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Abstract

Recommender systems recommend products to cus-
tomers based on ratings or past customer behavior. With-
out any information about attributes of the products or cus-
tomers involved, the problem has been tackled most suc-
cessfully by a nearest neighbor method called collaborative
filtering in the context, while additional efforts invested in
building classification models did not pay off and did not
increase the quality. Therefore, classification methods have
mainly been used in conjunction with product or customer
attributes.

Starting from a view on the plain recommendation task
without attributes as a multi-class classification problem,
we investigate two particularities, its autocorrelation struc-
ture as well as the absence of re-occurring items (repeat
buying). We adapt the standard generic reductions 1-vs-rest
and 1-vs-1 of multi-class problems to a set of binary clas-
sification problems to these particularities and thereby pro-
vide a generic compound classifier for recommender sys-
tems. We evaluate a particular specialization thereof us-
ing linear support vector machines as member classifiers
on MovieLens data and show that it outperforms state-of-
the-art methods, i.e., item-based collaborative filtering.

1. Introduction

Recommender systems are online information systems

that recommend products to customers, i.e., perform some

sort of automatic selling in e-commerce, or more gener-

ally, recommend information items to users, e.g., books to

library users, research papers to citeseer users, courses to

students etc. Contrary to static lists like best sellers, special

offers, editor’s choice, etc. recommender systems typically

are personalized and targeted at the individual customer. To

achieve personalization, they make use of customer profiles

consisting of explicit and implicit product ratings. In com-

puter science, the term recommender system often is used

synonymously with collaborative filtering, in the context of

information retrieval they are also known as relevance feed-

back.

A typical recommendation scenario is shown in fig. 1.

The system contains a set of users and items, partial rat-

ing information by users about items as well as information

about attributes of users and items. The task is to predict

further ratings of users or recommend new items that will

achieve high ratings by users.

This problem has been handled in two different ways in

the research literature so far: (i) using heuristic correlation

measures and a simple nearest neighbor method called col-

laborative filtering, and (ii) using learning methods to train

a classification model that predicts further ratings or rated

items. Already in an early publication [4], the nearest neigh-

bor methods outperformed the classification models on the

plain problem without item or user attributes. Until now the

reasons for the failure of the classification models are not

well understood. One would expect, that the investment in

a more complex learning method pays off if applied cor-

rectly. Since then, several attempts have been made to put

classification methods to work for recommendation tasks,

mostly by using either information about item or user at-

tributes (sometimes called content-based and demographic

filtering), or by building probabilistic models customized

for the problem. But many solutions turned out inferior,

many solutions never have been compared to collaborative

filtering at all or not on the well-known data sets such as

MovieLens.

In this paper we will thoroughly re-investigate standard

classification models for recommender systems. We will

identify two specific properties of the problem that make

straight-forward applications of classification models fail:

the intrinsic autocorrelation structure and the absence of

item re-occurrences (repeat buying). Furthermore we will

adapt the well-known multi-class model setup strategies 1-

vs-rest and 1-vs-1 to reflect these particularities, providing

a generic framework for using any binary classifier for rec-

ommendation generation. Finally, we will evaluate a com-

pound 1-vs-rest and 1-vs-1 classifier using linear SVMs as

member models and show that the 1-vs-1 model outper-
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item 1 2 3 4 5 6 7 8 9 . . .

year ’95 ’95 ’95 ’95 ’95 ’95 ’95 ’95 ’95

action – + – + – – – – –

children’s + – – – – – – + –

. . .
ge

nd
er

ag
e

. . . item 1 2 3 4 5 6 7 8 9 . . .

user 1 m 24 user 1 4 3

2 f 53 2 1

3 m 23 3 4

4 m 24 4 5

5 f 33 5 2

6 m 42 6 4
...

...

Figure 1. Different data involved in recommendation tasks. The lower-right-lower table contains
rating data of users on items (here movies), the lower-left table contains attributes of users, the
upper-right table cointains attributes of items.

forms the state-of-the-art methods, i.e., item-based collabo-

rative filtering.

We will shortly review related work in the following sec-

tion, give a formal outline of the different recommendation

tasks in sections 3 and 4, and describe some baseline and

state-of-the-art solutions for the problem that do not use

learning methods in section 5. In section 6 we describe dif-

ferent model setups that turn the recommendation task in

a classification problem, i.e., the adaptation of the 1-vs-rest

and 1-vs-1 multi-class setups, and in section 7 provide some

experimental support for the superiority of our approach.

