
Learning Optimal Ranking with Tensor Factorization
for Tag Recommendation

Steffen Rendle, Leandro Balby Marinho,
Alexandros Nanopoulos, Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL)

Institute for Computer Science
University of Hildesheim, Germany

{srendle,marinho,nanopoulos,schmidt-thieme}@ismll.uni-hildesheim.de

ABSTRACT
Tag recommendation is the task of predicting a personalized
list of tags for a user given an item. This is important for
many websites with tagging capabilities like last.fm or de-
licious. In this paper, we propose a method for tag recom-
mendation based on tensor factorization (TF). In contrast
to other TF methods like higher order singular value decom-
position (HOSVD), our method RTF (‘ranking with tensor
factorization’) directly optimizes the factorization model for
the best personalized ranking. RTF handles missing values
and learns from pairwise ranking constraints. Our optimiza-
tion criterion for TF is motivated by a detailed analysis of
the problem and of interpretation schemes for the observed
data in tagging systems. In all, RTF directly optimizes for
the actual problem using a correct interpretation of the data.
We provide a gradient descent algorithm to solve our op-
timization problem. We also provide an improved learning
and prediction method with runtime complexity analysis for
RTF. The prediction runtime of RTF is independent of the
number of observations and only depends on the factoriza-
tion dimensions. Besides the theoretical analysis, we empir-
ically show that our method outperforms other state-of-the-
art tag recommendation methods like FolkRank, PageRank
and HOSVD both in quality and prediction runtime.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Tensor factorization, ranking, tag recommendation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

1. INTRODUCTION
Tagging, in general, allows users to describe an item (e.g.

website, song, friend, . . .) with a list of words (‘tags’). Tags
can be used e.g. for organizing, browsing and searching.
Tagging is a popular feature of many websites like last.fm,
delicious, facebook, flickr1. With tag recommendation a
website can simplify the tagging process for a user by recom-
mending tags that the user might want to give for an item.
As different users tend to give different tags for the same
item, it is important to personalize the recommended tags
for an individual user. That means the tag recommender
should infer from the already given tags, which tags a cer-
tain user is likely to give for a specific item. For predicting
a personalized list of tags for an item, the tag recommender
should use the tagging behaviour of the past of this and other
users as well as the tags for this and other items. Interest-
ing about tagging data is that it forms a ternary relation
between users, items and tags. This makes it different from
typical recommender systems where the relation is usually
binary between users and items. Exploiting all information
of the ternary relation is a key challenge in tag recommen-
dation. A second major challenge for tag recommendation
is the data interpretation as usually only positive feedback
is present in a tagging system.

In this paper we present a tag recommender that is based
on a tensor factorization (TF) model and thus can exploit
directly the ternary relationship in tagging data [14]. We will
show that other learning methods for tensor factorization
proposed by now – like HOSVD [7] or other least square
methods [8] – are not optimal for learning a TF model for tag
recommendation. We will discuss this in detail and propose
a new optimization criterion and learning algorithm that
directly optimizes a TF model for optimal ranking.

In all our contributions are as follows:

1. We present a new interpretation scheme for tagging
data that is able to handle missing values and only
poses ranking constraints. This leads to a more accu-
rate interpretation than the typically used ‘0/1 scheme’.

2. We propose RTF, an optimization criterion and learn-
ing algorithm for TF models, that uses our new data
interpretation scheme and optimizes the factorization
for optimal ranking.

3. Finally, we show empirically that our proposed method

1http://www.last.fm/, http://delicious.com/, http://
www.facebook.com/ and http://www.flickr.com/

+

+ +
+

+ +
+

1
+

+ +

+
+

ta
g

item

us
er

+ +

+
+

+ +
+

+
+

+

+ +
+

User 1 User 2 User 3

item item item

ta
g

Figure 1: The observed positive examples (u, i, t) are a ternary relationship that can be seen as a 3 dimensional
tensor (cube). For each user a matrix is given that contains the tags given for a specific item.

RTF outperforms the best personalized tag recommen-
dation algorithms both in quality and prediction run-
time.

2. RELATED WORK
Personalized Tag Recommenders. The literature con-

cerning the problem of personalized tag recommendation is
still young, but has nevertheless attracted significant atten-
tion recently. In [5] a comprehensive evaluation and com-
parison of several state-of-the-art tag recommendation algo-
rithms in three different real world datasets is provided. The
best results reported in terms of precision and recall, were
given by the FolkRank algorithm [3], an adaptation of the
well known PageRank. Even though FolkRank showed to
provide high quality recommendations, due to its very slow
prediction runtime it is not applicable for large real-world
scenarios. We will show that our method RTF outperforms
FolkRank both in quality and prediction runtime.

Non-personalized Tag Recommenders. A non-per-
sonalized tag recommender predicts the same list of tags for
the same item – i.e. it is independent of the user. There is
several work on non-personalized tag recommenders, e.g. [2,
13, 12]. In [13], for example, an algorithm based on a Pois-
son Mixture Model is introduced. Although the algorithm is
able to make predictions nearly in linear time, it is not per-
sonalized since the training data is composed from (words,
documents, tags) triples containing no user specific infor-
mation. Another difference to our work and the work pre-
sented before, is that their method is content aware. In [12]
the problem of tag recommendations is casted as a multi-
label ranking problem for document classification and a fast
recommendation algorithm based on gaussian processes is
proposed. The algorithm provides linear time to train, pro-
portional to the number of training samples, and constant
time to predict per test case. Again differently from us, this
approach is non-personalized since a given test document
would be classified with the same set of tags independently
of the users. Our evaluation (see section 5.4.3) indicates
that if user information is present, our proposed personal-
ized tag recommender outperforms any non-personalized tag
recommender.

