Mining Generalized Association Rules for
Sequential and Path Data

Wolfgang Gaul Lars Schmidt-Thieme

Institut fiir Entscheidungstheorie und Unternehmensforschung,
University of Karlsruhe, D-76128 Karlsruhe, Germany
{Wolfgang.Gaul, Lars.Schmidt-Thieme }@wiwi.uni-karlsruhe.de
Phone +49 / 721-608 3726, Fax +49 / 721-608 7765

Abstract

While association rules for set data use and describe relations be-
tween parts of set valued objects completely, association rules for se-
quential data are restricted by specific interpretations of the subse-
quence relation: contignous subsequences describe local features of
a sequence valued object, noncontiguous subsequences its global fea-
tures. We model both types of features with generalized subsequences
that describe local deviations by wildcards, and present a new algo-
rithm of Apriori type for mining all generalized subsequences with
prescribed minimum support from a given database of sequences. Fur-
thermore we show that the given algorithm automatically takes into
account an eventually underlying graph structure, i.e., is applicable
for path data also.

1 Introduction

Classical association rules describe dependencies between subsets of a large
sample of set valued objects, e.g., market baskets. A typical association rule
states that if a certain subset occurs in a set, then another subset is likely
to occur in the same set (with estimated probabilities for the applicability
and the strictness of the rule). For set valued objects subsets are natural
substructures to consider.

To sequential data association rules can be applied in different ways.
One can forget the sequence structure and map sequences on the sets of
their elements, but looses ordering information. Or one looks for sequential
association rules, i.e., pairs of subsequences that occur in order in a sequence.

Here two different notions of substructures can be found in the literature:
contiguous subsequences of elements, that occur one after the other in a
sequence, and non-contiguous subsequences, where between two elements
arbitrary noise may be interspersed. While the former describes local features
of sequences, the latter describes global features of sequences. We combine
both types of descriptions in generalized subsequences where possible noise
is explicitly marked by a wildcard element.

The hard part of the computation of association rules is the computation
of frequent sets or subsequences. Frequent subsets of set valued objects can be
mined by the standard Apriori algorithm (see Agrawal and Srikant (1994)).
Frequent contiguous or non-contiguous subsequences can be mined by a well-
known variant of the Apriori algorithm (see Agrawal and Srikant (1995) with
modifications by Srikant and Agrawal (1996)). Borges and Levene (1998 and
1999) have developed algorithms for sequence mining on aggregated data.
Several algorithms exist to mine frequent generalized subsequences of a spec-
ified type (called templates, i.e., subsequences with prescribed positions of
wildcards, see, e.g., Spiliopoulou (1999)). Other authors following a broader
approach have constructed algorithms to find frequent subsequences of ob-
jects with attached attributes and relations (called generalized episodes, see
Mannila and Toivonen (1996)). While those algorithms are perfectly suited
for use in interactive analysis, a general algorithm mining all frequent gener-
alized subsequences (of a given minimum support) as needed for association
rule analysis is still missing. In this paper we describe a new algorithm that
fills this gap.

If sequence data describes paths on a graph an algorithm mining frequent
subpaths should take advantage of the underlying graph structure, i.e., only
consider paths and no sequences of non-connected vertices. We show that our
algorithm has this property automatically (by using a suitable join operator)
and thus also solves the problem of mining frequent subpaths.

2 Formal background

Definition 1. Let R be an arbitrary finite set of (non-interpreted) items
and R* := |J;.y R' the set of finite sequences of elements of R (with 0 as
the empty sequence). For a sequence x € R* the length x| is the number of
symbols in the sequence (z|:=n for z € R*, || :=0).

For z,y € R* we say that x is a contiguous subsequence of y (x < y), if
there is an index ¢ € {0,...,|y| — [z|} with z; = yiy; Vi=1,..., zl.

We say that @ is a non-contiguous subsequence of y (x <, y), if there is
a strictly increasing map i : {1,...,|z[} = {1,..., |y[} with 2; = y;;y Vj=

i
el

We develop the Apriori algorithm for sequences in parallel for both sub-
sequence types and use the neutral symbol < to denote one of the two sub-
sequence relations <. or <,. z is called a strict subsequence of y (x < y).
if it is a subsequence of y but not equal to y (z < y Az # y).

