
GQFormer: A Multi-Quantile Generative
Transformer for Time Series Forecasting

Shayan Jawed
Information Systems and Machine Learning Lab

University of Hildesheim
Hildesheim, Germany

shayan@ismll.uni-hildesheim.de

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab

University of Hildesheim
Hildesheim, Germany

schmidt-thieme@ismll.uni-hildesheim.de

Abstract—We propose GQFormer, a probabilistic time series
forecasting method that models the quantile function of the
forecast distribution. Our methodology is rooted in the Implicit
Quantile modeling approach, where samples from the Uniform
distribution U(0, 1) are reparameterized to quantile values of the
target distribution. This allows implicit generative quantile mod-
eling without any prior assumptions on the data distribution like
Gaussianity, common in prior works. Our work is distinguished
from prior quantile forecasting methods by novel methodological
advances that relate to directly modeling the correlations among
multiple quantile estimations at each forecasting horizon. To this
end, we firstly develop a parameter sharing architecture that
implicitly models multiple quantile estimations efficiently and
secondly regularize these through a novel multi-task loss function
formulation that optimizes for quantile estimations to be sharper
estimations individually and on the whole be spread maximally
apart to capture the various modes of the underlying distribution.
We experimentally validate the superiority of the method to state-
of-the-art probabilistic forecasting baselines and ablations to the
loss formulation.

Index Terms—Probabilistic Forecasting, Implicit Quantile
Networks, Sparse Attention Transformer, Multi-task Learning

I. INTRODUCTION

For successful application of forecasting solutions, it is im-
portant to quantify uncertainty in the predictions. Hence, recent
works focus on probabilistic forecasting to characterize forecast
horizons either having low-variance or high noise around mean
estimations. We note works [1]–[3] that combine sequential
modeling primitives such as convolutions and recurrent hidden
states with a likelihood component that outputs parameters for
a distribution specified apriori (hence distribution-bound). For
many real-world applications, however, such choice can be a
limiting factor if at all not difficult to specify apriori [4]. In this
paper, we focus on Quantile regression [5], a well-understood
statistical method that has been extensively researched for
robustly modeling probabilistic outputs [6], [7]. Particularly, in
the time series forecasting domain, [8], [9] have combined the
sequential models with quantile regression loss functions to
generate the 50th and 90th percentile estimations to quantify
the uncertainty unhindered by specification of likelihood
choice across different underlying data generating distributions.

Despite the distribution-free modeling offered by Quantile
regression, the retraining of quantile networks with a differently

parameterized quantile loss for each quantile level [8], [9] can
limit practical usability whereas other probabilistic models such
as the Variational Autoencoder (VAEs) [10], [11], Generative
Adversarial Networks (GANs) [12], Variational Flow [13]
models can provide quantile estimates corresponding to any
level by approximating the full probabilistic density. The
Multi-Quantile networks (MQ-RNN) [4], [14] solve for this
limitation by learning multiple quantile estimations jointly. On
the other hand, Implicit Quantile Networks (IQN) can learn to
model the full quantile function. In IQNs, a random U(0, 1)
quantile level is embedded within the neural network through
a dedicated embedding component and the corresponding loss
function is parameterized with the same quantile level. By
sampling multiple quantile levels randomly with stochastic
gradient updates, the network can learn to estimate the full
underlying distribution with a rather simpler piecewise linear
loss function. Merits of IQNs over other approaches include
arbitrary extension to many quantile levels, more stable opti-
mization than GANs, and unhindered by structural limitations
that arise to avoid intractability in VAEs and Flow based models.

Notably, existing approaches fall short in modeling desired
structural artifacts between multiple quantile estimations, for
e.g., the 50th and the 90th percentile estimations can share an
encoder bottleneck as in MQ-RNN, however, those are still
marginal probabilistic estimations. Hence, correlations between
quantile estimations are only indirectly modeled through the
shared parameters. Similarly, for IQN, a quantile level can be
embedded in the input and a single quantile output can be
generated corresponding to that level, but each univariate output
can only be considered a marginal distribution and correlations
between quantile estimations are indirectly modeled in the
shared parameter space.

However, from a probabilistic prespective it is important
to consider the joint distribution of samples. The Continuous
Ranked Probability Score (CRPS) is an established probabilistic
metric and is computed as an integral over differencing the
predictive CDF with the heavyside function based on the
forecast horizon ground truth [15]. Similar to prior work [7],
[16] we exploit the Quantile loss equivalent formulation of
the CRPS metric. These works repeatedly sample forecast
trajectories through RNNs, corresponding to different quantile
levels and compute the CRPS metric as an approximation to978-1-6654-8045-1/22/$31.00 ©2022 IEEE



the integral based on the discrete quantile outputs1. Instead, in
GQFormer, we utilize an attention based time series history and
multivariate quantile representation in the Encoder and a shared
fully connected layer over the encoding to generate multiple
quantile estimations directly without repeated sampling across
forecasting horizons, essentially extending the IQN framework
to estimate multiple quantiles. Additionally, to model the
correlations between the distribution of the quantile estimations,
we rely on another approximation of the CRPS metric based
on the Energy score [15]. Specifically, we combine the quantile
loss functions with this Energy score based approximation of
the CRPS loss in a novel multi-task loss formulation. Although,
the equivalence of the Energy score based CRPS and its
counterpart quantile loss based approximation has been known,
we show combining the two approximations in a novel multi-
task loss function learns on a richer gradient signal that covers
the inherent biases from both approximations to the integral.
For a smooth combination of these loss functions, we estimate
the Energy score based CRPS loss function with quantile
estimates. Additionally, the Energy score based CRPS loss
component regularizes for an explicit structure among these
quantile estimates such that individually each estimation is a
sharp approximation to the ground truth, but collectively they
are maximally spread apart to capture various underlying modes
of the underlying data generating distribution. In summary,

• We propose a novel forecasting method that generates
multiple quantile estimates per forecast horizon by com-
bining the quantile level embeddings and the input time
series Attention based embeddings efficiently by exploiting
shared parameters extending the IQN framework for
multiple outputs.

