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Abstract. The computational challenges arising from increasingly large
search spaces in hyperparameter optimization necessitate the use of
performance prediction methods. Previous works have shown that ap-
proximated performances at various levels of fidelities can efficiently early
terminate sub-optimal model configurations. In this paper, we design
a Sequence-to-sequence learning curve forecasting method paired with
a novel objective formulation that takes into account earliness, multi-
horizon and multi-target aspects. This formulation explicitly optimizes
for forecasting shorter learning curves to distant horizons and regularizes
the predictions with auxiliary forecasting of multiple targets like gradient
statistics that are additionally collected over time. Furthermore, via em-
bedding meta-knowledge, the model exploits latent correlations among
source dataset representations and configuration trajectories which gen-
eralizes to accurately forecasting partially observed learning curves from
unseen target datasets and configurations. We experimentally validate
the superiority of the method to learning curve forecasting baselines and
several ablations to the objective function formulation. Additional exper-
iments showcase accelerated hyperparameter optimization culminating in
near-optimal model performance.

Keywords: Neural forecasting, Learning curves, Hyperparameter opti-
mization, Sequence-to-sequence neural networks, Multi-task learning

1 Introduction

Hyperparameter optimization is a vital process in machine learning workflows.
Practitioners commonly either rely on brute-force search over long grids, or via
treating the loss surface in a black-box optimization framework [15]. Even so,
given the configuration evaluation times, both of these methods fail to scale
for large search spaces [14]. This motivates the research problem of designing
novel methods to tackle this characteristic complexity and speeding up opti-
mization. The prominent theme has been to exploit cheap-to-evaluate fidelities
(or proxies) to the actual validation metrics. The simplest example of it is of
a Learning curve in iterative learning algorithms which can be considered an
iterative fidelity to the final performance of the hyperparameter configuration.
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Learning curve forecasting methods speed up optimization by extrapolating the
performance metric from short runs to arrive at keep-or-kill decisions faster. Spe-
cific works [2, 6, 10, 13] that model this extrapolation as a fidelity have exploited
the partially observed time-series from validation metrics and hyperparameter
configuration features (batch size, learning rate etc.) to predict the asymptote
(final performance) or forecast multiple steps ahead till the asymptote. We
provide an overview of the related work in the accompanying Appendix 1. 3

Considering neural network training, there can be several statistical proper-
ties for e.g. µ, σ for layeri associated with the weights that dynamically change
throughout training and can also be modeled as fidelities to the final perfor-
mance [16]. In this paper, we propose a Sequence-to-sequence learning model
that can model this inherent multivariate aspect present in a multi-task learning
problem setting. We propose to forecast these additional channels together with
the target validation accuracy for all timesteps till the asymptote. This leads to
an interesting multi-task problem formulation with a rich output space to be mod-
eled. Specifically, we formulate the main tasks to be the future points needed to be
forecasted for a target channel and in contrast, all other channel’s future value pre-
dictions as auxiliary tasks. An additional aspect to the learning curve forecasting
problem relates to earliness in the prediction of the learning curve. The intuition
behind catering for earliness is that ideally we wish to extrapolate performance of
the underlying architecture from noting only a few timesteps of its performance.
On the other hand, predicting the asymptote value with input of a longer length
curve is comparatively trivial and not useful, since training might have converged
already. We model for this aspect in the training of the forecasting network with
task-specific weighting that incentivizes early forecasting of the learning curve.