Finally, we conclude with some remarks on open problems.

2. Related Work

While having their very early roots in relevance feed-

back in information retrieval [17] and adaptive hyperme-

dia [19], recommender systems gained momentum once

they had been formulated as filtering techniques, generally

grouped in three different types: (i) collaborative filtering is

basically a nearest-neighbor model based on user–item cor-

relations; if correlations are computed between users, it is

called user-based, if between items, it is called item-based.

(ii) content-based or feature-based recommender systems

use similarities between rated items of a single user and

items in the repository. User- and item-based collaborative

filtering and content-based recommender systems have been

introduced in [9, 16], [18] and [2], respectively, and are ex-

emplified by the three systems presented there, MovieLens,

Ringo, and fab. (iii) Hybrid recommender systems try to

combine both approaches [2, 5, 15, 20].

While the so-called content-based and hybrid methods

try to integrate classifiers based on item and/or user at-

tributes with collaborative filtering techniques, two further

approaches have been taken: (iv) recommender systems

have been viewed as classification problems [3, 4, 12] and

different model classes have been tried, but either classifi-

cation models did not improve quality much or they have

not been compared to strong collaborative filtering models

such as item-based.

Finally, (v) special probabilistic models have been built

to catch the particularities of the recommendation task

[6, 14, 10, 1]. Again, either attributes are used or results

do not improve much on collaborative filtering or results

are not compared to state-of-the-art collaborative filtering

methods; and anyway, specialized models do not allow for

a pluggability of the learning component as our compound

model does.

So still, item-based collaborative filtering models claim

to provide the best published results on some of the public

data sets such as MovieLens [7].

3. Recommendation Tasks

Generally, the data used in recommender systems can be

described by

(i) a set of modes (users/customers/agents,

items/documents/products, contexts, tasks, etc.),

(ii) the attributes of these modes (demographic informa-

tion, properties of products, descriptions of circum-

stances etc.), and
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(iii) a partial cube of ratings for combinations of instances

of the modes.

All real-life systems we are aware of as well as most re-

search literature focuses on just two modes, users and items,

as the sparsity of the rating matrix already is a problem

for two-modal data and would be even more severe if more

modes are considered.

Let U and I be sets of uninterpreted elements (e.g., inte-

gers), called users and items, respectively. Let S ⊆ R be

the set of possible ratings, e.g., S = {1, 2, 3, 4, 5}, where

higher values indicate a stronger liking, and

r : U × I → S partial

a partial function that associates ratings to user/item pairs,

i.e., r is defined only for some, in general not for all pairs

(u, i) for a user u ∈ U and an item i ∈ I , as users typically

rate only small subsets of items. We denote the set of pairs

r is defined for as its domain domr ⊆ U × I . In data sets,

r typically is represented as a list of tuples (u, i, r(u, i));
often a timestamp is available as a fourth field providing in-

formation about the actual order in which ratings have been

entered by users.

We can distinguish two different tasks that should be ac-

complished by recommender systems:

(i) predict the ratings, i.e., given the rating matrix r at

some point of time, predict the new ratings in the rat-

ing matrix r′ at a later point in time, i.e., compare

r̂(u, i) with r′(u, i) for all (u, i) ∈ domr′

where r̂ denotes the ratings predicted by the recom-

mender system. As we evaluate r̂ only for a given set

of pairs, this problem sometimes is called “forced”.

(ii) predict the rating events, i.e., given the rating ma-

trix r at some point of time, predict the new pairs for

which rating information is available in the rating ma-

trix r′ at a later point in time, i.e., compare

domr̂ with domr′

For rating events, one typically is neither interested in

a mere binary prediction (will occur, will not occur)

nor in the exact probabilities of an event occurring,

but in a ranking of all possible events by descending

probability of occurrence.

In the literature, rating events typically are grouped by

user: events, i.e., items, are predicted for each user, as rec-

ommender systems typically work in a pull-scenario like

an online shop or an information portal where we have no

control about which users are there. In push scenarios like

mailings grouping by items also would make sense, e.g., if

we look for customers to approach about a given product.

