
XMedia: Web People Search by Clustering with
Machinely Learned Similarity Measures

Lorenza Romano
FBK-irst

via Sommarive 18
Povo Trento, Italy

romano@fbk.eu

Krisztian Buza
ISMLL

University of Hildesheim
Marienburger Platz 22
Hildesheim, Germany

buza@ismll.de

Claudio Giuliano
FBK-irst

via Sommarive 18
Povo Trento, Italy

giuliano@fbk.eu

Lars Schmidt-Thieme
ISMLL

University of Hildesheim
Marienburger Platz 22
Hildesheim, Germany

schmidt-thieme@ismll.de

ABSTRACT
In this paper we present an approach to person name dis-
ambiguation that clusters documents on the basis of tex-
tual features using cosine similarity and a machinely learned
meta similarity measure. The approach achieves an F-measure
of B-Cubed Precision and Recall of 0.741 on the Clustering
Subtask for WePS-2. Such task consists of clustering a set
of documents that mention an ambiguous person name ac-
cording to the actual entities referred to that name.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Measurement, Performance, Experimentation

Keywords
Web People Search, WEPS, clustering, Entity Disambigua-
tion, SVM

1. INTRODUCTION
Finding information about people on the World Wide Web

is one of the daily activities of Internet users. Because of the
high ambiguity of person names and the increasing amount
of information on the web, the results of person name search-
ing are often a mix of pages about different people sharing
the same name. So the user is forced to browse the docu-
ments and identify those referring to the person she/he is
actually looking for. An ideal search engine should present
results in as many clusters as different people.

1Such result has been obtained after the official evaluation,
the official result is 0.72 obtained with the 3rd run submitted
xmedia 3 (see Table 1).

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

The SemEval 2007 Web People Search task [1] and the
Clustering Subtask for WePS-2 [2] try to formally evalu-
ate systems on this task. Systems receive as input a list of
ranked web search results obtained using a possibly ambigu-
ous person name as a query, and the expected output is a
clustering of the web pages, where each cluster is assumed
to contain all (and only those) pages that refer to the same
individual.

Our assumption on this task is that most of the discrimini-
nating information to disambiguate people name mentions is
in the immediate surroundings of the mentions themselves.
As an example consider the 5th ranked web page for “Alvin
Cooper” in the training data (Figure 1). The page contains
a lot of non relevant information: on the left an index refer-
ring to other people, and in the lower part a list of events
“that affected the communities where Alvin Wheeler lived”
that does not contain any mentions of “Alvin Cooper”.

The most discriminating pieces of information seem to be
the ones on which we focus (Figure 2) having a first look at
the web page. And they are the surroundings of the “Alvin
Cooper” mentions, a photo and two paragraphs, one beside
the photo “Alvin Cooper Wheeler was born on 11/10/1928
in Lanett, AL and died on 6/18/2005 in Hiram, GA. He was
77 years old.” and the caption of the photo “Alvin Cooper
Wheeler 11/10/1928 - 6/18/2005 (Shown at age 71)”.

Even if all the objects in the surroundings of the mentions
seem good to discriminate people (e.g. images), in our par-
ticipation to the task we focus on the textual part and we
try to detect the geometry and extension of these mention
surroundings.

As an early work in name disambiguation [3] we cluster
documents using vector representations based only on lex-
ical or bag-of-words content. As clustering algorithms we
applied the Quality Threshold (QT ) clustering algorithm [7]
and a slightly different version of it which exploits the web
page ranking. In our clustering algorithms, we applied both
cosine similarity and a machinely learned meta similarity
measure. In particular, we used support vector machines
to learn a meta similarity measure over a set of standard
similarity measures.



Figure 1: 5th ranked Alvin Cooper web page

Figure 2: Alvin Cooper focus

The paper is organised as follows. Section 2 provides a de-
scription of dataset and feature construction. Section 3 gives
a description of the clustering algorithms applied. Section 4
presents results, and finally Section 5 draws conclusions.

2. DATASET CONSTRUCTION
We focused on the textual part so we first needed to ex-

tract the text from the web pages. According to our idea
of surroundings, we decided to extract text from the HTML
rendering using the Java Swing component JTextPane that
allowed us to extract text substantially preserving its layout
on the web page.

We obtained a text file for each web page, and we pro-
cessed it by the OpenNLP sentence detector2. At this point
for each web page we constructed a pair of files, one contain-
ing the sentences with at least one mention of the person
name (sents) and one with the paragraphs (pars) contain-
ing at least one mention. We tokenized them using Java
breakIterator.