• We design a novel multi-task loss function for multiple
quantile estimates and structural regularization among
quantile estimates to capture various modes of the data
generating distribution, which goes beyond the scope of
heteroscedastic Gaussian distribution based uncertainty
quantification.

• We perform extensive experiments to validate the perfor-
mance of GQFormer compared to several probabilistic
forecasting baselines on benchmark datasets.

• We provide a thorough ablation study grounded on rigor-
ously validating the effect of separate building components
of the proposed method. Ultimately, proving the method
on whole is well-founded.

II. RELATED WORK

Several prominent approaches exist in the literature for
probabilistic forecasting, where the distribution of future values
is modeled. We note probabilistic models that incorporate a
likelihood component that outputs parameters for a distribution
specified apriori [1]–[3]. Several of these works serve as
baselines, and elaborate more details in the experiments section.

Variational models include a conditional VAE (cVAE) that
maps past trajectory and side information to latent codes, which

1Practically, the real forecast distribution at a forecast horizon is unkown

are subsequently decoded to future trajectory estimations [11].
However, since random sampling of future trajectories would be
biased towards underlying modes with high likelihood, Determi-
nantal Point Processes (DPP) were also used to sample diverse
samples [11]. Another model, STRIPE [17], uses a conditional
VAE backbone and new DPP processes to sample diverse future
trajectories. GAN based forecasting models include [9], [12]. In
[12], a single step probabilistic forecasting model is designed
where the Generator and Discriminator networks are composed
of RNNs. Additionally, several probabilistic baselines [13], [18]
are dedicated to solving the multivariate forecasting problem,
where the focus is to model the correlations between the time
series channels that are observed at the same time indexes.
We note Autoregressive Flow based models [13], where a
sequential model component is unrolled over multivariate time
series and a series of invertible transformations are applied
to derive a density estimation of the multivariate observations
offset one step ahead. Inspired by Diffusion models ability
to model high-dimensional distributions, an autoregressive
extension for multivariate forecasting was also proposed [18].

Among quantile forecasting methods, the model in [19]
extended the base RNN component in MQ-RNN with Attention
mechanism and further increased the modeling capacity for
event indicators. The SQF-RNN model [7] uses an RNN
model for estimating the conditional quantile function through
regression splines, thereby removing the need to specify
a parametric form of the output distribution beforehand.
Interestingly, it is trained with an analytic CRPS loss function
based on spline-based quantile function representation [7].
Another Transformer model [8] was trained with quantile
loss functions for robust estimates of the 10th, 50th and
90th percentile outputs, but interestingly it differs from prior
work [14], [19] by use of autoregressive training. Additionally,
autoregressive transformer architecture (AST) [9] mitigated
the error accumulation problem inherent to autoregressive
decoding with a discriminator network that classified the
ground truth and generated outputs in an adversarial framework.
Moreover, AST was trained separately to estimate the 50th

and 90th quantile outputs, requiring extensive retraining for
additional quantile level estimations. We also note both prior
forecasting approaches where an implicit quantile level was
embedded within the network [16], [20] following the IQN
framework [6]. In IQN-RNN [16], quantile outputs were
modeled by combining RNN representations of the time series
and the implicit quantile embedding. Whereas, in [20] an
approach to generative quantile forecasting was developed
extending the base MQ-RNN model. This involved a Copula
component that learned to allow the possibility of capturing
latent interactions between singular quantile outputs across
forecast horizons. Another work [4] focuses on solving the
quantile crossing problem that arises when quantile estimations
are made separately for a particular forecasting horizon as
done in [6], [8], [9], [14], [19]. The fundamental idea to
solve quantile crossing is to structure the output such that
successive quantile estimations add on to preceding ones
and all quantile outputs are constrained to be positive with



commonly available activation functions. Similar to SQF-RNN,
an analytical CRPS loss estimation was derived based on pre-
specified quantile levels and fixed, or learnable spline based
inter/extrapolations beyond those. A multivariate quantile func-
tion based forecasting method has also been recently proposed
[21]. This network generates monotonic quantiles estimations
and also uses the Energy score based CRPS optimization.

In summary, many prior works do not explicitly model the
correlations among several quantile estimations per horizon [6],
[14], [16], [19], [22]. Prior quantile methods model the correla-
tions [4], [7], however, chose restrictive spline representations.
We optimize a multi-task loss combining quantile loss and the
Energy score loss functions. The Energy score based CRPS
loss function parameterized through quantile estimations leads
to modeling these correlations directly. This also differentiates
our work to [21] which neither embeds implicit quantile levels
nor takes advantage of the robust quantile loss functions.
Besides, for multiple quantile estimations, we extend the
implicit quantile forecasting work with a more powerful sparse
attention model and exploit parameter sharing for efficient
multi-task estimation.

III. BACKGROUND

A. Problem Formulation

We consider N related univariate time series data Y ∈
RT×N where each time series Y n ∈ RT is noted for a total of
t = [1, ..τ, ..., T ] timesteps2. The variable τ is used to indicate
the partitioning of the conditioning and the forecasting ranges.
In addition to the real-world time series we also consider C
many social time3covariates X ∈ RT×C that are observed in
the entire range. We aim to model the following conditional
distribution:

p(Y n
τ+1:T |Y n

1:τ , X1:T ,Θ) (1)

This formulation in Eq. 1 explicitly models for multiple tasks
jointly conditioned on the same input and model parameters
Θ. This is in contrast to other works that reduce the problem
complexity by formulating a simpler single step forecasting
task p(Y n

τ+1|Y n
1:τ , X1:τ+1,Θ)4. Note that our formulation and

following background is similar to [23].