Tensor Factorization. While the idea of computing low
rank approximations for tensors has already been used for
many purposes [7, 11, 6], it has just recently been applied
for the problem of personalized tag recommendations [14].
In this approach, HOSVD [7] is applied for computing a low

rank approximation of the original tensor, through which
tag recommendations are generated yielding promising re-
sults. Nevertheless all these TF approaches like HOSVD or
other least-square methods [8] do not lead to optimal factor-
izations for the task of tag recommendation as we will show
in this paper both theoretically and empirically.

3. TAG RECOMMENDATION
The task of tag recommendation is to provide a user with

a personalized ranked list of tags for a specific item. An ex-
ample is a bookmark website where after the user has added
a new bookmark, the system recommends him a personal-
ized list of ranked tags/ keywords for this bookmark. The
list of recommended bookmarks can be learned from the tag-
ging behaviour of the past of this user for other bookmarks
and the tagging behaviour of other users for both this and
other bookmarks.

3.1 Formalization
Let U be the set of all users, I the set of all items/ re-

sources and T the set of all tags. The tagging information
of the past, i.e. all individual tags the users have given to
resources, is denoted by S ⊆ U × I × T . E.g. (u, i, t) ∈ S
would mean that user u has tagged an item i with the tag t.
The ternary relation S can be viewed as a three dimensional
tag cube (see figure 1), where the dimensions are the users,
items and tags. The posts PS denotes the set of all distinct
user/ item combinations in S:

PS := {(u, i)|∃t ∈ T : (u, i, t) ∈ S}

From the ternary relation S one can induce a tensor Y with
training data. There are several ways how to interpret S
and create Y . We will present two methods in section 3.2.

The task of tag recommendation is to predict which tags a
user u is most likely to use for tagging an item i. That means
a tag recommender has to predict the numerical values ŷu,i,t
of the tensor Ŷ indicating how much the user likes a tag
for an item. Instead of predicting single elements of Ŷ , in
general the system should provide the user a personalized
list of the best N tags for the item. Given a predictor Ŷ
the list Top of the N highest scoring items for a given user
u and an item i can be calculated by:

Top(u, i,N) :=
N

argmax
t∈T

ŷu,i,t (1)

Where the superscript N denotes the number of tags to re-
turn.

0 1 1 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1 0 1 0
0 0 1 0
1 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 0 1 0
0 0 0 0
0 0 1 1
0 0 0 1

User 1 User 2 User 3

item item item

ta
g

Figure 2: 0/1 interpretation: Positive examples are
encoded as 1 and the rest as 0.

3.2 Interpretation of the Data
For any learning algorithm good training data is crucial.

In typical learning tasks, the set of positive and negative ex-
amples is clearly given. In contrast to this in many recom-
mender problems, like in tag recommendation, only positive
examples are present. In tag recommendation the positive
examples are the elements of S. But it is unclear how the
rest of this relation (U × I × T) \ S should be interpreted.

3.2.1 0/1 Interpretation scheme
A common interpretation scheme – we call it the 0/1

scheme – is to encode positive feedback as 1 and interprete
the remaining data as 0 (see figure 2). The training data

Y 0/1 is then defined as:

y
0/1
u,i,t =

(
1, (u, i, t) ∈ S
0, else

This interpretation is e.g. used for training tag recommenders
using a HOSVD model [14].

The 0/1 interpretation has three severe drawbacks.

1. The semantics are obviously incorrect. Imagine a user
u has never tagged an item i before. For training a
model with 0/1 interpretation all tags of this item are
encoded with 0 and for learning the model is fitted
to this data. So the model tries to predict a 0 for
each case. The only reason why the model can predict
something else than 0 is that it usually generalizes and
does not fit exactly on the training data.

2. Also from a sparsity point of view the 0/1 scheme leads
to a problem. If all elements that are not in S are as-
sumed to be 0, even for a small dataset like Bibsonomy
(see section 5.1), the 0 values dominate the 1 by many
orders of magnitude. To give a practical example, first
the sparsity for 0/1 interpretation is:

1− |S|
|U | · |I| · |T |

With this definition, for the BibSonomy 5-core dataset
99.94% elements are 0 and for the larger Last.fm 10-
core dataset 99.998% are 0.

3. As one is interested in ranked lists, trying to fit to
the numerical values of 1 and 0 is an unnecessary con-
straint. Instead only the qualitative difference between
a positive and negative example is important. That
means ŷ of a positive example should be larger than
that of a negative example.

? + + ?
? ?
? + ?
? + ?
? ?

+ ? + ?
 ? + ?
+ ? ?
 ? + ?
 ? ?

