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Abstract. A central task when integrating data from different sources is to de-
tect identical items. For example, price comparison websites have to identify offers
for identical products. This task is known, among others, as record linkage, object
identification, or duplicate detection.

In this work, we examine problem settings where some relations between items
are given in advance – for example by EAN article codes in an e-commerce scenario
or by manually labeled parts. To represent and solve these problems we bring in
ideas of semi-supervised and constrained clustering in terms of pairwise must-link
and cannot-link constraints. We show that extending object identification by pair-
wise constraints results in an expressive framework that subsumes many variants
of the integration problem like traditional object identification, matching, iterative
problems or an active learning setting.

For solving these integration tasks, we propose an extension to current object
identification models that assures consistent solutions to problems with constraints.
Our evaluation shows that additionally taking the labeled data into account dra-
matically increases the quality of state-of-the-art object identification systems.

1 Introduction

When information collected from many sources should be integrated, different
objects may refer to the same underlying entity. Object identification aims at
identifying such equivalent objects. A typical scenario is a price comparison
system where offers from different shops are collected and identical products
have to be found. Decisions about identities are based on noisy attributes like
product names or brands. Moreover, often some parts of the data provide some
kind of label that can additionally be used. For example some offers might be
labeled by a European Article Number (EAN) or an International Standard
Book Number (ISBN). In this work we investigate problem settings where
such information is provided on some parts of the data. We will present three
different kinds of knowledge that restricts the set of consistent solutions. For
solving these constrained object identification problems we extend the generic
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object identification model by a collective decision model that is guided by
both constraints and similarities.

2 Related Work

Object identification (e.g. Neiling 2005) is also known as record linkage (e.g.
Winkler 1999) and duplicate detection (e.g. Bilenko and Mooney 2003). State-
of-the-art methods use an adaptive approach and learn a similarity measure
that is used for predicting the equivalence relation (e.g. Cohen and Richman
2002). In contrast, our approach also takes labels in terms of constraints into
account.

Using pairwise constraints for guiding decisions is studied in the com-
munity of semi-supervised or constrained clustering – e.g. Basu et al. (2004).
However, the problem setting in object identification differs from this scenario
because in semi-supervised clustering typically a small number of classes is
considered and often it is assumed that the number of classes is known in ad-
vance. Moreover, semi-supervised clustering does not use expensive pairwise
models that are common in object identification.

3 Four problem classes

In the classical object identification problem Cclassic a set of objects X should
be grouped into equivalence classes EX . In an adaptive setting, a second set Y
of objects is available where the perfect equivalence relation EY is known. It
is assumed that X and Y are disjoint and share no classes – i.e. EX ∩EY = ∅.

In real world problems often there is no such clear separation between
labeled and unlabeled data. Instead only the objects of some subset Y of X
are labeled. We call this problem setting the iterative problem Citer where
(X,Y,EY ) is given with X ⊇ Y and Y 2 ⊇ EY . Obviously, consistent solu-
tions EX have to satisfy EX∩Y 2 = EY . Examples of applications for iterative
problems are the integration of offers from different sources where some offers
are labeled by a unique identifier like an EAN or ISBN, and iterative inte-
gration tasks where an already integrated set of objects is extended by new
objects.

The third problem setting deals with integrating data from n sources,
where each source is assumed to contain no duplicates at all. This is called
the class of matching problems Cmatch. Here the problem is given by X =
{X1, . . . , Xn} with Xi∩Xj = ∅ and the set of consistent equivalence relations
E is restricted to relations E on X with E∩X2

i = {(x, x)|x ∈ Xi}. Traditional
record linkage often deals with matching problems of two data sets (n = 2).

At last, there is the class of pairwise constrained problems Cconstr. Here
each problem is defined by (X,Rml, Rcl) where the set of objects X is con-
strained by a must-link Rml and a cannot-link relation Rcl. Consistent solu-
tions are restricted to equivalence releations E with E∩Rcl = ∅ and E ⊇ Rml.
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Fig. 1. Relations between problem classes: Cclassic ⊂ Citer ⊂ Cconstr and Cclassic ⊂
Cmatch ⊂ Cconstr.

Obviously, Rcl is symmetric and irreflexive whereas Rml has to be an equiva-
lence relation. In all, pairwise constrained problems differ from iterative prob-
lems by labeling relations instead of labeling objects. The constrained problem
class can better describe local informations like two offers are the same/ dif-
ferent. Such information can for example be provided by a human expert in
an active learning setting.