B. Quantile Regression

In order to learn a distribution of the future possible
outcomes, we can consider modeling the cumulative distribution
(CDF) of the random variable Y n

τ+1 ∈R [4], [5], [7]. Let us
denote the CDF by FY (y), then the α ∈ (0, 1) quantile can be
given as:

QY (α) := F−1
Y (α) = inf {y ∈ R : α ≤ FY (y)} (2)

Where the function, QY is called the quantile function or
equivalently the inverse CDF function. Intuitively, α ∈ (0, 1)

2t is relative, can correspond to different time across time series
3time-of-the-day, week-of-the-month etc
4Horizons [τ+2, ..., T ] can be modeled autoregressively via past predictions

is the probability that Y is less than QY (α). We can write the
α quantile estimate as:

qnα,τ+1 = QY (α|Y1:τ , X1:T ,Θ) (3)

We can model the α quantile estimate by minimizing expected
quantile loss5,

argmin
Θ∈R

EY∼FY
ρα(Y, qα) (4)

The loss function, ρα(Y, qα) is given as:

ρα(Y, qα) = (Y − qα)(α− I(Y≤qα))

=

{
α(Y − qα), if Y ≥ qα,
(α− 1)(Y − qα), if Y < qα,

(5)

Intuitively, the quantile loss can be considered as a weighted
generalization of the L1 loss. Hence, with rather simple quantile
level α1:M ∈ U(0, 1) parameterized piecewise linear loss
functions, we can model the conditional quantile distribution.

C. Continuous Ranked Probability Score
We now extend the discussion towards metrics for evaluating

probabilistic forecast distributions. Proper scoring metrics are
minimized when the predictive distribution is equivalent to the
data distribution. For example, for deterministic predictions,
we can consider the mean absolute error. Importantly, proper
scoring metrics are negatively oriented, and generally the
optimization is cast to minimize the corresponding loss
functions. The CRPS metric can be computed as:

CRPS(FY (y), Y ) =

∫
R
(FY (y)− I{Y ≤ y})2dy (6)

Where I{Y ≤ y} denotes the indicator function [15]. Closed-
form expressions for popular distributions such as Gaussian
and Negative-binomial likelihood exist for integral in Eq.6
[15], [24], but for modeling various real-world data generating
processes such assumptions can be overly simplistic and
restrictive. Therefore, prior works considered the following
equivalent formulation based on quantile loss [25], [26]6,

CRPS(FY (y), Y ) = 2

∫ 1

0

ρα(Y, qα)dα ≈
M∑
i=1

ραi(Y, qαi)

(7)
Besides the above formulations, we can note another CRPS
approximation on the empirical CDF F̂Y (y), referred to as the
Energy score based approximation [15], [24]6. We consider
modelling this approximation via M many quantile estimations,

F̂Y (y) =
1

M

M∑
i=1

I{Y ≤ qαi} (8)

CRPS(F̂Y (y), Y ) =
1

M

M∑
i=1

∣∣∣qnα′
i,t

− Y n
t

∣∣∣−
1

2M2

M∑
i=1

M∑
j=1

∣∣∣qnα′
i,t

− qnα′
j ,t

∣∣∣ (9)

5In following, we simplify the notation, by dropping the indexes n and τ
since the same loss is applied for all time series and horizons

6Equivalence proofs have been derived in these works
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Fig. 1: architecture showcasing the estimations of various quan-
tile levels for all horizons. Layer depth and loss components
are not shown.

IV. METHOD

A. Position and Time-Series ID Embedding

Following previous work [1], [3] for positional encoding, we
build another channel (D+C+1) containing ordinal counting
for the entire range considered t = [1, ..., T ]. Each ordinal
level in this channel is embedded with a learned embedding
dmodel. This embedding component allows the model to learn
a relative positional information for the sequential time series
input. Similarly, we can embed IDs of each time series. Each
series n ∈ [1, ..., N ] is given a unique ordinal count based ID,
which is embedded identically but independently to positional
embedding. As we aim to learn a global model across multiple
time series, this allows the modeling of individual latent
patterns associated to individual time series. As the model
observes more data from a series, it improves its ID embedding.
ξpos ∈ Rdmodel and, ξID ∈ Rdmodel denote the position and
ID embeddings, respectively.

B. Implicit Quantile Level Embedding

We now describe the embedding of sampled α values
that leads to modeling a full conditional quantile distribution
[6]. The aim is to embed various α1:M ∈ U(0, 1) through
a dedicated embedding component to model the forecast
distribution by parameterizing the quantile loss functions in
Eq. 5 with the same α values. To fix ideas, we represent the
learned embedding component as ξα ∈ Rdmodel . In our work,
we choose a self-attention based embedding,

ξα = max(0, αW1 + b1) (10)
ξα = Attention(ξα, ξα, ξα) (11)

We sample multiple α values for an input batch which
pass through an embedding stage. The embedding is com-
posed of a non-linear ReLU based feed-forward network
(W1 ∈ RM×dmodel , b1 ∈ Rdmodel) applied to each α level
in a position-wise manner and can be thought of as 1d
convolution [27]. Next a deep self-attention based embedding
of the dimensionality Rdmodel is learned where the Query, Key
and Value are independent transformations of the same ξα.
This embedding component hence ensures that the model can
exploit latent embeddings for various α levels. We ensure

that the model converges to minimizing the expected quantile
loss for multiple α for multiple horizons, structuring the
optimization based on stochastic batch updates by sampling
M many α1:M ∼ U([0, 1]) values in one batch update same
for multiple horizons. This is considerably more efficient than
sampling all possible α values for every time series sample
and horizon individually, and allows for significant speedups
through broadcasting the quantile loss functions.