At first sight, it might look as if the second problem can

be addressed by solutions of the first problem: when we al-

ready have a function to predict ratings, we predict events

(items for a given user) by decreasing predicted rating. This

makes perfect sense in many applications where we want

to recommend only items that users will like, not items, we

expect them to rate and eventually not like, especially, as

in applications the predicted rating is not shown. But ob-

viously, having access to both predictions, the rating and

the rank of an item for a user, allows us to implement addi-

tional services like issuing warnings (high rank, low rating)

and stress recommendations for items that are unlikely be

found by the user (low rank, high rating). Furthermore, in

evaluations in the lab, using rating predictions for rank pre-

dictions will only work if there is a very strong correlation

between the rating and the item occurrence probability: in

published data sets such as MovieLens such a correlation

can be observed, but it might be overlaid by other effects,

as, e.g., incomplete information (we do not know in advance

if we will like a movie) and variety seeking customer behav-

ior. Furthermore, the second problem is of importance on

its own as in some applications ratings are collected implic-

itly by customer behavior, e.g., the web pages viewed or the

products put in a market basket or bought, and no explicit

ratings are available.

So both problems should be treated on their own. If

events should be predicted, it is a good idea to discard the

actual rating values, i.e., r becomes constant 1. Please re-

member that r is a partial function and only recorded for

observed pairs. In dense matrix representations r often is

encoded by two values, 0 and 1: but 0 does not mean that

we observed a counterexample, but just that there is a miss-

ing value.

Recommender tasks can be further described by the

availability of information on attributes of users and items.

As already mentioned, most recent approaches that aimed at

using classification models for recommender systems tried

to gain advantage from taking attributes into account. But

(reliable) attributes for customers and — in some domains

such as community-driven information portals or product

domains with high fluctuations in the assortment and a high

heterogeneity of products (like auctions) — also for items

may be hard to come by. In these cases we will have to

resort to methods that work without attributes.

4. Predicting Rating Events or Items

In the following, we will address the most simple rec-

ommendation task, as we think that it is at the heart of the

problem: (i) we do not consider ratings, but just events, i.e.,

unary data and prediction of ranks of items, (ii) we do not

consider attributes of items or users, but just atomic entities.

Data for recommender systems with users and items
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without attributes simply can be described by a multiset

T ⊆ P(I) of subsets of items called transactions in the fol-

lowing. A recommender system for users and items without

attributes can be described by

r̂ : P(I) → ranking(I)

where ranking(I) denotes the set of all bijective functions

I → {1, . . . , |I|} that map each item to its unique rank on

the recommendation list. For n ∈ N let

r̂≤n : P(I) → ranking(I)
X �→ r̂(X)−1({1, . . . , n})

be the set of items recommended at ranks 1 to n.

Such recommender systems are evaluated by a test multi-

set of split transactions, T test ⊆ P(I)×P(I) and a number

n of relevant rank positions counting as hits by the usual

recall measure:

recallmicro
n (r) :=

∑
(X,Y )∈T test

1
|Y | |Y ∩ r≤n(X)|
|T test|

recallmacro
n (r) :=

∑
(X,Y )∈T test |Y ∩ r≤n(X)|

∑
(X,Y )∈T test |Y |

In this evaluation scenario, precision is forced by tak-

ing into account only a restricted number n of recommen-

dations, so that there is no need to evaluate precision or

F1 measures: with fixed n, precision (and thus F1) is just

the same as recall up to a multiplicative constant. Alter-

natively, evaluations could either (i) take into account the

whole ranking, but weight down hits at lower ranks [4] or

(ii) expect recommender systems to adapt the number of

recommendations given by themselves and measure then

full recall, precision, and F1. All three possibilities are not

unproblematic as (i) depends on the choice of a decay con-

stant and (ii) does not take into account the ranks at all. We

choose recall of clipped rankings because it reflects some

specifics of recommender web applications where a fixed

number of products are shown per page, because it is the

simplest one and because it is used frequently in recom-

mender systems literature. — Please note that for a fair

comparison we have to make sure that all recommender sys-

tems actually provide at least n recommendations; if not,

ranks have to be filled by a fallback system.

In predicting ranks of items we have to take into account

an additional property of most recommender systems: typ-

ically they are used to call users attentions to new items

users do not know yet and have not rated already in the past,

which may be just a desired feature of the system or be due

to the fact that there is no repeat-buying in domains like

books, movies, music etc. in which these systems typically

operate, such that recommending already known items does

not make much sense economically. There are, of course,

other domains, such as food stores and broadcast media like

radio and TV, where re-occurring events play a crucial role

and thus have to be modeled. We will stick to domains with-

out re-occurring events. All recommender systems should

take advantage of this information and tweak their recom-

mendation list by removing all items that already occurred

in the past of a test case.