A related stream of works considers meta-learning for the purpose of sample-
efficiency when proceeding with hyperparameter optimization for new datasets
[7, 8, 12, 17, 18]. The intuition is to exploit past optimization runs to expedite
search for new datasets. Generally, the optimization runs are first gathered in
a meta-dataset; a dataset describing datasets. Besides containing multivariate
time series information from the iterative optimization of various architectures on
various datasets, the meta-dataset also contains descriptive statistics about the
underlying individual datasets, termed as meta-features. Common meta-features
include, the number of attributes, classes and the instances. Hence, a meta-dataset
can provide sufficient data enabling learning of a deep neural network model like
we propose above, and allow transfer learning possibilities considering forecasting
of a new dataset’s partial learning curve. What is normally referred to as the
cold-start problem in the literature [9], can be hence tackled for a new dataset
by exploiting meta-features that capture dataset relations and the underlying
patterns relating different hyperparameter configuration performances across
datasets [7, 12]. In summary, our core contributions can be listed as follows:

– We propose a novel Sequence-to-sequence learning curve forecasting method
that incorporates various additional dynamic gradient statistics in a multi-
task problem formulation.

3 Appendix available via arXiv.
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– We design and optimize a novel corresponding multi-task loss function inspired
by the problem setting that enforces early forecasting and incorporates biased
weighted regularization for target performance metric tasks in contrast to
counterpart weaker fidelity auxiliary tasks from various gradient metrics.

– We demonstrate that the method can be meta-learned and exploit configu-
ration and meta features that generalize forecasting across hyperparameter
configurations and datasets.

– We also show that our method is capable of accelerating Hyperparameter
optimization when carrying out early stopping of sub-optimal configurations
when integrated with model-free and meta-learned baselines.

– A thorough ablation study grounded on rigorously validating the effect of
separate building components of the proposed method. Ultimately, proving
the method on whole is well-founded.

2 Problem Setting

We consider a set of datasets D ∈ RP×S×F , where each of the P datasets is
an independent and identical set of S samples and F features upon which a
supervised classification task is defined. The datasets can be differentiated based
on underlying data generating processes and different data modalities (tabular
data, images etc.), however, parallels can be drawn based on a set of meta-
features denoted as φ ∈ RP×M . Further, we consider a set of hyperparameter
configurations Λ ∈ RL×K , where each Λ1:L ∈ Λ is a hyperparameter configuration
of K hyperparameters 4 Formally, we can define the meta-dataset X ∈ RN×C×T

as a Cartesian product Λ×D, that is the result of training Neural networks 5

with L hyperparameter configurations Λ1:L on each of the P datasets. We can
describe X as the set of multivariate time-series of C metrics/channels (training
loss, gradient norms, validation loss, etc.) across T epochs with N = P × L. For
notation ease, we assume the last channel C represents a particular metric of
interest (target metric), which typically is the validation accuracy. To fix ideas,
the problem definition with respect to the main-task:

Given the observed metrics from the conditioning range [1 : τ ] of the n-th
experiment, denoted as Xn,:,1:τ ∈ RC×τ using the slicing notation;
Given the hyperparameter configuration Λl ∈ RK and the dataset meta-features
φp ∈ RM of the n-th experiment;
Predict the value of the C-th metric (validation accuracy) at the final epoch of
the n-th experiment, i.e. estimate Xn,C,T .

3 Multi-LCNet: Multivariate Multi-step Forecasting with
Meta-features

Our proposed model is dubbed Multi-LCNet. It is based on the encoder-decoder
framework with several auxiliary tasks of predicting multiple channels for multi-
4 Each of the [1 : K] hyperparameter is sampled from a domain of valid values.
5 In this work, we only consider Neural networks as the algorithm class.
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step ahead. We let both the encoder and decoder networks be multi-layered
Gated Recurrent Unit Networks (GRUs) [5]. A basic premise of our modeling
objective is to exploit the configuration and meta-feature embeddings jointly
with the multivariate time-series channels. However, incorporating these em-
beddings is not straight-forward given the fact that the rest of the data has a
natural ordering with respect to time. In order to still exploit the embeddings
denoted as ξ ∈ RQ×τ jointly with the rest of the sequence modeling, we resort to
repeating the embeddings on the time-axis to form additional Q channels that
are concatenated with the rest of the multivariate time-series. The GRU encoder
updates the hidden state recursively in the conditioning range [1 : τ ]. We let
all channels share the same hidden-state parameters given existing correlations.