C. Sparse Self-Attention Encoder

The Implicit Quantile Level Embedding methodology [6]
is architecturally compatible with several existing time series
forecasting methods, although with varying levels of modifica-
tions. In this paper, we focus on the Transformer architecture,
which has been recently shown to excel for probabilistic
forecasting tasks [3], [13]. Transformer architectures [27] model
pairwise interactions among all input tokens that leads to a
O(T 2) complexity. This allows the model to capture long-
range temporal dependencies, however, raises practical issues
regarding compute and memory requirements. A natural choice
for the Sparse Attention model is the Log Sparse Transformer
[3] which calculates O(logT ) dot products for each timestep
in each layer by restricting the attention representations to be
computed only causally with an exponential step size. Hence,
the complexity could be reduced from O(T 2) to O(T log T ).
We denote this attention computation scheme as LogAttention
and compute encoding:

ξỹ = [Y1:T X1:T (ξpos + ξID)] (12)
ξỹ = LogAttention(ξỹ, ξỹ, ξỹ) (13)

Where, operator denotes concatenation. We fill the unknown
future horizons t = [τ + 1, ..., T ] with 0s for Yτ+1:T for
concatenation on the time axis similar to [28]. Additionally,
the ξID are repeated along the time axis for addition. We
also note that the LogAttention layers are initialized with the
dimensionality dmodel plus the dimension of the multivariate
time series input.

D. Decoder

In the forecasting literature, for short-range rolling fore-
casting application, autoregressive decoding that models cor-
relations between sequential outputs is preferred [1], [3],
whereas for long-range forecasting application a multi-task
decoding scheme that avoids error accumulation inherent to
autoregressive decoding is used [14], [28]. Our proposed
model is built as a multi-task decoder over the base sparse
attention mechanism encoding from [3]. However, we derive
an autoregressive quantile forecasting decoder counterpart to
our proposed model and describe it further in the experiments
section as a baseline.

1) Multi-task Decoding: The fundamental idea is to combine
the quantile id embeddings and the time series embeddings in



cost-effective manner exploiting shared parameters for multiple
quantile forecasts.

ξFlat
ỹ = Flatten(ξỹ) (14)

ξ1:Mỹ = Repeat(ξFlat
ỹ ,M) (15)

qαi,τ : = [ξiỹ ξαi ]WMTL + bMTL ∀i = [1, ...,M ] (16)

In the above equations, we first flatten the embedding of the
time series to one feature axis, this results into the embedding
size: (dmodel×len(1 :τ)), where dmodel indicates the embedded
dimensionality of each timestep input. Next we repeat these M
many times to combine these with the quantile embeddings in
Eq. 10. Observe that each of the [1, ...M ] quantile embedding
is different, but the time series embedding ξFlat

ỹ remains the
same. Finally, a shared fully connected layer, given by param-
eters WMTL ∈ R(dmodel×len(1:τ)+dmodel)×len(τ+1:T ),bMTL ∈
Rlen(τ+1:T ) is learned to produce a quantile forecast based on
the concatenated repeated representation of the time series and
the embeddings of the implicit quantile levels. By repeatedly
calling the layer, [1, ...,M ] many times, each time with different
quantile embedding, we can generate the M quantile forecasts
for each forecast horizon [τ +1, ..., T ]. In summary, we utilize
the same direct forecasting [4], [14], [28], [29] for all horizons
with a Linear layer and flattened time series embedding,
however, we repeatedly call the same layer to generate the
respective [1, ...,M ] quantile forecasts.

Given our focus is on generating multiple quantile forecasts
simultaneously, we can contrast the above motivated parameter
sharing approach with that of a compute and memory intensive
strategy of learning multiple quantile forecasts by stacking
M many fully connected layers (W2:M , b2:M ) on the flattened
representation of the time series embedding. Additionally, since
we sample quantile levels randomly, by sharing the layer across
the quantile level embeddings we allow for the possibility for
faster convergence. On the other hand, multiple fully connected
layers would only update parameters corresponding to only
one quantile level embedding for each gradient update.

2) Quantile Transposed Attention: We also motivate another
hierarchical representation to be learned across the quantile
forecasts. The intuition is to learn pairwise interactions between
the quantile forecasts similar to the pairwise interactions learned
for time steps as follows:

qα1:M ,τ : = Attention(Tr(qα1:M ,τ :),Tr(qα1:M ,τ :),Tr(qα1:M ,τ :))
(17)

Where the function Tr() computes the transpose and expresses
the necessary change in the input dimension in order to compute
the Attention() representations for the quantile forecasts
instead of on the embedded time series features. This equips
the model to directly learn representations that contrast all
quantile forecasts to each other, which the earlier components
do not directly learn. For example, attention representations
between the 50th and 90th estimations could be computed
with the sequential information kept as latent features. Feature
transposition based learning has been utilized before in [30],
although not in the context of Attention.

3) Auxiliary Reconstruction with Multi-Task Decoding: We
can observe that the multi-task decoder motivated above does
not reconstruct the time series given in the input range and
only outputs the forecasts required in the prediction range
t = [τ, ..., T ], whereas the autoregressive training through
causal masking and offsetting of targets by being always one
step ahead inherently reconstructs the time series for the entire
range since the input is already given as a concatenation of the
input and the prediction range both [1], [3], [7]. In order to
ensure more supervision is granted and the multi-task decoder
can learn on correlations between more time steps, we increase
the dimensionality of the fully connected layer in Eq. 16 to
also reconstruct the time series up to a certain limit tuned
as a hyperparameter τ − r. Note that prior direct forecasting
approaches (i.e. multi-task decoding) [4], [14], [28], [29] do
not reconstruct input. Notably, both autoregressive and multi-
task decoding approaches use future covariate information but
reconstruct and forecast only the quantiles of the target time
series channel.