? ?
? ? +
? ?
? ? + +
? ? +

User 1 User 2 User 3

item item item

ta
g

Figure 3: Post-based ranking interpretation: Non
observed data inside given posts are negative exam-
ples. All other entries are missing values. No nu-
meric value is assigned to the classes, instead only a
ranking is implied.

3.2.2 Post-based Ranking Interpretation Scheme
In this paper we present another interpretation scheme,

that we call the post-based ranking interpretation. Our scheme
addresses all of the three problems of the ‘0/1 scheme’. With
this interpretation we distinguish between positive and neg-
ative examples and missing values. The idea is that posi-
tive and negative examples are only generated from observed
posts. All other entries – e.g. all tags for an item that a user
has not tagged yet – are assumed to be missing values (see
figure 3). First we define the set of positive and negative
examples for a given post:

T+
u,i := {t | (u, i) ∈ PS ∧ (u, i, t) ∈ S}
T−u,i := {t | (u, i) ∈ PS ∧ (u, i, t) 6∈ S}

From this we can define for the values of Y pairwise ranking
constraints:

ypu,i,t1 > ypu,i,t2 ⇔ (u, i, t1) ∈ T+
u,i ∧ (u, i, t2) ∈ T−u,i (2)

From a semantical point of view this scheme makes more
sense as the user/ item combinations that have no tags are
the ones that the recommender system will have to predict
in the future. With our interpretation we treat this kind of
data as missing values and do not use it as training data like
in the ‘0/1 scheme’2. Also inside a given post the negative
values are not fitted to 0, instead we only require that the
positive examples have a higher value than the negative ones.
This addresses the first two drawbacks of the ‘0/1 scheme’.
The third drawback is tackled by our scheme by allowing free
values for y and only posing pairwise ranking constraints (see
eq. 2). In all, a model for ‘post-based ranking interpretation’
should be optimized to satisfy as many ranking constraints
as possible. Please note that optimizing for the ranking
constraints between positive and negative values is related to
optimizing the ranking statistic AUC (area under the ROC-
curve) as we will see in the next section.

4. RANKING WITH TENSOR FACTORIZA-
TION (RTF)

First we describe tensor factorization models in general.
Then we present in detail how a tensor factorization model
can be learned for optimizing the ranking statistic AUC
(area under the ROC-curve). We discuss the RTF model
and compare it to HOSVD and Folkrank.
2Please note that the ‘0/1 scheme’ poses more constraints on
ypu,i,t as fitting to 0/1 is required and there are constraints
on tags of non-observed posts.

Y C=

I

T

U

I

T

U

I

kU
U

kI kT

T

kI

kU
kT

Figure 4: Tensor factorization: The tensor Ŷ is con-
structed by multiplying three features matrices Û , Î
and T̂ to a small core tensor Ĉ.

4.1 Tensor Factorization Model
With tensor factorization, Y is estimated by three low

rank matrices and one tensor (see figure 4). For each of the
three dimensions – i.e. user, items and tags – one of the
low rank matrices tries to represent an entity with a small
number of parameters. We call the matrices feature matrices
and the tensor core tensor. The model parameters of a TF
model can be seen as latent variables.

The prediction is made by multiplying the three feature
matrices to the core tensor:

Ŷ := Ĉ ×u Û ×i Î ×t T̂ (3)

Where the core tensor Ĉ and the feature matrices Û , Î and
T̂ are the model parameters that have to be learned and
×x is the tensor product to multiply a matrix on dimension
x with a tensor. The model parameters have the following
sizes:

Ĉ ∈ RkU×kI×kT , Û ∈ R|U|×kU

Î ∈ R|I|×kI , T̂ ∈ R|T |×kT

Where kU , kI and kT are the dimensions of the low-rank ap-
proximation. That means that Ŷ in the formula (3) results
in a tensor with dimensions |U | × |I| × |T |. We denote the

model parameters by the quadruple θ̂ := (Ĉ, Û , Î, T̂).
Given the feature matrices and the core tensor, the pre-

diction ŷu,i,t can be made as follows:

ŷu,i,t =
X
ũ

X
ĩ

X
t̃

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i · t̂t,t̃ (4)

Given ŷu,i,t a personalized ranked list of tags for user u and
item i can be created with formula (1).

Throughout the paper, indices over the feature dimension
of a feature matrix are marked with a tilde (e.g. t̃) and
elements of a feature matrix are marked with a hat (e.g.
t̂t,t̃).

4.2 Learning to Rank with Tensor Factoriza-
tion

After we have presented the model equation (4), we now

show how to learn the model parameters Ĉ, Û , Î and T̂ .
First we discuss the optimization criterion and afterwards
we derive an algorithm for the optimization task.

4.2.1 Optimization Criterion
For finding the ‘best’ model parameters an optimization

criterion has to be defined. Usually tensor factorization

models (like HOSVD) are learned by minimizing an element-

wise loss on the elements of Ŷ – e.g. by optimizing the square
loss:

argmin
θ̂

X
(u,i,t)∈U×I×T

(ŷu,i,t − yu,i,t)2

For this minimization task, one can use standard HOSVD or
square-loss implementations like [6, 8], because the data Y
is assumed to be dense. Such an optimization uses the ‘0/1
interpretation scheme’ (see section 3.2). As we have argued
before this scheme misinterprets the semantics of the data
as it does not handle missing values, suffers from sparsity
in terms of domination of zero values and does not optimize
for ranking quality.