We will show, that the presented problem classes form a hierarchy Cclassic ⊂
Citer ⊂ Cconstr and that Cclassic ⊂ Cmatch ⊂ Cconstr but neither Cmatch ⊆ Citer
nor Citer ⊆ Cmatch (see Figure 1). First of all, it is easy to see that Cclassic ⊆
Citer because any problem X ∈ Cclassic corresponds to an iterative problem
without labeled data (Y = ∅). Also Cclassic ⊆ Cmatch because an arbitrary
problem X ∈ Cclassic can be transformed to a matching problem by consider-
ing each object as its own dataset: X1 = {x1}, . . . , Xn = {xn}. On the other
hand, Citer 6⊆ Cclassic and Cmatch 6⊆ Cclassic, because Cclassic is not able to for-
mulate any restriction on the set of possible solutions E as the other classes
can do. This shows that:

Cclassic ⊂ Cmatch, Cclassic ⊂ Citer (1)

Next we will show that Citer ⊂ Cconstr. First of all, any iterative prob-
lem (X,Y,EY ) can be transformed to a constrained problem (X,Rml, Rcl)
by setting Rml ← {(y1, y2)|y1 ≡EY

y2} and Rcl ← {(y1, y2)|y1 6≡EY
y2}. On

the other hand, there are problems (X,Rml, Rcl) ∈ Cconstr that cannot be
expressed as an iterative problem, e.g.:

X = {x1, x2, x3, x4}, Rml = {(x1, x2), (x3, x4)}, Rcl = ∅

If one tries to express this as an iterative problem, one would assign to the
pair (x1, x2) the label l1 and to (x3, x4) the label l2. But one has to decide
whether or not l1 = l2. If l1 = l2, then the corresponding constrained problem
would include the constraint (x2, x3) ∈ Rml, which differs from the original
problem. Otherwise, if l1 6= l2, this would imply (x2, x3) ∈ Rcl, which again is
a different problem. Therefore:
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Citer ⊂ Cconstr (2)

Furthermore, Cmatch ⊆ Cconstr because any matching problem X1, . . . , Xn

can be expressed as a constrained problem with:

X =
n⋃

i=1

Xi, Rcl = {(x, y)|x, y ∈ Xi ∧ x 6= y}, Rml = ∅

There are constrained problems that cannot be translated into a matching
problem. E.g.:

X = {x1, x2, x3}, Rml = {(x1, x2)}, Rcl = ∅

Thus:
Cmatch ⊂ Cconstr (3)

At last, there are iterative problems that cannot be expressed as matching
problems, e.g.:

X = {x1, x2, x3}, Y = {x1, x2}, x1 ≡EY
x2

And there are matching problems that have no corresponding iterative prob-
lem, e.g.:

X1 = {x1, x2}, X2 = {y1, y2}

Therefore:
Cmatch 6⊆ Citer, Citer 6⊆ Cmatch (4)

In all we have shown that Cconstr is the most expressive class and subsumes
all the other classes.

4 Method

Object Identification is generally done by three core components (Rendle and
Schmidt-Thieme (2006)):

1. Pairwise Feature Extraction with a function f : X2 → Rn.
2. Probabilistic Pairwise Decision Model specifying probabilities for equiva-

lences P [x ≡ y].
3. Collective Decision Model generating an equivalence relation E over X.

The task of feature extraction is to generate a feature vector from the at-
tribute descriptions of any two objects. Mostly, heuristic similarity functions
like TFIDF-Cosine-Similarity or Levenshtein distance are used. The proba-
bilistic pairwise decision model combines several of these heuristic functions
to a single domain specific similarity function (see Table 1). For this model
probabilistic classifiers like SVMs, decision trees, logic regression, etc. can
be used. By combining many heuristic functions over several attributes, no
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Table 1. Example of feature extraction and prediction of pairwise equivalence
P [xi ≡ xj ] for three digital cameras.