Definition 2. A pair of sequences z,y € R* overlaps on k € N elements,
if the last k& elements of z are equal to the first £ elements of y (2, 54 =
y; Vi =1,...k). For such a pair of sequences x,y € R* overlapping on k
elements we define the k-telescoped concatenation of x and y to be

I"+ky‘: ("L‘]J""}"Tix ﬁ::yl'!"'!y’y)
= (:fl:l:"'?:c‘xsyk-i-ls"‘3y:y)'

Note that any two sequences 0-overlap and the O-telescoped concatenation
of two sequences is just their arrangement one behind the other.

Definition 3. For a pair of sets of sequences X,Y C R* we denominate the
set of k-overlapping pairsx € X,y € Y by X &, Y and the set of k-telescoped
sequences of all k-overlapping pairs as the set of k-telescoped sequences of X
and Y:

X “+k Y = +k(X B Y)

={r+ry | z€ X,y €Y are over-
lapping on k elements}.

Now let S be a finite (multi)set of such sequences x € R* representing a
given database of sequences (allowing multiplicities if the same sequence is
contained several times in the database).

Definition 4. For an arbitrary sequence z € R* we denominate the relative
frequency of sequences of S containing x as subsequence as support of x with
respect to S:

Hse S | r <s}
supg(z) := { | ;, ;

The task of searching all frequent subsequences in the given (multi)set of
sequences S means to find all sequences x € R* with at least a given minimum
support, i.e. with supg(z) > minsup and minsup € R a given constant. As
the support of subsequences of a sequence is greater than or equal to the
support of the sequence itself, one can build frequent subsequences recursively
starting from the sequences of length n = 1. With all sequences of length 1 as
initial set of candidates the algorithm performs two steps: first, it computes

3

the support values of all candidates and selects those candidates as frequent
subsequences that satisfy the minimum support constraint; second, it builds
a new set of candidates of length n 4+ 1 for the next step by trying to join
frequent subsequences of length n in the following manner: two sequences c
and d of length n are joined to a sequence of length n + 1 if they overlap
on n — 1 elements, i.e. (co,...,¢,) = (dy,...,dy_1); the joined sequence is
€ +n_1d. Algorithm 1 gives the formal description of this procedure.

Algorithm 1 Apriori algorithm adapted for sequences (Agrawal and Srikant
1995)
Require: set of items R, (multi)set S of (finite) sequences of elements of R,
minimum support value minsup € R*.
Ensure: set of frequent subsequences F' := [, .y, Fn of the sequences of
S with support of at least minsup. N
C :={(r) | r € R} set of initial candidates,
n:=1.
while C' # () do
compute supg(c) Ve € C by counting the number of occurrences of
each ¢ in S (one loop through S).
F, :={c€ C | supg(c) > minsup}
C := F, 4+, 1 F, {compute new candidate sequences with length n+1}
n:=n+1
end while

This adaption of the classical Apriori algorithm for sets (see Agrawal
and Srikant (1994)) to sequences was first published by Agrawal and Srikant
(1995) (with modifications by Srikant and Agrawal (1996)). It is given here
merely for the purpose of comparison with our Algorithm 2 adapted for
generalized sequences below. Depending on the subsequence relation used
(contiguous or non-contiguous subsequences), the corresponding method has
to be used to count support values. Thus the Apriori algorithm adapted for
sequences yields all frequent contiguous or all non-contiguous subsequences
of sequences of S.

We state some additional results for the special case of sequences describ-
ing paths on a graph.

Definition 5. Let G = (R, E) be a directed graph with vertices R and
edges £ C R x R. A sequence x € R* of vertices is called a path, if every
two consecutive elements are linked by an edge, i.e., (z;,2;,1) € E for all
i=1,...,z| = 1. We denote as set of paths of G the set R*|q := {z €
R* |z is a path}.

Lemma 1 (Path Construction Lemma). If x,y € R*|g are paths on a
graph G of length |x|, |y| = 2 k-overlapping with k > 1, then their k-telescoped
concatenation x +, y again 1s a path.