E. Optimization

As previously motivated, to model the correlations between
the distribution of the quantile estimations, we combine the
quantile loss functions with the Energy score based approxima-
tion of the CRPS loss in a novel multi-task loss formulation.
We reiterate the important consideration of approximating
the Energy score loss component with quantile estimates that
correspond to the quantile level embeddings in input.

argmin
Θ∈R

N∑
n=1

T∑
t=τ−r

(
M∑
i=1

ραi
(Y, qαi

)+
1

M

M∑
i=1

∣∣∣qnα′
i,t

− Y n
t

∣∣∣−
1

2M2

M∑
i=1

M∑
j=1

∣∣∣qnα′
i,t

− qnα′
j ,t

∣∣∣) (18)

The above multi-task loss function combines sub-objectives
which are three separate granular instantiations of the L1 loss
functions. We can have a look at the first sub-objective that
minimizes a weighted specific parameterization of the L1 loss
that corresponds to the quantile loss and enables modeling a
quantile level of the underlying distribution. The second sub-
objective optimizes for a sharper forecast sample, regardless of
which quantile level is being modeled. The third sub-objective
optimizes for variability in the output forecast distribution
since different quantile estimation although are required to be
sharper; jointly are optimized to be spread further apart such
that the pairwise distances among the estimates are maximum.
It can be observed that the sub-objectives can compete to
optimize the shared model parameters in different directions,
however, recent work [31] has shown that with sufficient model
capacity and weighing of sub-objectives, this issue can be
resolved and does not impede direct optimization of the multi-
task loss, and we also further experimentally validate this
in the experiment section. Finally, we note that despite the
equivalence of the CRPS formulations through Quantile losses
or the Energy score based formulation, the multi-task loss in



Table I: Summary of dataset statistics. Multiple training examples are sampled with the sliding window procedure.

electricity24 traffic24 electricity168 traffic168 wind solar m4-hourly
# time series, N 370 963 370 963 28 137 414
time granularity hourly hourly hourly hourly daily hourly hourly

domain R+ [0, 1] R+ [0, 1] R+ R+ R+

# training examples 500K 500K 500K 500K 10K 50K 50K
# input length, [1...τ ] 168 168 168 168 168 90 168

# forecasting length, [τ, ..., T ] 24 24 168 168 24 30 48

Eq. 18. learns on approximations where intuitively biases from
both approximations can be exploited in learning. However, the
major gradient signal is still derived from the quantile losses,
since we use the Energy score loss component as auxiliary
regularization through weighted averaging. Our weighting
strategy can be explained with respect to the normalization of
the loss in Eq.18. We specifically normalize the loss with the
factor (N+(T −r)+(M+1)) such that the Energy score loss
component is weighted as a single quantile loss component.

V. EXPERIMENTS7

Our primary set of experiments is based on two real-world
datasets on four different forecasting tasks. We follow the
experimental protocol from previous works [1], [3]. Addition-
ally, we also report results on three other smaller datasets, as
highlighted by the number of windows sampled for training
and other dataset statistics stated in Table. I. Note that the
experiments are followed and extended from [23].

A. Dataset Statistics

Our experiments are based on well-established benchmarks
for the following datasets:

1) electricity dataset composes of hourly Kilo Watts
electricity consumption of 370 houses from 2011-2014.

2) traffic dataset composes of hourly occupancy rates in
the range[0, 1) of 963 car lanes in 2008.

3) wind dataset where the daily energy potential is noted
across 28 regions from 1986 to 2015.

4) solar describes hourly sampled solar power generation
records from 2006 from 137 Photovoltaics plants.

5) m4-hourly has 414 time series from various sources.

B. Baselines

1) ARIMA [3] models forecasts as linear combination of past
time series values.

2) ETS [3] computes forecasts as weighted averages of past
observations, with the weights exponentially decaying for
past observations.

3) TRMF [32] factorizes the matrix of time series observa-
tions global latent features and autoregressive temporally
regularized features per time step.

4) DeepState [2] forecasts through a linear Gaussian state-
space model whose state and transition parameters are
predicted via an underlying RNN.

5) DeepAR [1] recursively unrolls the hidden state for each
time step and a linear layer extrapolates from hidden state
to (µ, σ) for forecasts autoregressively.

7github.com/super-shayan/gqformer. Appendix A provides hyperparameter
tuning and implementation details

6) LogTrans [3] is a Gaussian likelihood based sparse
transformer that autoregressively decodes future values.
Extrapolating (µ, σ) is similar to [1]. This model is also
used as the base attention module in GQFormer .

7) CVAE MSE [11], [17] is a conditional VAE trained with
mean squared error and quantiles can be computed on
samples from the learned sampling layers.

8) CVAE DIL [17] is similar to the cVAE model from [11]
trained with shape and temporal loss to generate sharper
samples.

9) MCVAE MSE [17] is our proposed extension to CVAE
MSE that learns on multivariate covariates available for
past and future since CVAE MSE only uses target channel.
We simply appended the covariate information in the
channel space in the base sequential RNN models in the
VAE, similar to DeepAR incorporates.

10) STRIPE DIL [17] can generate sharper future trajectory
samples through learning DPP processes finetuned on first
stage CVAE DIL .

11) AST [9] autoregressively decodes for a single fixed quan-
tile level, requires retraining for other quantile levels.

12) MQ-RNN [14] estimates multiple quantiles per forecasting
horizon through parameter sharing but does not model
any correlations among quantiles.

13) SQF-RNN [7] is an RNN that estimates the Quantile func-
tion through isotonic splines and minimizes an analytical
CRPS based on the spline representation.

14) IQN-RNN [16] is an RNN based on IQN framework with
independent sampling runs to estimate multiple quantiles

C. Proposed Model and Ablations

1) GQFormer is our proposed model with multi-task decod-
ing Eq. 16, quantile transposed attention Eq. 17, auxiliary
reconstruction Sec. IV-D3 and optimized via Eq.18.

2) GQFormer-BASE is GQFormerwithout quantile trans-
posed attention and Energy score based loss components
in optimization, geared towards short range multi-task
forecasting with fewer parameters.

3) A-SEQ is the sequential autoregressive decoding model
similar to LogTrans that generates multiple quantile
estimates and trained with quantile loss. The 50th quantile
is used for autoregressive decoding.

4) A-FIX does fixed quantile modeling by decoding 99
discrete quantile level estimations. It does not reconstruct
the input, nor uses quantile attention and is trained with
Quantile loss functions only.