Instead we propose another optimization criterion that
uses the ‘post-based ranking interpretation’ and maximizes
the ranking statistic AUC (area under the ROC-curve). The
quality measure AUC (or Mann-Whitney statistic) for a
given post of user u for item i is defined as:

AUC(θ̂, u, i) :=

1

|T+
u,i||T

−
u,i|

X
t+∈T+

u,i

X
t−∈T−u,i

H0.5(ŷu,i,t+ − ŷu,i,t−) (5)

where Hα is the Heaviside function:

Hα :=

8><>:
0, x < 0

α, x = 0

1, x > 0

(6)

The overall optimization task with respect to the ranking
statistic AUC and the observed data is then:

argmax
θ̂

X
(u,i)∈PS

AUC(θ̂, u, i) (7)

With this optimization (i) missing values are taken into ac-
count because the maximization is only done on the observed
posts PS and (ii) the model is optimized for ranking. In all,
this criterion takes into account all obeservations of section
3.2.

4.2.2 Regularization
The optimization criterion presented so far will lead to

the best value given the training data. With high feature
dimensions (i.e. high kU , kI , kT) an arbitrary small error
on the training data can be achieved. In general we are not
interested in a low error for the already observed data but
in a low error over unseen data. Minimizing the training
error for models with a large number of parameters will lead
to overfitting, i.e. a small training error but a large error
over new/ unseen data. A common way to prevent this is
to regularize the optimization criterion. Regularization is
very successful in related areas like rating prediction [10].
Adding a regularization objective to the optimization task
in formula (7) leads to the following objective:

argmax
θ̂

X
(u,i)∈PS

AUC(θ̂, u, i)

−
“
γC ||Ĉ||2F + γ||Û ||2F + γ||Î||2F + γ||T̂ ||2F

”
(8)

Where γC and γ are the regularization parameters for the
core tensor and the feature matrices respectively. || · ||2F is
the Frobenius norm.

4.2.3 Learning Algorithm
Next we present an algorithm to solve the optimization

problem of formula (8). Obviously, optimizing (8) directly
is infeasible. Instead we use gradient descent to minimize
the objective function. As the AUC is not differentiable
because of the Heaviside function, we replace H like in [1]
by the s-shaped logistic function s:

s(x) :=
1

1 + e−x

The overall algorithm can be found in figure 5. This al-
gorithm uses a stochastic update approach, that means for
each post (u, i) ∈ PS the model parameters are updated.

For using gradient descent, AUC has to be differentiated
with respect to all model parameters. First of all, the deriva-
tive of AUC given a post (u, i) ∈ PS can be simplified for all
model parameters x:

∂

∂x
AUC(θ̂, u, i)

=
∂

∂x

1

|T+
u,i||T

−
u,i|

X
t+∈T+

u,i

X
t−∈T−u,i

s(ŷu,i,t+ − ŷu,i,t−)

=z
X

t+∈T+
u,i

X
t−∈T−u,i

wt+,t−
∂

∂x
(ŷu,i,t+ − ŷu,i,t−)

with:

wt+,t− := s(ŷu,i,t+ − ŷu,i,t−)(1− s(ŷu,i,t+ − ŷu,i,t−))

z :=
1

|T+
u,i||T

−
u,i|

ŷu,i,t+ − ŷu,i,t− =
X
ũ

X
ĩ

X
t̃

ĉũ,̃i,t̃ûu,ũ îi,̃i(t̂t+,t̃ − t̂t−,t̃)

Hence, the derivative of the core tensor features is:

∂AUC

∂ĉũ,̃i,t̃
= z

X
t+∈T+

u,i

X
t−∈T−u,i

wt+,t− ûu,ũ îi,̃i(t̂t+,t̃ − t̂t−,t̃)

For the feature matrices U and I the derivatives are as fol-
lows:

∂AUC

∂ûu,ũ
= z

X
t+∈T+

u,i

X
t−∈T−u,i

X
ĩ

X
t̃

wt+,t− ĉũ,̃i,t̃ îi,̃i(t̂t+,t̃ − t̂t−,t̃)

∂AUC

∂îi,̃i
= z

X
t+∈T+

u,i

X
t−∈T−u,i

X
ũ

X
t̃

wt+,t− ĉũ,̃i,t̃ûu,ũ(t̂t+,t̃ − t̂t−,t̃)

For the tags the updates depend on whether a tag t is posi-
tive or negative:

∂AUC

∂t̂t+,t̃
= −z

X
t−∈T−u,i

X
ũ

X
ĩ

wt+,t− ûu,ũ îi,̃iĉũ,̃i,t̃

∂AUC

∂t̂t−,t̃
= z

X
t+∈T+

u,i

X
ũ

X
ĩ

wt+,t− ûu,ũ îi,̃iĉũ,̃i,t̃

4.3 Relations to HOSVD
Higher order singular value decomposition (HOSVD) [7]

is another method for learning a tensor factorization model.
HOSVD targets to create an optimal reconstruction of a ten-
sor Y using the model equation (3). Even though HOSVD

1: procedure LearnRTF(S, α, γ, γC)