Proof. Letx = (x1,...,20), ¥y = (Y1, - s Um) and 2 = x4,y = (21, . . ., Znam—k)-
Then for i = 1,...,n it is z; = z; and thus for i € I, := {1,...,n — 1}:
(2ziy2zi41) = (3, 2541) € Faszisapath. Fori=n—k+1,... . n+m—Fkit
1S 2; = Yi—psrsr and thus for i € Iy ;= {n—k+1,....n+m—k— 1}
(2is2i41) = (Yicnsk-1,Yi—ntk) € E as y is a path. But as £ > 1 it is
n—k<mn-—1and thus L UL, = {l,....n+m —k — 1}, ie., z is a
path. O

Due to the path construction lemma candidates of length greater or equal
2 automatically are paths again, so there are no further checks afforded. Only
the first join step for O-overlapping pairs of sequences of length 1, i.e., pairs
of nodes of the graph, could be simplified by considering only nodes that
are linked by an edge. But as in reasonable implementations the support
values of sequences of length 2 are counted in a two-dimensional array, this
circumstance allows no algorithmic improvement.

3 Mining frequent generalized subsequences

Definition 6. By a generalized sequence in R we mean a (finite ordinary)
sequence in the symbols R U {x} with an additional symbol * ¢ R called
wildcard, so that no two wildcards are adjacent:

RE" :={x e (RU{x})* | Aie N:x; = 254 = *}

The wildcard symbol % is used to model partially indeterminate sequences,
matching arbitrary subsequences. For a generalized sequence x € R we
define its length |z| as the length of the sequence in the symbols RU {x}, i.e.,
x| :=mn,if z € (RU{x})™

Definition 7. Now let &,y € %" be two generalized sequences. We say
that & matches y or y generalizes x (y - x), if there exists a mapping

mifl. ., aly = {1,y
(called rnatching) with the following properties:

1. m maps indices of elements of = to indices of elements of y that coincide
or to a wildcard (Y = i OF Yy = *).

2. m covers all indices of y of non-wildcard elements (y; € R = m~'(i) #

0).
3. m is weakly increasing.

4. m is even strictly increasing at places where its image does not belong
to a wildcard (m(i) = m(i + 1) = ymy) = *)-

Note that as the set of ordinary sequences R* is a subset of the set of gen-
eralized sequences R®", this also defines the notion of an ordinary sequence
matching a generalized sequence. Obviously matchings are not uniquely
determined by two generalized sequences x and y. A ftrivial example is
*Ax = AA with the two matchingsm; : 1= 1,2 2and my : 1 — 2,2 — 3.
Finally we carry over the notions of subsequence and of k-telescoped concate-
nation from ordinary sequences to generalized sequences without any change.
Note the difference between A% C not being a subsequence of ABCD but gen-
eralizing a subsequence of it (i.e. AxC F ABC and ABC < ABCD). (For
simplicity of notation we omit parentheses and commas in example sequences
and just write ABC instead of (A,B,C).)

Definition 8. Again, let S be a finite (multi)set of ordinary sequences. For
an arbitrary generalized sequence x € R*" we denominate the relative fre-
quency of sequences containing a subsequence which matches x as support of
x with respect to S

H{se S | y<s:aty}
supg () := { | S i

Mining frequent generalized subsequencesis the label for the task of finding
all generalized sequences with at least a given minimum support. As sub-
sequences actually are, what we are looking for, we can narrow our view to
closed generalized subsequences, i.e. generalized subsequences without leading
or trailing wildcard (z € R&" with x;,z, € R).

At present no general algorithm for finding all frequent generalized sub-
sequences in a (multi)set of sequences is known. We present a modification
of the Apriori algorithm for sequences to generalized sequences. The idea
is rather straightforward. As we restrict ourselves to closed generalized se-
quences, the support of any subsequence of such a closed generalized sequence
again is greater than or equal to the support of the sequence itself. Adjacent
wildcards are not allowed, therefore we obtain every closed generalized se-
quence of length n + 1 (for n > 3) as the junction of two overlapping closed
generalized sequences of the kind described in table 1.