Finally we constructed a feature vector for each sents file
considering the set of unigrams occurring in sentences. To
weight the features (unigrams) that represent each docu-
ment we used the self information3 calculated on the Web1T
corpus [5]. If we were not able to construct a vector using

2http://opennlp.sourceforge.net
3In information theory [10] self information is a measure of
the information content associated with the outcome of a

sentences (e.g. because they contain only the mention of the
person name and nothing else), we extended the region to
be considered extracting features from the paragraph con-
taining the mention. In this way however we totally miss
documents not containing name mentions, for this reason on
the test data we were not able to cluster about 130 pages.

By means of pair-wise comparisons of these document vec-
tor representations we computed a symmetric similarity ma-
trix for the whole set of web pages of each person name, and
we used this matrix as the input of the clustering algorithms.

On the training set we made some experiments adding
title and URL information to the sents files without any
relevant increase in performance. In order to detect sen-
tences containing person name mentions we used an almost
exact match. I.e., we look for case insensitive matching of
“name surname” or “surname name” expressions, any gen-
eralization of such patterns to include full or abbreviated
middle names has shown a decrease in performance.

3. CLUSTERING ALGORITHMS
Essentially, the number of different people entities that are

present in a web people search cannot be known in advance,
in general varying from very common names that have high
ambiguity to famous people which seem to monopolize most
of the documents in the web search results.

Cluster analysis requires specifying either the number of
clusters a priori, or some kind of termination criterion to
stop clustering. Due to the nature of the problem we decided
for a threshold-based termination criterion for clustering. In
particular, we applied Quality Threshold (QT ) clustering
algorithm [7] and a slightly different version of it, which we
call QT ∗. In both cases (QT and QT ∗) we only had to set
a threshold parameter for cluster’s diameter. We estimated
such threshold on the annotated training data (i.e. the data
distributed for training/developing systems).

Differently from the original QT algorithm, our variant
QT ∗ considers the set of documents relative to a specific
person name according to the search engine ranking order
D1, D2, . . . Dn. It starts with the first (more prominent) doc-
ument D1 and determines which other following documents
are similar to it, that is have a distance not exceeding the
threshold. Documents similar to D1 are put in the same
cluster C1. In general at step i the algorithm compares Di

with the following documents Di+1, . . . Dn and add them to
the Ci cluster if it exists, or create a Ci cluster containing
Di and add them to it.

Algorithm 1 QT ∗ algorithm

for i = 1 to n− 1 do
for j = i + 1 to n do

if Dj similar to Di then
if ∃Ci then

Ci = Ci ∪ {Dj}
else

Ci = {Di} ∪ {Dj}
end if

end if
end for

end for

random variable. It is expressed in a unit of information,
for example bits.



Note, that QT ∗ does not necessarily produce disjoint clus-
ters, in this sort of sense this is similar to fuzzy clustering
algorithms, like FCM [4]. In fact QT ∗ doesn’t use the tran-
sitive property to merge clusters, and even if a document
Dj is similar to Di and Di was previously found similar to
a preceding document such as D1, it doesn’t consider Dj

referring to the same individual as D1 if Dj was previously
not found to be similar to D1. In a certain sense we assume
D1 to be more representative of its cluster (i.e. of the person
D1 refers to) than Di because D1 is ranked better.

3.1 Machinely learned similarity measure
Clustering algorithms often use some kind of a similarity

measure. One can run clustering algorithms like k-Medoids
or QT for example with Euclidean or Cosine similarity. In
fact, if one “invents” a new similarity measure, or one de-
signs a similarity measure, which fits the current task, one
can just use her/his own similarity measure in number of
classic clustering algorithms.

What similarity measure fits the current task best is of-
ten not trivial. The design of a new similarity measure, or
just the choice of an appropriate one from the high num-
ber of existing similarity measures can be time-consuming
and needs massive domain experience. Alternatively one
can learn a meta similarity measure machinely like in [6, 8].
This process can be scaled to large databases as described
in [9].

In this section we describe how we learned a meta similar-
ity measure machinely for the WePS-2 Clustering Subtask.
Our meta similarity measure was basically a combination
of some standard similarity measures using support vector
machines.

As described before, the preprocessing of the data resulted
in a set of weighted unigrams for each text. Based on these
weighted unigrams, one can calculate similarities for each
pairs of texts referring to the same name. We calculated
the following similarity measures:

• Cosine Similarity

• Euclidean Distance

• Adapted (weighted) Jaccard Coefficient
The weighted sum of the common unigrams of the both
texts (i.e. Σiw1,i + Σiw2,i, where w1,i and w2,i de-
note the weights of common unigrams in the first
and second text respectively) divided by the weighted
sum of unigrams occuring in at least one of the texts
(i.e. Σjw1,j + Σkw2,k, where w1,j and w2,k denote the
weights of unigrams in the first and second text re-
spectively).