Object Brand Product Name Price

x1 Hewlett Packard Photosmart 435 Digital Camera 118.99

x2 HP HP Photosmart 435 16MB memory 110.00

x3 Canon Canon EOS 300D black 18-55 Camera 786.00

Object Pair TFIDF-Cos. Sim. FirstNumberEqual Rel. Difference Feature Vector P [xi ≡ xj ]

(Product Name) (Product Name) (Price)

(x1, x2) 0.6 1 0.076 (0.6, 1, 0.076) 0.8

(x1, x3) 0.1 0 0.849 (0.1, 0, 0.849) 0.2

(x2, x3) 0.0 0 0.860 (0.0, 0, 0.860) 0.1

time-consuming function selection and fine-tuning has to be performed by a
domain-expert. Instead, the model automatically learns which similarity func-
tion is important for a specific problem. Cohen and Richman (2002) as well as
Bilenko and Mooney (2003) have shown that this approach is successful. The
collective decision model generates an equivalence relation over X by using
sim(x, y) := P [x ≡ y] as learned similarity measure. Often, clustering is used
for this task (e.g. Cohen and Richman (2002)).

4.1 Collective decision model with constraints

The constrained problem easily fits into the generic model above by extending
the collective decision model by constraints. As this stage might be solved by
clustering algorithms in the classical problem, we propose to solve the con-
strained problem by a constraint-based clustering algorithm. To enforce the
constraint satisfaction we suggest a constrained hierarchical agglomerative
clustering (HAC) algorithm. Instead of a dendrogram the algorithm builds
a partition where each cluster should contain equivalent objects. Because in
an object identification task the number of equivalence classes is almost never
known, we suggest model selection by a (learned) threshold θ on the similarity
of two clusters in order to stop the merging process. A simplified representa-
tion of our constrained HAC algorithm is shown in Algorithm 1. The algorithm
initially creates a new cluster for each object (line 2) and afterwards merges
clusters that contain objects constrained by a mustlink (line 3-7). Then the
most similar clusters, that are not constrained by a cannotlink, are merged
until the threshold θ is reached.

From a theoretical point of view this task might be solved by an arbitrary,
probabilistic HAC algorithm using a special initialization of the similarity
matrix and minor changes in the update step of the matrix. For satisfaction
of the constraints Rml and Rcl, one initializes the similarity matrix for X =
{x1, . . . , xn} in the following way:
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A0
j,k =


+∞, if (xj , xk) ∈ Rml

−∞, if (xj , xk) ∈ Rcl

P [xj ≡ xk] otherwise

As usual, in each iteration the two clusters with the highest similarity
are merged. After merging cluster cl with cm the dimension of the square
matrix A reduces by one – both in columns and rows. For ensuring constraint
satisfaction, the similarities between cl ∪ cm to all the other clusters have to
be recomputed:

At+1
n,i =


+∞, if At

l,i = +∞∨At
m,i = +∞

−∞, if At
l,i = −∞∨At

m,i = −∞
sim(cl ∪ cm, ci) otherwise

For calculating the similarity sim between clusters, standard linkage tech-
niques like single-, complete- or average-linkage can be used.

Algorithm 1 Constrained HAC Algorithm
1: procedure ClusterHAC(X, Rml, Rcl)
2: P ← {{x}|x ∈ X}

3: for all (x, y) ∈ Rml do
4: c1 ← c where c ∈ P ∧ x ∈ c
5: c2 ← c where c ∈ P ∧ y ∈ c
6: P ← (P \ {c1, c2}) ∪ {c1 ∪ c2}
7: end for

8: repeat
9: (c1, c2)← argmax

c1,c2∈P∧(c1×c2)∩Rcl=∅
sim(c1, c2)

10: if sim(c1, c2) ≥ θ then
11: P ← (P \ {c1, c2}) ∪ {c1 ∪ c2}
12: end if
13: until sim(c1, c2) < θ

14: return P
15: end procedure

4.2 Algorithmic Optimizations

Real-world object identification problems often have a huge number of ob-
jects. An implementation of the proposed constrained HAC algorithm has
to consider several optimization aspects. First of all, the cluster similarities
should be computed by dynamic programming. So the similarities between
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clusters have to be collected just once and afterward can be inferred by the
similarities, that are already given in the similarity-matrix:

simsl(c1 ∪ c2, c3) = max{simsl(c1, c3), simsl(c2, c3)} single-linkage
simcl(c1 ∪ c2, c3) = min{simcl(c1, c3), simcl(c2, c3)} complete-linkage

simal(c1 ∪ c2, c3) =
|c1| · simal(c1, c3) + |c2| · simal(c2, c3)

|c1|+ |c2|
average-linkage

Second, a blocker should reduce the number of pairs that have to be taken
into account for merging. Blockers like the canopy blocker (McCallum et al.
(2000)) reduce the amount of pairs very efficiently, so even large data sets can
be handled. At last, pruning should be applied to eliminate cluster pairs with
similarity below θprune. These optimizations can be implemented by storing
a list of cluster-distance-pairs which is initialized with the pruned candidate
pairs of the blocker.