More formally we state:

sequence length sequence length

ab...ed n+1 axb...ed n+1
= ab...c n = axb...c n
+n_1 b...cd n +n—2 b...cd n-1

ab...cxd n+1 axb...ckd n-+1
= ab...c n-1 = axb...c n-1
+n—2 b...cxd n +n—3 b...cxd n-1

Table 1: Construction of closed generalized subsequences of length > 4.

Lemma 2 (Generalized Sequence Construction). For any closed gen-
eralized sequence z € R8" there are closed generalized sequences v,y € RE"
with

e 1z and y are shorter than z (|z|, y| < z|) and

e z can be constructed from x and y (i.e., x and y are k-overlapping (for
a suitable k) with z = x +4 y).

Proof. Let z = (z1,...,2,). Depending on z and z,_; being in R or being a
wildcard we distinguish four cases: (1) If 29,2, | € Rlet £ = (21,..., 20 1),
y = (29,...,2p) and k = n — 1. z and y are closed by assumption and
obviously overlap on & elements and yield 2. (2) If 20 € R, 2,1 = * let
T = (21,...12n-2), ¥y = (20,...,2p) and k = n— 2. As 2,1 = * and no
adjacent wildcards are allowed, z, o # x, i.e. x is closed. y is closed by
assumption and again x and y obviously overlap on k elements and yield z.
(3)Ifzo=%x2,1 €ERlet z=(21,...,20-1), y = (23,...,2,) and k =n — 2.
As zp = % and no adjacent wildcards are allowed, z3 # %, i.e. y is closed. z
is closed by assumption and again z and y obviously overlap on k elements
and yield z. (4) Finally if 29,2, 1 =% let £ = (21,...,20-2), ¥y = (23,...,25)
and £k =n—3. As z,_; = * and no adjacent wildcards are allowed, 2,_o # *,
i.e. z is closed. As 2o = x and no adjacent wildcards are allowed, z3 # *, i.e.
y is closed. x and y obviously overlap on & elements and yield z. O

We simply have to modify the join step of the Apriori algorithm for
building new candidates of length n 4+ 1 in such a way that we not only
use the frequent (closed generalized) subsequences of length n but also those
of length n — 1 from the previous step, and try all possible combinations.
Closed generalized subsequences of length 3 containing a wildcard have the
form (z,*,y) with z,y € R, shorter closed generalized subsequences cannot
contain wildcards.

Algorithm 2 gives the exact formulation of the necessary comparisons.
Obviously, the computation of the support values of the candidate gener-
alized sequences also has to be modified. The performance characteristics
of the algorithm is the same as for the Apriori algorithm for ordinary se-
quences: to find sequences of length n, n loops through the database have to
be accomplished.

As algorithms of the Apriori type return all subsequences of the frequent
sequences found, one often prunes the result set by removing all subsequences
of a frequent sequence contained in the result set, thus retaining only the
"maximal" subsequences of the set F' of all frequent subsequences:

Fl.'={ceF |AdeF :c<d}

For generalized subsequences the algorithm also returns all generalizations
of all subsequences found. Reasonably one prunes the result set further by
removing all generalizations of a sequence contained in the result set, thus
retaining only the "most concrete" subsequences:

F':={ceF' |Ade F :ctd}

We call these two pruning steps subsequence pruning and generalization
pruning, respectively.

Our additional results for the special case of sequences describing paths
on a graph easily carry over to generalized sequences.

Definition 9. Let G = (R, FE) be a directed graph with vertices R and
edges F C R x R. A generalized sequence = € R8" of vertices is called a
path fragment, if there are replacements for the wildcards that yield a path
on G,ie, foralli=1,..., z|—1 with z; #

o if 7, # * then (z;,2;,1) € E.

e if 2;,;, = % then there is a path p’ € R* connecting x; and z;,5 (i.e.,
P = (pi,....p,) With pi = z;, p,, = 242 and (pj, p},,) € E for all
?: 1:"'1?{3’_1)'

We denote as set of path fragments of G the set R8" | := {x € R8" |z is a path
fragment }.

Lemma 3 (Path Fragment Construction Lemma). If 2,y € R®®|; are
path fragements on a graph G of length x|, ly| > 2 k-overlapping with k > 1,
then their k-telescoped concatenation x 45y again is a path fragment on g.