• L1 (Manhattan) Distance

• Weighted Sum of common unigrams.
Σiw1,i+Σiw2,i, where w1,i and w2,i denote the weights
of common unigrams in the first and second text re-
spectively.

• Adapted Jaro Similarity
Σiw1,i/Σjw1,j +Σkw2,k/Σmw2,m, where w1,i and w2,k

denote the weights of common unigrams in the first
and second text respectively, w1,j and w2,m denote
the weights of unigrams in the first and second text
respectively

For each pair of texts referring to the same name we calcu-
late the 6 similarity measures above. This results in a vector
of length 6 for each pair of texts. For the texts belonging to
the training corpus we know, if two texts are about the same
person or not. Thus the vectors resulting from the training
corpus are labeled training instances: the labels are 1 if the
two texts in the pair are about the same person, 0 else. In
the case of the test corpus, we calculate the vectors of the
6 similarity measures in the same way, but we do not know
if two texts are about the same person or not. Thus in the
case of the test corpus we have unlabeled test instances.

As machinely learned model we use the SVMreg and SMOreg
support vector machine implementations from Weka[13, 11,
12]. They perform support vector regression, thus they are
more suitable as similarity measures than a binary classifica-
tion model: this way the test instances (as described above,
each test instance represents a pair of documents) will be
associated with a real number, which indicates how likely
the two documents of the pair refer to the same person. A
classification model, however, would only return a binary
decision value, i.e. if the two documents are about the same
person or not.

We use the support vector machines with polynomial ker-
nel. To speed-up the process of learning the similarity mea-
sure, we discard all training instances where the weighted
jaccard coefficient was less than 0.01 or greater than 0.99
(we assumed that in these cases the two texts of the pair
are respectively about different or same persons). This can
be regarded as a form of blocking [8, 9].

We used machinely learned similarity measure both in QT
[7] clustering algorithm and in our variant QT ∗.

4. RESULTS AND DISCUSSION

4.1 Experimental Settings
Due to time limitations, when submitting our results for

the competition, we used the default WEKA-hyperparameters
of support vector machines (exponent e = 1 and complexity
constant c = 1) when machinely learning the meta similarity
measure.

The diameter threshold for the clustering algorithm was
learned on the training dataset using a hold-out subset of
the training dataset. For cosine similarity we found that
diameter thresholds 0.11 between 0.15 work best, for the
machinely learned meta similarity measure we had the best
results with diameter threshold of 0.20. The distribution
of test data is significantly different from the training data,
thus these learned threshold parameters are not optimal for
the test data. Even though, to be fair, in section 4.2 we
report our results on the test set using these settings. We
refer to section 4.3 for a short discussion about handling this
difference.

After the submission deadline for the competition, we
tried to learn the hyperparameters (exponent, complexity
constant) of the support vectors on a hold-out subset of the
training data. We report our experiences in section 4.3.

4.2 Results
Our results are summarised in Table 1. According to the

competition, we use the F-Measure resulting of B-Cubed
Precision and Recall as quality measure. In the table with
xmedia n we denoted the runs submitted for the official
evaluation.



Sim.
measure

Clust.
alg.

Diam.
thres.

BEP BER F run

cosine QT 0.11 0.94 0.44 0.55
cosine QT 0.15 0.96 0.41 0.53
cosine QT ∗ 0.11 0.82 0.66 0.72 xmedia 3
cosine QT ∗ 0.13 0.87 0.61 0.70 xmedia 4
cosine QT ∗ 0.15 0.90 0.56 0.67 xmedia 5
SMO QT 0.18 0.88 0.51 0.60 xmedia 1
SMO QT 0.20 0.89 0.50 0.60 xmedia 2
SMO QT ∗ 0.20 0.75 0.72 0.73
SVM QT 0.20 0.89 0.50 0.61
SVM QT ∗ 0.20 0.77 0.74 0.74

Table 1: Experimental Results

4.3 Outlook
As mentioned in 4.1, we tried to learn the hyperparame-

ters (complexity constant, exponent) of the support vector
machines (SVMs) using a hold-out subset of the training
dataset. Surprisingly, this did not lead to the expected im-
provement. This is probably due to the fact, what has been
remarked by many participants of the competition, that the
distribution of the test data significantly differs from the dis-
tribution of the training data. As a result of this difference,
the diameter threshold parameter learned on the training
set, was far from the optimal when applying clustering with
cosine similarity on the test set.