5. Baseline and State-of-the-art Methods

To assess the quality of recommendations found by our

classification method, we compare it to a baseline model

and one of the state-of-the-art methods.

We compare user-specific recommender systems to a (al-

most) constant recommender system that provides (almost)

the same recommendations to all users (sometimes also

called ”most popular”). For this, items are recommended

by decreasing total frequency in the training data. Recom-

mendations may vary from user to user a little bit, as items

already rated are removed from the constant list. The scores

of this model will tell us, what we can achieve already with-

out personalization and therefore, when we compare to per-

sonalized systems, how large the benefit from personaliza-

tion actually is.

Furthermore, we compare to a simple, non-learned near-

est neighbor classifier, called item-based collaborative fil-

tering. Depending on a parameter k ∈ N called neighbor-
hood size, it proceeds in three simple steps:

(i) Compute item correlations C := (corr(i, j))i,j∈I :

corr(i, j) :=
|{T ∈ T | i, j ∈ T}|

|{T ∈ T | i ∈ T}||{T ∈ T | j ∈ T}|

(ii) Sparsify C by keeping only the highest k entries in

each column.

(iii) For a test case X ⊆ P(I) compute item scores via

score(X) := C · ind(X)

where ind(X) ∈ {0, 1}I with

ind(X)(i) = 1 :⇔ i ∈ X

and recommend in order of decreasing scores.

A more detailed description can be found in [7].

6. Multi-class Prediction Setups for Autocorre-
lation Models

Classification models for recommending items get as

training data just a multiset T ⊆ P(I) of itemsets contain-

ing the items a user has already rated in the past. They have
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to solve two problems: (i) how to split the training data into

cases and (ii) to learn a multi-class classifier.

If timestamps for ratings are available, training transac-

tions can be split, s.t. the ordering is taken into account:

each transaction (x1, . . . , xk) can be split at k different po-

sitions m ∈ {1, . . . , k} and a split at position m in past

(x1, . . . , xm−1) and future (xm, . . . , xk) comprises k−m+
1 cases ((x1, . . . , xm−1), xm), ((x1, . . . , xm−1), xm+1),
. . ., ((x1, . . . , xm−1), xk).

If no timestamp information is available or considered

not important — what we will do in the following —, there

are 2k splits in past and future and several cases made from

each split.

As there obviously are too many possible splits, we will

restrict to the k splits that take out just one item as fu-

ture, i.e., ((x1, . . . , x̂i, . . . , xk), xi) where x̂i denotes that

the item is dropped from the list.

Once cases have been built, the problem is converted to

a usual multi-class classification problem with one binary

predictor variable Xi for each item i ∈ I and a nominal tar-

get variable Y with |I| different values, one for each item.

In analogy to time-variant scenarios, where the target vari-

able is predicted based on former states of itself, and in ac-

cordance with some literature from relational data mining

[13] we call such a model an autocorrelation model.

When looking for methods to learn classifications from

this data, we can either (i) restrict ourselves to methods

that can handle multi-class classification tasks intrinsically

(such as decision trees or special versions of SVMs) or (ii)

use a generic model setup that allows to use a broader va-

riety of learning methods. As the focus of this paper is not

on a particular method, but on solving the problem gener-

ically, we choose the second possibility that employs stan-

dard methods to reduce the multi-class problem to a set of

binary problems.

Two such methods are used in the literature (see, e.g.,

[11]): 1-vs-rest and 1-vs-1 model setups. In a 1-vs-rest

model setup we build |I| different classifiers, one for each

class. The classifier for class i ∈ I is trained with the

full training data, where cases that belong to class i are re-

labeled as positive (or i), while cases that belong to any

other class are re-labeled as negative (or rest). The com-

pound classifier is applied by computing the probability of

each class by its member classifiers and then sort the items

be decreasing probability.

To adapt a 1-vs-rest model setup to autocorrelation mod-

els, one can simplify:

(i) work on transactions, not on cases split in advance:

consider a transaction x that contains an item i, say,

xm = i. If we split in advance, we will get the positive

example ((x1, . . . , x̂m, . . . , xk), xm), but also k − 1
negative examples ((x1, . . . , x̂m′ , . . . , xk), xm′) for

49

49

49

49
rest
49
rest
49
rest

Figure 2. 1-vs-rest model setup adapted to
autocorrelation models for i = 49.

m′ �= m. Furthermore, these negative examples are

very similar to the positive example!