The proof is exactly the same as for the Path Construction Lemma for
ordinary sequences given before. As for ordinary sequences the lemma guar-
antees that only path fragments are constructed during the candidate gener-
ation process.

Algorithm 2 Apriori algorithm adapted for generalized sequences
Require: set of items R, (multi)set S of (finite) sequences of elements of R,
minimum support value minsup € R*.
Ensure: set of frequent (closed) generalized subsequences F' := |, . Fn of
the sequences of S with support of at least minsup.
C :={(r) | r € R} set of initial candidates,
n = 1, F[] = [ﬂ
while C # () or F,,_, # () do
compute supg(c) Ve € C by counting the number of occurrences of
each c¢in S (one loop through S).
F, = {ce C | supg(c) > minsup}
C := F, 4+, 1 F, {compute new candidate sequences with length n+1}
if n = 2 then {introduce wildcards}
C:=CU{(z,%y) | z,ye F, 1}
else if n > 2 then {additional joins considering wildcards}
C =C
U{.’,U Fn-2y | (.’i‘,-', y) € F,®n2 Fho1,10 = *}
U{.’,U Fn-2y | (.’i‘,-', y) € Fh1 ®n_o Fna Yy—1 = *}
U{.’,U +n-3¥y | (:L.u !,") € Fro1 @ F1, 0 = Yy -1 = *}
end if
n:=n+1
end while

4 Generalized association rules

As the retrieval of frequent (generalized) subsequences is the hard part of
the generation of association rules, we can easily apply our algorithm to find
association rules for generalized sequences with prescribed minimum support
and confidence.

Definition 10. In analogy to ordinary association rules between sets a con-
tiguous generalized association rule is (described by) a pair of 1-overlapping
(generalized) sequences x,y € R&" (written z — y). One defines the support
of an association rule © — y as the support of the concatenated sequence
T4y :=(T1,..., Ty =y,...,Yy) and its confidence as the fraction of the
sequences containing x +; y of the sequences containing x:

supg(z = y) :=supg(r +1y)

_ sups(z—y)
Confs(ﬁf i y) = “supgz

Speaking of association rules one has their interpretation as fuzzy rules in
mind, i.e. that if the body x of the rule has occurred in a sequence, then the

occurrence of z is continued by the head y of the rule, where occurrence is
related to sequences from the underlying set S. The support gives a measure
for the applicability of the rule, i.e. the overall percentage of sequences where
it holds, while the confidence gives a measure for the strictness with which
the rule holds, i.e., in what percentage of sequences that it is applicable to it
holds.

Finding all association rules with a given minimum support and confi-
dence means nothing else but finding all frequent sequences with at least the
given minimum support and then trying the different splits of the found fre-
quent sequences and checking the confidence of the resulting rules. — Please
note that it is crucial for this application that the algorithm which finds
the frequent subsequences also finds all subsequences of every subsequence
returned and accordingly already has computed all support values needed.

The definition of an association rule can be extended to generalized se-
quences without any modification. But using generalized sequences opens an
additional possibility:

Definition 11. A non-contiguous generalized association rule is (described
by) a pair of generalized sequences x,y (written z ~ y). Its support and
confidence are defined as follows:

Squ(xwy) = SupS[‘Tlr'"7a:ﬂ1*3yl7"'1yim)
confg(z ~ y) = biuzﬁéﬂ;y)

5 Example and experiments

We give a simple example and an experiment for web usage mining data. Fig-
ure 1 shows an example web site and some paths traveled on the site. Looking
for ordinary frequent subsequences by applying the Apriori algorithm for se-
quences (algorithm 1) does not render results all too useful in this case: one
will find the sequences CHI with a support of 8/12 and BCH with a support
of 7/12. The first sequence containing more than three resources appears at
support 5/12: EBCH.

Searching for frequent generalized sequences with algorithm 2 results in
the set of three sequences with high support: BxCxHxI with support 12/12
and two slightly more specialized sequences BXCHxI and BCxHxI with sup-
port 11/12 and 10/12 respectively. Naturally, the algorithm finds all the lit-
eral subsequences of these sequences as well as all the more general sequences
(like B¥HxI etc.), but these less useful subsequences are pruned by the two
pruning steps (subsequence pruning and generalization pruning) presented
at the end of section 3.