Machine learning – clustering can also be regarded as un-
supervised or semi-supervised machine learning (e.g. pa-
rameters of clustering algorithm can be learned) – assumes,
that the training and test data are more or less from the
same distribution. Of course, in practise, these distribu-
tions are often only approximately equal. However, in the
other extreme case, if training and test distributions would
differ totally, one could not learn anything machinely.

Consequently, when studying the task of person name dis-
ambiguation from the machine learning point of view in the
future, one could consider to experiment with other splits
of test and training data (i.e. merging the training and test
data of the competition and splitting them differently, so
that training and test splits have similar distributions).

Alternatively the WEPS challenge can be regarded as
an interesting transfer learning problem, when the model
learned on the training data has to be adapted in order to
be applied successfully on the test data having a different
distribution.

As another direction of future work, we consider machinely
learning the count of clusters a priori and trying other clus-
tering algorithms which exploit this information, like k-Medoids,
or hierarchical clustering.

As for the textual features, we used a combination of men-
tion surroundings with different extensions (sents and pars),
in the future we would try to learn automatically the size of
the regions to be considered in term of some spatial distance
(e.g. characters, lines) from the mention. We have also to
deal with web pages without complete name mentions.

5. CONCLUSIONS
In this paper we presented an approach to person name

disambiguation that clusters documents on the basis of tex-
tual features using cosine similarity and a machinely learned
meta similarity measure. As clustering algorithm we used

an own variant of QT , called QT ∗.

6. ACKNOWLEDGMENTS
This work has been funded by the X-Media project (www.x-

media-project.org) sponsored by the European Commission
as part of the Information Society Technologies (IST) pro-
gramme under EC grant number IST-FP6-026978.

7. REFERENCES
[1] J. Artiles, J. Gonzalo, and S. Sekine. The

SemEval-2007 WePS Evaluation: Establishing a
benchmark for the Web People Search Task. In
Proceedings of the Fourth International Workshop on
Semanti c Evaluations (SemEval-2007), pages 64–69,
Prague, Czech Republic, June 2007. Association for
Computational Linguistics.

[2] J. Artiles, J. Gonzalo, and S. Sekine. WePS 2
Evaluation Campaign: overview of the Web People
Search Clustering Task. In Proceedings of the 2nd Web
People Search Evaluation Workshop (WePS 2009),
18th WWW Conference, April 2009.

[3] A. Bagga and B. Baldwin. Entity-based
cross-document coreferencing using the Vector Space
Model. In Proceedings of the 17th international
conference on Computational linguistics, pages 79–85,
Morristown, NJ, USA, 1998. Association for
Computational Linguistics.

[4] J. C. Bezdek, R. Ehrlich, and W. Full. FCM: The
fuzzy c-means clustering algorithm. Computers &
Geosciences, 10(2-3):191–203, 1984.

[5] T. Brants and A. Franz. Web 1T 5-gram corpus
version 1.1. Technical report, Google Research, 2006.

[6] P. Christen. Automatic record linkage using seeded
nearest neighbour and support vector machine
classification. In Y. Li, B. Liu, and S. Sarawagi,
editors, KDD, pages 151–159. ACM, 2008.

[7] L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring
Expression Data: Identification and Analysis of
Coexpressed Genes. Genome Research,
9(11):1106–1115, 1999.

[8] S. Rendle and L. Schmidt-Thieme. Object
identification with constraints. In ICDM, pages
1026–1031. IEEE Computer Society, 2006.

[9] S. Rendle and L. Schmidt-Thieme. Scaling Record
Linkage to Non-uniform Distributed Class Sizes. In
T. Washio, E. Suzuki, K. M. Ting, and A. Inokuchi,
editors, PAKDD, volume 5012 of Lecture Notes in
Computer Science, pages 308–319. Springer, 2008.

[10] C. E. Shannon. A Mathematical Theory of
Communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[11] S. Shevade, S. Keerthi, C. Bhattacharyya, and
K. Murthy. Improvements to the SMO Algorithm for
SVM Regression. In IEEE Transactions on Neural
Networks, 1999.

[12] A. Smola and B. Schoelkopf. A tutorial on support
vector regression. Technical report, 1998.
NeuroCOLT2 Technical Report NC2-TR-1998-030.

[13] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques, 2nd Edition.
Morgan Kaufmann, 2005.