Instead, use transactions that contain item i as positive

examples (removing i, of course) and transactions that

do not contain i as negative examples (not removing

any item). See fig. 2.

(ii) As the predictor Xi is missing in all cases of classifier

i, it can be dropped.

Simplification (i) reduces the number of cases from the total

number
∑

T∈T |T | of item occurrences to the number |T |
of transactions dramatically.

As binary member classifier any classification method

could be chosen, e.g., logistic regression, decision trees,

support vector machines, neural networks etc.

Alternatively, in a 1-vs-1 model setup, one builds one

classifier for each pair (i, j) of competing target classes

i, j ∈ I . Each member classifier is trained on all cases

that belong either to class i or to class j, all other cases are

discarded.

Also the general 1-vs-1 model setup has to be adapted to

fit autocorrelation models (see fig. 3):

(i) we have to remove predictor variables Xi and Xj for

classifier (i, j).

(ii) when we apply a standard 1-vs-1 model setup to split

transactions, then transactions that contain both target

items i and j end up as both a case for i and a case

for j. These cloned transactions pose a problem as

they force the classifier to make a distinction where

none can be made. Instead of cloning the transaction,

it should be discarded completely, as it does not tell us

anything about the difference between i and j.

1-vs-rest compound models contain only |I| member

models, while 1-vs-1 compound models contain |I|(|I| −
1)/2 different member models. But in usual non-

autocorrelation scenarios, both model setups 1-vs-rest and
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clone 49 8

49

8

8

49

49
8

49
8

49

8

8

49

49
8

Figure 3. 1-vs-1 model setups adapted to autocorrelation models for i = 49 and j = 8: a) cloning
transactions that belong to both competing classes; b) discarding transactions that belong to both
competing classes.

1-vs-1 train on almost the same number of cases in total: let

C denote the original number of cases, then 1-vs-rest trains

on |I| · C cases, as each case is used in each classifier ei-

ther as positive or negative example, while 1-vs-1 trains on

(|I| − 1) · C cases, as each case is used in the classifier for

each of the |I|− 1 competing classes. Also, in the literature

both model setups are seen as competitive [11].

For the adaptations to autocorrelation models, it is differ-

ent. Here, 1-vs-rest compound models are trained on only

|I| · |U | many cases, while 1-vs-1 compound models still

have to be trained on (|I| − 1) · C cases minus some cases

that stem from correlated items. So 1-vs-1 compound mod-

els are expected to be much slower for autocorrelation sce-

narios.

7. Experiments and Evaluation

We build two different classifiers for recommending

items without attributes: (i) a 1-vs-rest compound model

and (ii) a 1-vs-1 compound model, both making use of a

SVM with linear kernel as member model. We used lib-

svm [8] as work horse to train the member models. We

compared these models with the simple constant baseline

as well as with the state-of-the-art method for recommender

systems, item-based collaborative filtering [7]. The latter

is claimed to give the best published results on our eval-

uation dataset without taking into account attributes. Ties

of the item-based collaborative filtering method were bro-

ken by the ranks of the constant system, ties in the constant

system by smallest index. The neighborhood parameter of

the item-based collaborative filtering method was chosen to

give optimal results on the test data (neighborhood size 20)

by means of a grid search over all neighborhood sizes in

steps of 5. So the item-based collaborative filtering system

used optimal parameters and thus was granted a small ad-

vantage: its score is more an upper bound than a fair quality

measure, but we expect that a calibration of the size of the

neighborhood on the training data gives almost the same re-

sults.

We evaluated on the classical MovieLens 100k dataset.1

It contains 100,000 ratings on a 5-point scale from 943 users

on 1,682 items. The publicly available version is a subsam-

ple of a larger data set, where only users with at least 20

ratings have been retained.

As experimental setup we have chosen a leave-one-out

split in training and test data (sometimes also called all-but-

one) that was done at random. We used the recall measure

that takes into account only the n = 10 top-ranked items

for each user. For leave-one-out splits there is no difference

between micro and macro averaged recall values.

In fig. 4 results are shown. The x-axis restricts the set

of competing items: competing items are added from left

to right by decreasing total frequency; the x-axis shows the

cumulative relative frequency of competitive items consid-

ered. The right-most values of each curve give the final

result: the figures for the constant and the item-based col-

laborative filtering system are in line with published results.