10

/i\p

N AN TN

G H=I=J K=L=M

B
/A
E=F

(a) site graph

nr | path
1 | ABEFEBCHIJ
2 | ACBEBCHIHCD
3 | BCJCHI
4 | ABGBEBCHCICD
5 | ABEFGFEBCHCJI
6 | ACJCDCBCHI
7 | BEFGFEBCHIJIHCDKLM
& | ABFBCIHIJ
9 | ADKDLDABACHI
10 | ABEFGFEBACJCHIHCD
11 | ABCDCHIJIHCDM
12 | CBFBCHCDKDCICDKDCHCBE

(b) user paths

Figure 1: Example web site and example set of paths.

Thus generalized sequences are able to cope with local deviations of the
navigation paths, resulting in longer path fragments with higher support
values, i.e. they render improved sketches of user navigational behavior in the
large, contrary to local descriptions by ordinary contiguous subsequences.

Let us use the generalized association rules that can be derived from
the frequent generalized sequences to recommend users further resources to
browse. Let us look at user 9 and imagine he has already visited ADKDLD-
ABAC. Using frequent ordinary subsequences we cannot recommend a next
resource because no subsequence of the frequent literal subsequences (CHI,
BCH, BCHI and EBCH) can be found in his browsing history. But the sub-
sequence BxC of the frequent generalized subsequence BxCxHxI matches a
subsequence of the tail BAC of his browsing history. Thus, using the asso-
ciation rules BxC~~H and BxC~~I (both with support and confidence 1), we
can recommend H and I for subsequent browsing, exactly the resources he

11

does in fact visit afterwards.

We tested our algorithm for generalized sequences with synthetic data
created by randomly instantiating a set of sequence templates. Each template
describes the navigational behavior of a user segment on a given website by
a generalized sequence and a distribution of the lengths of the replacements
of the wildcards as well as its relative size by a segment weight. A navigation
template is instantiated by randomly replacing the wildcards by concrete
sequences of resources.

Figure 2 shows the experimental results. For a given site of 100 resources
we created datasets of different sizes from a set of 5 templates with rela-
tive segment sizes of 0.3, 0.3, 0.2, 0.1, and 0.1, respectively, and N(4,2)-
distributed replacement lengths (independent of the segments). — We im-
plemented the Apriori algorithm for sets and our adaptation for generalized
sequences using prefix trees (see, e.g., Mueller (1995)) in Java. All experi-
ments were run on the IBM JVM 1.3 on an Athlon-600 Linux-PC with 256
MB RAM.

Figure 2a shows the execution time for datasets of different sizes for both
algorithms. As expected execution times increase linear within the size of
the dataset. In figure 2b the dependency of execution times on minimum
support values is depicted for a dataset size of 500.000 paths (similar results
can be obtained for other dataset sizes). In the case of the algorithm for
generalized sequences steps of the performance curve at support values that
correspond to the weights of the user segments (0.1, 0.2, and 0.3) are clearly
visible. Figure 2c shows the execution times the algorithm for generalized
sequences spends on the individual passes (i.e., on mining the subsequences
with 1, 2, etc. non-wildcard elements). As support values for single items are
computed in parallel with reading the data, the execution time for the first
pass includes the time for file I/O. For a minimum support of 0.2 most items
are not frequent, so the algorithm does not have much to check. For minimum
support of 0.1 all items are frequent and the main part of the computation
time is spent on sequences with two non-wildcard elements (20000 candidates
have to be checked). For an even lower minimum support of 0.05 frequent
subsequences with 2 non-wildcard elements are common enough to vield a
large pool of candidates with 3 non-wildcard elements (ca. 15000 candidates).

6 Outlook

Existing implementations of the Apriori algorithm adapted for contiguous
and non-contiguous sequences can easily be extended to cover generalized

12

execution time [s]

dataset size [number of paths]

250 . : I | |
path fragments + _T
sets X7
200 - 1
1al |- //K |
e
100 - - |
AT
an /,/ |
//+/ B oo =
A‘///)(................... ><
S | : I |
250000 00000 TH0000 le<+06 1.95e+06 1.5e-0§

(a) Execution time depending on dataset size (mini-
mum support: 0.1).