2: initialize θ̂ := (Ĉ, Û , Î, T̂)
3: repeat
4: for (u, i) ∈ PS do
5: for (ũ, ĩ, t̃) ∈ ku × ki × kt do

6: ĉũ,̃i,t̃ ← ĉũ,̃i,t̃ + α
“
∂AUC
∂ĉ

ũ,̃i,t̃
− γC · ĉũ,̃i,t̃

”
7: end for
8: for ũ← 1, . . . , ku do

9: ûu,ũ ← ûu,ũ + α
“
∂AUC
∂ûu,ũ

− γ · ûu,ũ
”

10: end for
11: for ĩ← 1, . . . , ki do

12: îi,̃i ← îi,̃i + α

„
∂AUC

∂î
i,̃i

− γ · îi,̃i
«

13: end for
14: for t← 1, . . . , |T | do
15: for t̃← 1, . . . , kt do

16: t̂t,t̃ ← t̂t,t̃ + α

„
∂AUC
∂t̂t,t̃

− γ · t̂t,t̃
«

17: end for
18: end for
19: end for
20: until stopping criterion met
21: return θ̂
22: end procedure

Figure 5: Learning RTF models by gradient descent
with learning rate α and regularization γ and γC .

is a good method for the task of reconstruction tensors, for
the task of personalized ranking HOSVD has three major
drawbacks to RTF:

1. HOSVD cannot deal with missing values. For tag rec-
ommendation the missing values are usually filled with
zeros [14].

2. HOSVD optimizes for minimal element-wise error. But
for the ranking problem of tag recommendation we are
interested in another objective function.

3. HOSVD has no regularization. For machine learn-
ing tasks preventing overfitting is very important so
HOSVD is prone to overfitting.

There are also other related tensor factorization methods
similar to HOSVD like iterative least-square error minimiza-
tion [8], that also suffer from the same problems discussed
above. In all HOSVD for tag recommendation tries to op-
timize the ‘0/1 interpretation scheme’ (see section 3.2). Be-
sides this theoretical analysis, in our evaluation we will show
that RTF largely outperforms HOSVD.

4.4 Fast Computation of RTF
One of the benefits from a factorization model like RTF

or HOSVD is that after a model is built, predictions only
rely on the model. This leads to faster prediction runtime
than with models like FolkRank. In the following, we look
into the runtime of RTF models in detail and show how to
speed them up.

4.4.1 Prediction
Formula (1) shows the general way to predict a top-n list

of tags for a specific user u and item i. For predicting ŷu,i,t

Method Prediction Training

RTF O(|T | · kT + kU · kI · kT) O(iter · |PS | · (kT · |T |2 + kU · kI · kT))
Folkrank O(iter · (|S|+ |U |+ |I|+ |T |) + |T | ·N) O(1)

Figure 6: Runtime complexity: The prediction runtime of RTF only depends on the small factorization
dimensions (kU , kI , kT) and the number of tags T but is independent from the size of observed data S, number
of users U and items I.

with a factorization model, formula (4) is used. The runtime
complexity for equation (4) is O(kU · kI · kT) and thus the
trivial upper bound of the runtime for predicting a top-n list
(see eq. 1) is O(|T | · kU · kI · kT). Though the runtime can
be improved largely by reordering the sums in formula (4):

ŷu,i,t =
X
ũ

X
ĩ

X
t̃

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i · t̂t,t̃

=
X
t̃

t̂t,t̃ ·
X
ũ

X
ĩ

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i

=
X
t̃

t̂t,t̃ · t̂
u,i

t̃

with t̂u,i
t̃

:=
X
ũ

X
ĩ

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i

When making a top-n prediction for user u and item i in-
stead of computing (4) for each tag, an intermediate re-
sult t̂u,i

t̃
can be computed first in O(kU · kI · kT). The

top-n prediction can then be made using this intermedi-
ate result and the total runtime of predicting top-n is then
O(|T | · kT + kU · kI · kT). Thus the runtime for prediction
with a factorization model is independent of the number of
users, items and observations S. It only depends on the
dimensions of the factorization and the number of tags.

4.4.2 Learning
The complexity of learning a RTF model (see figure 5) is

in O(iter · |PS | · |T |2 · kT · kI · kU)) where iter is the number
of iterations. This is because the runtime is dominated by
the update of tag features. Also here by rearranging the
sums for the gradients and storing intermediate results, one
can achieve a better runtime. We suggest to calculate the
intermediate vector vt̃ which then can be used in the gradient

for Û , Î and Ĉ:

vt̃ :=
X

t+∈T+
u,i

X
t−∈T−u,i

wt+,t−(t̂t+,t̃ − t̂t−,t̃)

This vector can be calculated in O(|T+| · |T−| · kT). With
this definitions, the gradients can be simplified to:

∂AUC

∂ĉũ,̃i,t̃
= z · ûu,ũ · îi,̃i · vt̃

∂AUC

∂ûu,ũ
= z

X
ĩ

X
t̃

ĉũ,̃i,t̃ · îi,̃i · vt̃

∂AUC

∂îi,̃i
= z

X
ũ

X
t̃

ĉũ,̃i,t̃ · ûu,ũ · vt̃

So in total, the runtime for these updates is in O(|T+| · |T−| ·
kT + kU · kI · kT).