5) A-REC is GQFormer-BASEwithout reconstruction.
6) A-CRPS is the GQFormer-BASEwith quantile trans-

posed attention without the Energy score based CRPS



Table II: Performance comparison in terms of individual quantile metrics. Results are formatted with ·102, columnar least is
boldfaced, second-least is underlined. Reimplementation results are stated in brackets.

electricity24 electricity168 traffic24 traffic168
QL0.5 QL0.9 QL0.5 QL0.9 QL0.5 QL0.9 QL0.5 QL0.9

R
ep

or
te

d
[3

] ARIMA 15.4 10.2 28.3 10.9 22.3 13.7 49.2 28
ETS 10.1 7.7 12.1 10.1 23.6 14.8 50.9 52.9
TRMF 8.4 – 8.7 – 18.6 – 20.2 –
DeepState 8.3 5.6 8.5 5.2 16.7 11.3 16.8 11.4
DeepAR 7.5(6.198) 4.00(5.448) 8.2(8.264) 5.3(6.554) 16.1(12.041) 9.9(9.697) 17.9(15.657) 10.5(12.301)
LogTrans 5.9(5.781) 3.4(2.972) 7(7.614) 4.4(3.845) 12.2(12.27) 8.1(7.891) 13.9(14.014) 9.4/(8.567)

VA
E

CVAE MSE 6.693 6.622 8.137 6.494 13.268 11.661 15.244 12.329
CVAE DIL 7.110 5.584 16.424 20.061 38.266 33.855 17.544 17.668
MCVAE MSE 11.232 9.508 13.439 11.451 22.606 20.908 24.670 23.591
STRIPE DIL 12.141 8.978 13.046 10.455 38.471 32.648 28.000 53.498

Q
ua

nt
ile

AST 7.380 4.636 8.887 5.726 20.534 14.047 38.816 19.545
MQ-RNN 7.572 3.847 9.145 4.726 11.662 8.452 14.499 10.400
SQF-RNN 6.952 5.098 7.977 4.982 11.792 9.603 15.206 10.521
IQN-RNN 6.429 4.652 8.419 6.813 12.155 8.984 14.940 9.823

Pr
op GQFormer 6.604 3.358 7.416 3.697 12.055 8.651 13.215 9.154

GQFormer-BASE 6.315 3.133 7.876 3.745 10.756 7.866 13.758 9.676

A
ba

la
tio

ns

A-SEQ 6.587 7.046 7.881 9.078 10.377 10.654 13.277 14.274
A-FIX 6.252 3.344 7.359 4.192 12.168 10.226 14.959 12.725
A-REC 6.258 3.669 7.484 4.257 12.559 12.161 12.541 11.267
A-QATTN 6.502 3.104 7.856 3.784 12.022 9.441 15.670 11.050
A-CRPS 6.689 3.453 8.137 3.772 11.960 8.484 14.474 9.488
A-DIR 7.121 5.472 7.793 6.762 11.687 13.459 12.578 13.366
A-PRE-DIR 6.798 3.325 8.712 4.057 11.301 8.060 14.335 9.435
A-FQFormer 6.418 3.133 7.880 3.729 11.023 7.890 13.255 9.353

loss. As a result, we can therefore judge the importance
of the quantile transposed attention.

7) A-QATTN is the GQFormer-BASEwith Energy score
based CRPS without quantile transposed attention.

8) A-DIR is the GQFormer-BASE optimized directly with
Energy score based CRPS loss without the main Quantile
loss functions. Hence, it is similar to [21] where only the
Energy score can be used for optimization.

9) A-PRE-DIR pretrains GQFormer-BASEwith the quan-
tile loss and in the second stage the model is optimized
again with only Energy score based CRPS for same epochs.
This ablation therefore studies the impact of the joint multi-
task training as opposed to a two-stage optimization.

10) A-FQFormer can be considered an ablation [23], it
predicts the α quantile levels for a pretrained and frozen
GQFormer-BASE and optimizes forecasts from it for the
Energy score based CRPS loss function.

D. Evaluation Protocol

Firstly, we describe the preprocessing which follows prior
work [1], [3]. A sampling window procedure is used to generate
multiple training samples by sampling τ multiple times within
the total time series ranges. This leads to fixed length time
series input and targets for the learning algorithms. Notably,
we also utilize similar weighted sampling procedure as prior
work [1], [3], which leads to sampling windows proportional to
scale. The preprocessing therefore ensures direct comparability
to prior work [3], [23]

We summarize the results comparing our proposed models
with baselines and several ablations in the Tables. II,III. We note
that for each method, independent hyperparameter tuning was

carried out for each forecasting dataset and task combination
with fair computational budgets [23]. The test set error result
stated corresponds to the forecasting last 7 days for each
dataset, either in a rolling or direct forecasting manner [1],
[3]. The test set error corresponds to each method’s best
performance on a separate held-out validation set across 3
random seeds. The validation set is derived from within the
training range, covering data before the testing range’s last
7 days. We study short horizon forecasting and long-range
forecasting as separate tasks for both these datasets. Hence,
forecasting for a short-range for only 24 horizons in a rolling
manner, and forecasting for a long-range for all 168 horizons
directly stands to evaluate the model and baseline performances
from two different standpoints. Lastly, Q-AVG denotes the
averaged quantile loss (Eq. 7) over 99 quantile estimations on
the discrete grid α1:M = [0.01, 0.02, ..., 0.99] whereas E-CRPS
corresponds to the loss stated in Eq. 9 estimated through the
same quantile estimation as in Q-AVG.