(¢l

execution time

160 :

minimum support

T T T T T
| path fragments +
140 - Y sets X
|
120 .
|
1
100 \ T
1
BO 4‘\%\ N
. T
il | N
1
an - | b
' R e
L R Y E
20 P S S . DRt e
0 1 1 1 | 1
g 0.1 0.2 0.3 0.4 0.5 06

(b) Execution time depending on minimum support
(size of dataset: 500000).

execution time [s]

T
)k support .20
RN support 0.10
N support (.05

number of pass

(¢) Execution time depending on number of pass
(size of dataset: 500000).

Figure 2: Experimental results.

13

sequences describing contiguous and non-contiguous parts of a sequence in a
single pattern as explained in this paper.

Generalized sequences can be interpreted as non-contiguous subsequences
of contiguous subsequences, i.e., as nested structures of second order. This
interpretation opens the application of Apriori type algorithms to a huge
range of new data and pattern structures. A unified framework for mining
adequate substructures of such data will be presented in a forthcoming paper.

References

AGRAWAL, R. and SRIKANT, R. (1994): Fast Algorithms for Mining
Association Rules. In: Bocca, J.B., Jarke, M., and Zaniolo, C. (eds.):
Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB’94), September 12-15, 1994, Santiago de Chile, Morgan
Kaufmann, Chile, 487-499.

AGRAWAL, R. and SRIKANT, R. (1995): Mining Sequential Patterns.
In: Yu, P.S.,, and Chen, A.L.P. (eds.): Proceedings of the Eleventh In-
ternational Conference on Data Engineering, March 6-10, 1995, Taipei,
Taiwan, IEEE Computer Society, 3—14.

BORGES, J. and LEVENE, M. (1998): Mining Association Rules in
Hypertext Databases. In: Agrawal, R. (ed.): Proceedings / The Fourth
International Conference on Knowledge Discovery and Data Mining, Au-
gust 27 - 31, 1998, New York, New York, Menlo Park, Calif., 149 153.

BORGES, J. and LEVENE, M. (1999): Data Mining of User Naviga-
tion Patterns. In: Proceedings of the Workshop on Web Usage Analysis
and User Profiling (WEBKDD’99), August 15, 1999, San Diego, CA,
Springer, 31-36.

CHEN, M.-S., PARK, J.S., and YU, P.S. (1996): Data Mining for Path
Traversal Patterns in a Web Environment. In: Proceedings of the 16th
International Conference on Distributed Compuling Systems (ICDCS),
May 27-30, 1996, Hong Kong, IEEE Computer Society, 385 392.

CHEN, M.-S., PARK, J.S., and YU, P.S. (1998): Efficient Data Mining
for Path Traversal Patterns. IEEE Transactions on Knowledge € Data
Engineering 10/2 (1998), 209-221.

MANNILA, H., and TOIVONEN, H. (1996): Discovering generalized
episodes using minimal occurrences. In: The Second International Con-

14

ference on Knowledge Discovery and Data Mining (KDD °96), Portland,
Oregon, August 2-4 1996, 146-151.

MUELLER, A. (1995): Fast Sequential and Parallel Algorithms for Asso-
ciation Rule Mining: A Comparison. Department of Computer Science,
University of Maryland-College Park, CS-TR-3515.

SPILIOPOULOU, M. (1999): The Laborious Way from Data Mining to
Web Mining. Int. Journal of Comp. Sys., Sci. €& Eng. 14 (1999), Special
Issue on “Semantics of the Web”, 113-126.

SRIKANT, R. and AGRAWAL, R. (1996): Mining Sequential Patterns:
Generalizations and Performance Improvements. In: Apers, P.M.G.,
Bouzeghoub, M., and Gardarin, G. (eds.): Advances in Database Tech-
nology - EDBT 96, 5th International Conference on Fxtending Database
Technology, Avignon, France, March 25-29, 1996, Proceedings. LNCS
1057, Springer.

15