Similarly, the updates for T can be simplified by calculat-

ing the intermediate vector qt̃ in O(kT · kU · kI):

qt̃ :=
X
ũ

X
ĩ

cũ,̃i,t̃ · ûu,ũ · îi,̃i

Now the updates for the tag feature matrices can be calcu-
lated in a total runtime of O(kT · |T |2 + kU · kI · kT) using
the formulas:

∂AUC

∂t̂t+,t̃
= −z · qt̃

X
t−∈T−u,i

wt+,t−

∂AUC

∂t̂t−,t̃
= z · qt̃

X
t+∈T+

u,i

wt+,t−

In all, learning an RTF model can be implemented in O(iter·
|PS | · (kT · |T |2 + kU · kI · kT)).

4.4.3 Runtime Complexity Comparison
We compare the runtime complexity of our RTF method

to the state-of-the-art tag recommendation method FolkRank
[4]. Jäschke et al. [5] have proven that the runtime com-
plexity for top-n predictions with FolkRank is O(iter · (|S|+
|U | + |I| + |T |) + |T | · N) where iter is the number of iter-
ations. That means for predicting a personalized top-n list,
FolkRank has to pass several times the whole database of
observations. When we compare this to RTF with complex-
ity O(|T |·kT +kU ·kI ·kT) it is obvious that RTF models have
a much better runtime complexity as they only depend on
the small dimensions of the factorization and on the number
of tags. The only advantage of FolkRank over RTF w.r.t.
runtime is that it does not have a training phase. But as
training is usually done offline, this does not affect the appli-
cability of RTF for fast large-scale tag recommendation. In
our evaluation chapter we will give an empirical comparison
of the prediction runtime of FolkRank and RTF.

5. EVALUATION
We investigate the performance of RTF both in predic-

tion quality and runtime compared to the other state-of-
the-art tag recommendation algorithms HOSVD, FolkRank
and PageRank.

5.1 Datasets
We evaluate our RTF method on the BibSonomy and

Last.fm dataset from [4]. As in [4, 5, 14] we use a p-core3 –
for BibSonomy the 5-core and for last.fm the 10-core. The
dataset characteristics of the p-cores are:

dataset |U | |I| |T | |S| |PS |
BibSonomy 116 361 412 10,148 2,522
Last.fm 2,917 1,853 2,045 219,702 75,565

3The p-core of S is the largest subset of S with the property
that every user, every item and every tag has to occur in at
least p posts.

5.2 Evaluation Methodology
We use the common evaluation protocol for tag-recom-

mender of predicting posts [5]. For each user in the dataset
we remove all triples Stest he has given for one item – i.e.
we remove one post for each user. The remaining observed
user-item-tag triples are the training set Strain := S \ Stest.
Then we learn the models on Strain and predict top-N lists
for each of the removed posts PStest . We measure the recall
and precision of the top-1, top-2 to top-10 lists of each post
and report for each top-N level (1 to 10) the F1-measures of
the average recall and precision:

Prec(Stest, N) := avg
(u,i)∈PStest

|Top(u, i,N) ∩ {t|(u, i, t) ∈ Stest}|
N

Recall(Stest, N) := avg
(u,i)∈PStest

|Top(u, i,N) ∩ {t|(u, i, t) ∈ Stest}|
|{t|(u, i, t) ∈ Stest}|

F1(Stest, N) :=
2 · Prec(Stest, N) · Recall(Stest, N)

Prec(Stest, N) + Recall(Stest, N)

We choose F1-Measure on top-n lists as the main quality
measure so that the results can be directly compared to
related work like [5]. Additionally, we also report the related
measure AUC for the RTF models. All experiments are
repeated 10 times and we report the mean of the runs. For
each run, we use exactly the same train/ test splits as in [5].

We run RTF with (ku, ki, kt) ∈
{(8, 8, 8), (16, 16, 16), (32, 32, 32), (64, 64, 64)} dimensions;
for BibSonomy we also run (ku, ki, kt) = (128, 128, 128)
dimensions. The corresponding model is called ”RTF 8”,
”RTF 16”, and so on. The other hyperparameters are:
learning rate α = 0.5 for BibSonomy and α = 0.1 for
Last.fm; regularization γ = γc = 10−5 for BibSonomy
and γ = γc = 10−6 for Last.fm; iterations iter = 500
for BibSonomy and iter = 600 for Last.fm. The model
parameters θ̂ are initialized with small random values
drawn from the normal distribution N(0, 0.1).

For FolkRank and PageRank we report the values
obtained by [5] as we use the same datasets and
splits. For HOSVD we have a dimensionality of
(ku, ki, kt) = (60, 105, 225) for BibSonomy and (ku, ki, kt) =
(875, 556, 614) for Last.fm. As with FolkRank and Page-
Rank, all hyperparameters were optimized on one split and
then used for all the other splits.

For the runtime comparison for prediction we used a C++
implementation of Folkrank and an Object-Pascal imple-
mentation of RTF.