Additionally, one can see that the constant system achieves

its recall almost completely on the 10 most frequent items

— it still improves a little bit on less frequent items, as items

already in the past are removed from the recommendation

list, that allows also items below position 10 to be shown.

The item-based collaborative filtering system improves con-

siderably on less frequent items until the items that make

approx. 60% of all item occurrences in the dataset are used,

from less frequent items it cannot improve much.

The outcome of the two classification methods is a sur-

prise: the 1-vs-rest model completely fails and achieves

a score that is way below the constant system. On the

other hand, the 1-vs-1 model clearly outperforms the item-

based collaborative filtering method. The sharp edge at

1http://www.grouplens.org
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approx. 60% competitive item occurrences stems from the

fact, that we stopped at 240 most-frequent items due to time

restrictions (see below about runtime). So actually, we ex-

pect the curve to rise even further a little bit.

Figure 4. Recall on 10 top-ranked items for
a) constant, b) item-based collaborative fil-
tering, c) 1-vs-rest compound classifier us-
ing SVMs, and d) 1-vs-1 compound classifier
using SVMs.

The failing of the 1-vs-rest model can be explained by

the autocorrelation structure and the absence of re-occurring

items. 1-vs-rest tries to learn the absolute concept of class

i, but all its positive examples cannot be of class i in the

evaluation as there is no re-occurrence of items and i has

already been rated, and all transactions that eventually can

contain item i later on are explicitly used as negative exam-

ples. So in a sense it learns just the wrong way. Contrary,

1-vs-1 tries only to learn differences between the concepts

of two classes: and as there are many original transactions

dropped that contain neither of the two classes considered,

these transactions are not labeled as negative examples.

A characteristics of the recommendation task is the very

high number of classes: in the example, we have 1682 dif-

ferent movies that play the role of a class. Most multi-

class problems have only a comparatively small number of

classes, such as 10 for classifying hand-written digits or 26

for hand-written letters. For 1682 classes we have to build

1,413,721 pairwise classifiers. As there are 100,000 item

occurrences in total, the sum of all training set sizes is ap-

prox. 168,200,000 cases. Even if we could build a pair clas-

sifier in a second, we would need approx. 16 days to train

the system. Therefore, we restricted the pairwise classifier

to the 240 most-frequent items, i.e., trained 28,680 pairwise

classifiers, each taking approx. 3s on average on a standard

Linux box (Intel 2.4 GHz, 1.5 GB RAM), resulting in a total

training time of approx. 1 day for the whole system. — As

we have already seen in section 6, the requirements for the

1-vs-rest classifier are much more modest; it was build in a

few hours.

8. Conclusion and Outlook

In this paper, we have argued, that the basic recommen-

dation problem, i.e., recommending items without having

access to any attributes of items or users, can be viewed as a

classification task. It features a special structure, where the

same variable occurs in both roles, as predictor and target

variable, what we called autocorrelation model in analogy

with similar phenomena in other contexts (time-variant and

relational data).

We showed that the standard methods for reducing a

multi-class problem to a set of binary problems cannot be

used literally for autocorrelation models, but have to be

adapted slightly. This adaptation leads to a completely dif-

ferent complexity of these two approaches, contrary to the

non-autocorrelation case. Furthermore, we have seen that

for scenarios without item re-occurrence (repeat buying),

the faster 1-vs-rest classifier completely fails, as it learns

to predict past items that cannot occur anymore and treats

transactions to which an item eventually is added explicitly

as negative examples.

But the 1-vs-1 classifier clearly outperforms the state-

of-the-art methods in this domain and for our test data set,

item-based collaborative filtering.

Finally, runtime became a real issue as learning the 1-

vs-1 classifier takes days, while building the collaborative

filtering correlation matrix takes seconds. Further research

has to address this problem: beneath obvious possibilities

as parallelization that is trivially accomplished for build-

ing a set of pairwise classifiers, more sophisticated meth-

ods could be thought of, such as, e.g., building hierarchical

classifiers only for a restricted set of contrasts that are in-

duced by a taxonomy on the items. Once runtime issues are

fixed, handling recommendation tasks as classification tasks

will allow to use the whole data mining machinery to tackle

the problem, especially, integrating attributes might then be

done in a less ad-hoc and heuristic manner than before.
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