E. Results
As our first result, we compare the performance of the

models GQFormer and GQFormer-BASE to various Clas-
sical, Gaussian likelihood based, VAE based, Quantile loss
based forecasting baselines on individual quantile forecasting
metrics QL0.5 and QL0.9 respectively. We can see that the
proposed models on average perform better than various
baselines, however do not always lead to the least error across
the different tasks and metrics. It is worth emphasizing that
the LogTrans baseline performs exceptionally better than
other Recurrent Neural Network based baselines given the
efficacy of the Attention mechanism in learning richer latent



Table III: Performance comparison in terms of probabilistic metrics averaged over the discrete quantile level grid. Formatting is
similar to before. AST requires retraining, rendering it inapplicable here. * marks the E-CRPS computed w.r.t quantile proposals.

electricity24 electricity168 traffic24 traffic168
Q-AVG E-CRPS Q-AVG E-CRPS Q-AVG E-CRPS Q-AVG E-CRPS

G
au

s DeepAR 5.704 5.680 7.836 7.814 9.606 9.525 14.107 14.026
LogTrans 4.388 4.342 6.168 6.107 9.254 9.173 10.719 10.604

VA
E

CVAE MSE 6.588 6.578 8.014 8.005 12.688 12.65 14.847 14.829
CVAE DIL 6.982 6.974 16.069 16.044 37.980 37.960 17.093 17.064
MCVAE MSE 10.962 10.944 13.305 13.295 22.233 22.209 24.377 24.354
STRIPE DIL 11.629 11.618 12.628 12.575 36.605 36.540 24.372 24.243

Q
ua

nt
ile

AST – – – – – – – –
MQ-RNN 5.927 5.859 7.542 7.474 9.417 9.320 12.112 11.989
SQF-RNN 5.772 5.719 6.705 6.648 10.083 9.999 12.128 12.008
IQN-RNN 5.411 5.370 6.798 6.741 9.971 9.872 12.157 12.039

Pr
op GQFormer 4.956 4.924 5.646 5.605 9.333 9.254 10.185 10.088

GQFormer-BASE 4.770 4.739 5.952 5.913 8.327 8.267 10.574 10.475

A
ba

la
tio

ns

A-SEQ 6.60 6.382 7.897 7.687 10.422 10.098 13.354 12.938
A-FIX 4.981 4.955 5.974 5.947 10.432 10.393 12.953 12.911
A-REC 4.959 4.933 6.084 6.058 11.075 11.035 10.802 10.760
A-QATTN 4.918 4.883 5.993 5.953 9.360 9.279 12.267 12.156
A-CRPS 5.055 5.024 6.093 6.046 9.189 9.109 11.160 11.073
A-DIR 7.121 7.121 7.793 7.793 11.687 11.687 12.578 12.578
A-PRE-DIR 5.230 5.201 6.838 6.801 8.833 8.774 12.730 10.991
A-FQFormer 4.853 4.800* 5.952 5.888* 8.506 8.425* 10.227 10.138*

representations. We can also compare the performance to the ab-
lation methods. Given their similarity to the GQFormermodel
with learnable encoding modules, whereas differences only
relate to loss function and decoding modules dedicated to
multiple quantile modeling, we can see that on the simpler
individual quantile metrics the performances are comparable.
Interestingly, A-SEQ is able to clearly outperform all baselines
on the rolling forecasting of traffic dataset (traffic24), which
is intuitive given autoregressive decoding is the default choice
for rolling forecasting tasks in existing literature. Moreover,
despite offering generative quantile estimates, we use the 50th

percentile estimate to autoregressively decode in inference
and the reason why the QL0.9 result might not be optimal
in comparison. Partly, this also motivates the autoregressive
decoding based LogTrans baseline’s better performance on
the electricity24 task. Moreover, given the consensus
from recent works on modeling the Electricity dataset with
Gaussian likelihood further motivates the better performance
of the baseline on this task but at the same time long-range
direct forecasts are best made with the multi-task decoding as
we show for GQFormer . Our main set of results are stated in
Table III, in terms of CRPS metrics that evaluate probabilistic
forecasts more comprehensively across several quantile levels.
Here, we can clearly see that the proposed GQFormermodels
are able to outperform all ablations. Given that we tuned the
hyperparameters of these ablation methods independently for
each forecasting task, it is reasonable to expect better one-off
performances, however, on representative probabilistic metrics
GQFormer performs better. Comparing the performance of
the Gaussian likelihood based DeepAR and quantile methods
MQ-RNN , IQN-RNN and SQF-RNN , we can note that despite
sharing the same RNN based learnable modules and learnable
parameters, the quantile methods fair better, showcasing the
advantages of quantile forecasting. The variational models,
CVAE MSE and CVAE DIL [11], [17] also approximate the

true forecast distribution as a Gaussian. This combined with
the RNN based learnable modules for learning time series
representations leads to less competitive results. Moreover,
we can observe that the CVAE DILmodel performed subpar.
Since STRIPE DIL is a two-stage optimization based method,
that relies on a pretrained CVAE DILmethod, its performance
was also degraded. Given the lack of modeling capacity for
covariate information such as social time based features in the
original formulation of the variational models, we designed
the extensionMCVAE MSEby simply appending the covariate
information in the channel space in the base sequential RNN
models in the VAE similar to how other RNN based methods in
the experiments incorporated covariate information. Neverthe-
less, MCVAE MSE did not benefit from the additional covariate
information. We posit that more advanced architectural modifi-
cations might be required to model the covariate information.
On the other hand, we found that AST is prone to degenerate
optimization prone to GAN based frameworks and that lead to
poor performance on the traffic forecasting tasks. Given that
AST required retraining for each quantile level, training it on
many quantile levels was rendered inapplicable. Comparing the
performance of GQFormer to GQFormer-BASEwe can note
that the Energy score based optimization and the transposed
quantile attention benefit the long-range forecasting task the
most. Given long-range forecasting is inherently a more difficult
forecasting task, the additional transposed quantile attention
module and the regularization from the Energy score loss
is advantageous. Additionally, better performance achieved
by the proposed GQFormermodels compared to learning
on fixed quantile levels as done with A-FIX showcases the
advantage of learning multiple quantiles implicitly. Notably,
we see that this difference is more pronounced than com-
paring IQN-RNN and MQ-RNNwhere the main difference
also lies in learning quantile estimations implicitly versus
fixed. However, IQN-RNN does not learn multiple quantiles as



Table IV: Comparison on additional datasets in terms of individual quantile metrics

wind24 solar30 m4-hourly48
QL0.5 QL0.9 QL0.5 QL0.9 QL0.5 QL0.9

R
ep

[3
] TRMF 31.1 – 24.1 – – –

DeepAR 28.6(29.136) 11.6(12.665) 22.2(22.952) 9.3(8.666) 9.0(4.053) 3.0(4.523)