5.3 Repeatability of Experiments
Both the datasets and the implementations of all algo-

rithms of our experiments are publicly available for research
purposes. The BibSonomy dataset we used is available from
the University of Kassel [4]. We will provide our Last.fm
dataset upon request by email. FolkRank and PageRank is
provided by the University of Kassel within the Nepomuk
project4. The HOSVD of our experiments [6] is available
as Mathlab package5. Our RTF implementation is available
upon request by email.

4http://dev.nepomuk.semanticdesktop.org/download/
5http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

FolkRank RTF 8 RTF 16 RTF 32 RTF 64

BibSonomy
Last.fm

Prediction runtime

Model

ru
nt

im
e

in
 m

s

0
50

15
0

25
0

Figure 9: Runtime comparison for predicting one
ranked list of tags for the small BibSonomy and the
larger Last.fm dataset. FolkRank is compared to
RTF with an increasing number of dimensions. On
small datasets FolkRank’s runtime is feasible but on
larger datasets it gets impractical. In contrast to
this RTF only depends on the factorization dimen-
sions and not on the size of the dataset.

5.4 Results and Discussion
In the following, we discuss the results of our evaluation.

Figure 7 shows a qualitative comparison of the state-of-the-
art models FolkRank, HOSVD and PageRank to our model
class RTF. There you can see that RTF models with a suf-
ficient number of dimensions (e.g. 64) outperform all other
models in quality. In figure 8 you can see the increasing AUC
quality of RTF models with an increasing number of dimen-
sions. Finally figure 9 compares the prediction runtime of
FolkRank to the runtime of RTF models.

5.4.1 RTF vs. FolkRank
When comparing the prediction quality of RTF and

FolkRank (figure 7) one can see that high dimensional RTF
models outperform FolkRank on both datasets in quality.
On BibSonomy RTF with 64/ 128 dimensions achieves com-
parable results whereas on the larger Last.fm dataset already
32 dimensions clearly outperform FolkRank in quality.

An empirical runtime comparison for predicting a ranked
list of tags for a post can be found in figure 9. As you
can see, the runtime of the RTF model is dominated by the
dimension of the factorization and is independent of the size
of the dataset. The runtime on the BibSonomy dataset and
the 20 times larger Last.fm dataset are almost the same –
e.g. for RTF64 10.4 ms for BibSonomy and 12.4 ms for
Last.fm. With smaller factorization, the number of tags has
a larger influence on the runtime – e.g. for RTF16 it is 0.3
ms vs. 1.1 ms. For the very large factorization of RTF128
and the very small dataset of BibSonomy, the runtime of
RTF is worse than that of Folkrank (82.1 ms vs 19.1 ms).
The reason is that the runtime of FolkRank depends on the
size of the dataset – i.e. the observations S – and on the very
small BibSonomy dataset that leads to a reasonable runtime
but already for the larger Last.fm dataset the runtime of
FolkRank is not feasible any more for real-time predictions.
All these empirical results match the theoretical complexity
analysis we presented in section 4.4.3.

Another major advantage of RTF is that the tradeoff be-

2 4 6 8 10

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

BibSonomy

Top n

F
−

M
ea

su
re

●
●

●
●

● ● ● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

RTF 8
RTF 16
RTF 32
RTF 64
RTF 128
FolkRank
PageRank
HOSVD

2 4 6 8 10

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Last.fm

Top n

F
−

M
ea

su
re

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RTF 8
RTF 16
RTF 32
RTF 64
FolkRank
PageRank
HOSVD
npmax

Figure 7: F-Scores for Top-1, Top-2 to Top-10 lists on two datasets. The best FolkRank, PageRank and
HOSVD results are compared to RTF with an increasing number of dimensions. – For Last.fm npmax is the
theoretical upper (!) bound for non-personalized tag recommenders (see section 5.4.3).

tween quality and speed can be chosen by controlling the
number of dimensions. That means depending on the ap-
plication one can chose if runtime is more important than
quality and thus reduce the number of dimensions. With
FolkRank you cannot control this tradeoff.

The only drawback of RTF to FolkRank is that it needs a
training phase. But training is usually done offline and for
online updating a factorization model there are very promis-
ing results for the related model class of regularized matrix
factorization [9].

5.4.2 RTF vs. HOSVD
The prediction quality of RTF is clearly superior to the

one of HOSVD (figure 7). On BibSonomy even with a very
small number of 8 dimensions, RTF achieves almost similar
results as HOSVD with a dimensionality of (60, 105, 225)
and (875, 556, 614) respectivly. Increasing the dimensions of
RTF to 16 dimensions already largely outperforms HOSVD
in quality. Note that for Last.fm this means that for HOSVD
there are 298, 711, 000 parameters to learn in the core tensor
– whereas for RTF8 there are only 512 and for RTF16 only
4, 096 parameters. The empirical qualitative results match
our discussion about the data interpretation in section 3.2.

Even though RTF and HOSVD have the same predic-
tion method and thus prediction complexity, in practice
RTF models are much faster in prediction than compara-
ble HOSVD models, because RTF models need much less
dimensions than HOSVD for achieving better quality.

A final problem with HOSVD is that we found it to be
very sensitive for the number of dimensions and that they
have to be chosen carefully. Also HOSVD is sensitive to
the relations between the user, item and tag dimensions –
e.g. choosing the same dimension for all three dimensions
leads to poor results. In contrast to this, for RTF we can
choose the same number of dimensions for user, item and

tags. Furthermore for RTF, by increasing the number of
dimensions we get better results. We expect this behaviour
due to the regularization of RTF models.

