classical ap-
proaches on different evaluation methods. Our experiments
also show that even a small proportion of randomly drawn
training data is sufficient to notably improve the F-Measure.

Acknowledgements

This work was funded by the X-Media project (www.x-
media-project.org) sponsored by the European Commission
as part of the Information Society Technologies (IST) pro-
gramme under EC grant number IST-FP6-026978.

References

[1] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic
framework for semi-supervised clustering. In KDD04, pages
59–68, Seattle, WA, Aug. 2004.

[2] M. Bilenko, S. Basu, and M. Sahami. Adaptive product nor-
malization: Using online learning for record linkage in com-
parison shopping. In Proceedings of the 5th IEEE Interna-
tional Conference on Data Mining (ICDM-2005), 2005.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of
the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD-2003), Washington,
DC, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identifi-
cation of fuzzy duplicates. In Proceedings of the 21st In-
ternational Conference on Data Engineering (ICDE-2005),
Tokyo, Japan, 2005.

[5] W. W. Cohen and J. Richman. Learning to match and clus-
ter large high-dimensional data sets for data integration. In
Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-
2002), pages 475–480, Edmonton, Alberta, 2002.

[6] I. Davidson and S. Ravi. Agglomerative hierarchical clus-
tering with constraints: Theoretical and empirical results. In
Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases, pages
59–70, Porto, Portugal, 2005.

[7] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-
supervised graph clustering: a kernel approach. In ICML
’05: Proceedings of the 22nd international conference on
Machine learning, pages 457–464, New York, NY, USA,
2005. ACM Press.

[8] A. K. McCallum, K. Nigam, and L. Ungar. Efficient cluster-
ing of high-dimensional data sets with application to refer-
ence matching. In Proceedings of the 6th International Con-
ference On Knowledge Discovery and Data Mining (KDD-
2000), pages 169–178, Boston, MA, Aug. 2000.

[9] S. Sarawagi and A. Bhamidipaty. Interactive deduplica-
tion using active learning. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD-2002), pages 269–278, Edmon-
ton, Alberta, 2002.

[10] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. In Proceedings of the 9th
European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PAKDD-2005), Porto, Portu-
gal, 2005.

[11] S. Tejada, C. A. Knoblock, and S. Minton. Learning
domain-independent string transformation weights for high
accuracy object identification. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), pages 350–359,
Edmonton, Alberta, 2002.

[12] W. E. Winkler. The state of record linkage and current re-
search problems. Technical report, Statistical Research Di-
vision, U.S. Census Bureau, Washington, DC, 1999.

6