Pr
op

LogTrans 28.4(28.677) 10.8(11.669) 21.0(21.437) 8.2(8.861) 6.7(4.724) 2.5(4.28)
GQFormer 29.108 11.126 21.935 8.256 4.731 3.566
GQFormer-BASE 29.389 11.661 22.769 8.919 4.023 2.1

Table V: Comparison on additional datasets in terms of CRPS metrics

wind24 solar30 m4-hourly48
Q-AVG E-CRPS Q-AVG E-CRPS Q-AVG E-CRPS

G
au

s DeepAR 21.038 20.787 16.332 16.154 3.621 3.597

Pr
op

LogTrans 20.361 20.127 15.803 15.619 3.932 3.897
GQFormer 20.254 19.949 15.882 15.899 3.706 3.689
GQFormer-BASE 20.508 20.335 16.784 16.684 2.999 2.979

the GQFormermodels. Moreover, comparing GQFormer and
GQFormer-BASE to A-REC shows the importance of the
auxiliary reconstruction of the time series from the history.
The results for the ablations A-QATTN and A-CRPS validate
that GQFormerwith both Quantile Attention Eq. 17 and
optimized with the joint multi-task loss performs best for
the long-range forecasting. Moreover, regarding optimization,
comparing GQFormer to A-DIRwe can see that optimization
alone on the Energy score based CRPS is suboptimal compared
to the joint multi-task loss and weighting the loss weight
less in the multi-task loss is also justified in Eq. 18 since
GQFormer-BASE optimized only with the quantile loss func-
tions outperforms it significantly. We can also infer that learning
the quantile levels contextually in A-FQFormer through a
second stage optimization procedure over the Energy score loss
provides a minimal lift over GQFormer-BASE on the long-
range forecasting tasks, however, GQFormer still outperforms
it. Additionally, we explored sequential two-stage optimization
in A-PRE-DIR , however the multi-task optimization outper-
forms it. Lastly, we can observe that our proposed models fair
well on additional small datasets, however, LogTrans leads
in terms of individual quantile metrics in Table. IV. We
hypothesize this is due to the short range of the two datasets
solar30 and wind24 where recursive forecasting can be
worthwhile. Nevertheless, in Table. V, in terms of representative
probabilistic CRPS metrics, proposed models perform better.

VI. CONCLUSION

In this work, we proposed a probabilistic forecasting method
that implicitly generates multiple quantile estimates per forecast
horizon and models the correlations among those estimations
through a novel multi-task loss formulation. Empirical eval-
uation showed the model outperformed several forecasting
baselines. In addition, we showcased that the multi-task loss
formulation and transposed quantile attention are key to
modeling the long-range forecasts through an ablation study.
In future work, we shall research novel multivariate forecasting
extensions that model correlations among quantile functions
of covariate channels in high-dimensional time series.
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A HYPERPARAMETER TUNING

The experiment setup is extended from prior work [23].
For all Attention based models, proposed and otherwise, we
tuned the hyperparameters of the number of sparse Attention
layers in the grid [1, 2, ..., 10] for each dataset’s forecasting
task. For each such configuration, we sampled a learning rate
on the log-scale uniformly at random [10−4, 10−1] and ran it
for 3 separate seeds resulting into 30 configurations per dataset,
each optimized for 20 epochs. Notably, we kept the rest of the
hyperparameters same as the gaussian autoregressive sparse
attention model [3]. This setup ensured a fair comparison. We
also used the author’s original code8. Moreover, we can note
that the batch size was fixed to 64 for all experiments.

Additionally, for our proposed models, GQFormer and
GQFormer-BASE , we also note the hyperparameters defining
the length of input time series reconstruction as auxiliary task.

8github.com/hihihihiwsf/AST

Fig. 2: Quantile forecasting for the traffic168 task.

For the direct forecasting task, where the task was to generate
168 forecast horizons, we reconstructed all the input of 168
observations (as noted in Table.I), and for the rolling forecasting
task, we reconstructed double the number of forecast horizons,
48 input observations where the task was to forecast the next
24. Notably, in fairness to other baselines as we describe
below, we did not tune the number of shared fully connected
layers for quantile generation and neither Transposed Quantile
Attention layers, which were both kept fixed to 1. Additionally,
we did not tune the weights for the loss components Energy
score based approximation CRPS loss and the quantile loss
approximated CRPS loss. Notably, these hyperparameters and
length of reconstruction per forecasting task, further tuned,
could possibly improve the model performance.

We also describe the hyperparameter tuning details for the
RNN based baselines DeepAR 9, SQF-RNN 9,IQN-RNN 10 and
MQ-RNN 9. In our experiments, the number of RNN layers
[4, 8], and the cell sizes [256, 512] hyperparameters were tuned.
Similar to before, each configuration was run for 3 seeds with
learning rates sampled uniformly at random. Given that the
RNN baselines required less computational time compared to
the Transformer baselines, we scheduled the corresponding
experiments to 40 epochs which ensured a computationally
fair budget. The Variational autoencoder baselines CVAE
MSE , CVAE DIL , MCVAE MSE are also based on RNNs.
Therefore, we tuned the hyperparameters of RNN layers and
the cell sizes similar to the other RNN baselines as described
earlier. Moreover, for these baselines we additionally tuned the
dimensionality of the fully-connected layer [512, 1024] for the
forecast output. Notably, this hyperparameter was not tuned
for the RNN based baselines earlier described and kept fixed
as the cell-size hyperparameter. The variational models were
also trained for 40 epochs. Once the first-stage optimization of
the CVAE DILmodel was completed, we optimized for the
time and shape loss concerning the STRIPE DILmodel11.

B QUALITATIVE RESULTS

We showcase qualitative results for the Traffic dataset using
the GQFormermodel for different quantile levels in Fig. 2.

9github.com/awslabs/gluon-ts
10github.com/zalandoresearch/pytorch-ts/tree/master/pts
11github.com/vincent-leguen/STRIPE
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