5.4.3 Non-personalized Recommenders
In a last experiment, we compare the prediction quality

of personalized tag recommenders to the best possible non-
personalized tag recommender, i.e. the theoretical upper
bound for non-personalized tag recommender npmax (see fig-
ure 7). The weighting method for npmax is:

ŷ
npmax
u,i,t := |{u∗|(u∗, i, t) ∈ Stest}|

Please note that in practice ŷnpmax cannot be applied as Stest

is unknown. But here we use ŷnpmax as the theoretical upper
bound for non-personalized recommenders because it creates
the best non-personalized top-n list for the test set Stest – ev-
ery other method for non-personalized tag recommendation
like [2, 13, 12] is guaranteed to have a lower (or in the best
case the same) quality on Stest. As you can see in figure 7,
personalized tag recommenders like FolkRank, RTF32 and
RTF64 outperform npmax the theoretical upper bound for
non-personalized tag recommendation6. That means, in ap-
plications, where there is personalized information present,
personalized tag recommender are supposed to outperform
non-personalized tag recommender.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new optimization cri-

terion for tensor factorization for the task of ranking with
missing values. Our optimization is motivated theoretically
by a proper interpretation of observed and non-observed

6Evaluating npmax on the small BibSonomy dataset makes
no sense because in the test sets Stest of BibSonomy are
rarely two posts with the same item.

●

●

●

●

●

20 40 60 80 100 120

0.
92

5
0.

93
5

0.
94

5
0.

95
5

BibSonomy

Dimensions

A
U

C

●

● ●
●

10 20 30 40 50 60

0.
99

30
0.

99
40

0.
99

50

Last.fm

Dimensions

A
U

C

Figure 8: Area under the ROC-curve values for ranking with RTF. The dimensions of the RTF model are
increased from 8 to 128 and 64 respectively.

data. It can handle both missing values and pairwise rank-
ing constraints. In all, it is focused on learning the best
ranking instead of optimizing for minimal element-wise error
like in other tensor factorization algorithms (e.g. HOSVD).
For our proposed optimization task, we have presented an
optimization algorithm based on gradient descent. In our
evaluation we have shown that this algorithm largely out-
performs HOSVD in quality – even with much less factor-
ization dimensions which leads to higher prediction speed
than HOSVD. Furthermore we have shown that our method
is also able to outperform other state-of-the-art tag recom-
mendation algorithms like FolkRank and PageRank in qual-
ity and largely in prediction runtime.

In future work, we want to study the isolated effect of
each single improvement over HOSVD, namely data inter-
pretation, regularization and AUC optimization.

Acknowledgments
This work is partially co-funded through the European Com-
mission FP7 project MyMedia (www.mymediaproject.org)
under the grant agreement no. 215006. Leandro Balby
Marinho is supported by the Brazilian National Council for
Scientific and Technological Research (CNPq).

7. REFERENCES
[1] A. Herschtal and B. Raskutti. Optimising area under

the roc curve using gradient descent. In ICML ’04:
Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004.

[2] P. Heymann, D. Ramage, and H. Garcia-Molina.
Social tag prediction. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 531–538. ACM, 2008.

[3] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
Information Retrieval in Folksonomies: Search and
Ranking. 2006.

[4] R. Jäschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Proceedings of
the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases
(PKDD), Warsaw, Poland, 2007.

[5] R. Jäschke, L. Marinho, A. Hotho,

L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in social bookmarking systems. AI
Communications, pages 231–247, 2008.

[6] T. G. Kolda and J. Sun. Scalable tensor
decompositions for multi-aspect data mining. In
Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM 2008), 2008.

[7] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl., 21(4):1253–1278, 2000.

[8] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. On
the best rank-1 and rank-(r1,r2,. . .,rn) approximation
of higher-order tensors. SIAM J. Matrix Anal. Appl.,
21(4):1324–1342, 2000.

[9] S. Rendle and L. Schmidt-Thieme. Online-updating
regularized kernel matrix factorization models for
large-scale recommender systems. In RecSys ’08:
Proceedings of the 2008 ACM conference on
Recommender systems. ACM, 2008.

[10] J. D. M. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
ICML ’05: Proceedings of the 22nd international
conference on Machine learning. ACM, 2005.

[11] A. Shashua and T. Hazan. Non-negative tensor
factorization with applications to statistics and
computer vision. In ICML ’05: Proceedings of the
22nd international conference on Machine learning,
pages 792–799. ACM, 2005.

[12] Y. Song, L. Zhang, and C. L. Giles. A sparse gaussian
processes classification framework for fast tag
suggestions. In CIKM ’08: Proceeding of the 17th
ACM conference on Information and knowledge
management, pages 93–102. ACM, 2008.

[13] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee,
and C. L. Giles. Real-time automatic tag
recommendation. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 515–522. ACM, 2008.

[14] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos.
Tag recommendations based on tensor dimensionality
reduction. In RecSys ’08: Proceedings of the 2008
ACM conference on Recommender systems, pages
43–50. ACM, 2008.