5 Evaluation

In our evaluation study we examine if additionally guiding the collective de-
cision model by constraints improves the quality. Therefore we compare con-
strained and unconstrained versions of the same object identification model
on different data sets. As data sets we use the bibliographic Cora dataset that
is provided by McCallum et al. (2000) and is widely used for evaluating object
identification models (e.g. Cohen et al. (2002) and Bilenko et al. (2003)), and
two product data sets of a price comparison system.

We set up an iterative problem by labeling N% of the objects with their
true class label. For feature extraction of the Cora model we use TFIDF-
Cosine-Similarity, Levenshtein distance and Jaccard distance for every at-
tribute. The model for the product datasets uses TFIDF-Cosine-Similarity,
the difference between prices and some domain-specific comparison functions.
The pairwise decision model is chosen to be a Support Vector Machine. In the
collective decision model we run our constrained HAC algorithm against an
unconstrained (‘classic’) one. In each case, we run three different linkage meth-
ods: single-, complete- and average-linkage. We report the average F-Measure
quality of four runs for each of the linkage techniques and for constrained and
unconstrained clustering. The F-Measure quality is taken on all pairs that are
unknown in advance – i.e. pairs that do not link two labeled objects.

F-Measure =
2 · Recall · Precision
Recall + Precision

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

Table 2 shows the results of the first experiment where N = 25% of the
objects for Cora and N = 50% for the product datasets provide labels. As one
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Table 2. Comparison of F-Measure quality of a constrained to a classical method
with different linkage techniques. For each data set and each method the best linkage
technique is marked bold.

Data Set Method Single Linkage Complete Linkage Average Linkage

Cora classic/constrained 0.70/0.92 0.74/0.71 0.89/0.93

DVD player classic/constrained 0.87/0.94 0.79/0.73 0.86/0.95

Camera classic/constrained 0.65/0.86 0.60/0.45 0.67/0.81

10% 20% 30% 40% 50% 60%
0,50

0,55

0,60

0,65
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0,75
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0,85

0,90

0,95
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F-
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Fig. 2. F-Measure on Camera dataset for varying proportions of labeled objects.

can see, the best constrained method always clearly outperforms the best clas-
sical method. When switching from the best classical to the best constrained
method, the relative error reduces by 36% for Cora, 62% for DVD-Player and
58% for Camera. An informal significance test shows that in this experiment
the best constrained method is better than the best classic one.

In a second experiment (see Figure 2) we increased the amount of labeled
data from N = 10% to N = 60% and report results for the Camera dataset for
the best classical method and the three constrained linkage techniques. The
figure shows that the best classical method does not improve much beyond
more than 20% labeled data. In contrast, when using the constrained single-
or average-linkage technique the quality on non-labeled parts improves always
with more labeled data. When few constraints are available average-linkage
tends to be better than single-linkage whereas single-linkage is superior in
the case of many constraints. The reason are the cannot-links that prevent
single-linkage from merging false pairs. The bad performance of constrained
complete-linkage can be explained by must-link constraints that might result
in diverse clusters (Algorithm 1, line 3-7). For any diverse cluster, complete-
linkage can not find any cluster with similarity greater than θ and so after
the initial step, diverse clusters are not merged any more (Algorithm 1, line
8-13).
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6 Conclusion

We have formulated three problem classes that encode knowledge and restrict
the space of consistent solutions. For solving problems of the most expres-
sive class Cconstr, that subsumes all the other classes, we have proposed a
constrained object identification model. Therefore the generic object identifi-
cation model was extended in the collective decision stage to ensure constraint
satisfaction. We proposed a HAC algorithm with different linkage techniques
that is guided by both a learned similarity measure and constraints. Our
evaluation has shown, that this method with single- or average-linkage is ef-
fective and using constraints in the collective stage clearly outperforms non-
constrained state-of-the-art methods.
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