The last hidden-state from the encoding is generally referred to as the context
vector [1]. Most prior approaches linearly extrapolate for one-step ahead from
the context vector maximizing one-step likelihood. However, we can exploit the
context vector to initialize a decoder network for multi-step forecasting. By
having another decoder network, we can forecast for an arbitrarily long hori-
zon ahead H ∈ N. In addition to granting the model, the capacity to model
across a wide range of fidelities, this also has a regularization effect given the
pattern leading up to the asymptote can be covered in the modeling phase.

We simply initialize the decoder network’s initial hidden state by copying
the context from the encoder network, and feeding in the last timestep from the
conditioning range i.e. τ as its first input. The decoder network has the same
hidden dimensionality and number of layers as the encoder network, making this
trivially possible. However, we note the discrepancy of feeding in the ground
truth element at each timestep to the encoder whereas the decoder is trained
in an auto-regressive manner that is consuming its own generated output at
each successive timestep to compute the next hidden state and output. The
output at each timestep is a RC+Q dimensional extrapolation from the hidden
state during decoding. During decoding, the model outputs Q < M + L static
features [Λ̂l ◦ φ̂p] on which a reconstruction loss is defined. We noted experimen-
tally that reconstructing static features during decoding lead to a regularization
effect, improving modeling accuracy than otherwise. Additionally, we incorporate
the attention mechanism [1] which allows the decoder to focus on the entirety
of encoder outputs instead of solely relying on the last encoder hidden state.
We refer to Appendix 2 for a more detailed description of modeling above.

3.1 Optimizing Multi-LCNet

We have formulated the problem with respect to the main-task and explained
how we can generate multivariate multi-step forecasts by modeling auxiliary
tasks as well. Below, we formulate objective functions with respect to both. For
simplicity, let Multi-LCNet be f(Xn,:,1:τ , Λl, φp, H; θ) where arguments denote
availability and respective ranges and θ all learnable parameters.

Standard Objective The standard approach is to train the model that predicts
the target (C-th) metric at the final epoch T after observing τ observations of
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the metrics. The corresponding objective:

argmin
θ

N∑
n=1

‖Xn,C,T − f(Xn,:,1:τ , Λl, φp, T ; θ)C‖ρ (1)

However, we could improve this objective further, as it does not use the remaining
targets c ∈ {1, ..., C − 1}, the observations after the index τ till T − 1 and lastly
does not give more importance to the first observations. Given the practical
importance associated with early decision-making regarding a hyperparameter
configuration, it is important to accurately estimate the target metric after only
a few epochs, otherwise convergence is already reached and curve plateaued.

An Early, Multivariate and Multi-step Forecasting Objective To ad-
dress the aforementioned drawbacks, we can optimize Multi-LCNet’s parameters
using the objective listed below:

argmin
θ

N∑
n=1

C∑
c=1

τ∑
t=1

T∑
z=τ+1

wctz ‖Xn,c,τ+z− (2)

f(Xn,:,1:τ , Λl, φp, T ; θ)c‖ρ

In contrast to Eq.(1), this incorporates several additional auxiliary tasks in a
weighted multi-task loss. The intuition is that these auxiliary tasks induce a strong
regularization effect on the main-task learning. Differentiation between auxiliary
and main-tasks is defined through task-specific weighting wctz ∈ (0, 1) ⊂ R+ 6 7.
These task weights are hyperparameters in the objective function formulation.
Manual tuning of these weights is computationally infeasible given the number
of tasks could explode in the case of predicting for a decent sized horizon in
standard multivariate setting. Therefore, we propose a novel factorization of
the weights customized with respect to the sub-objectives relating to inducing
earliness, balancing multiple channels and their point forecasts ahead:

argmin
θ

N∑
n=1

C∑
c=1

τ∑
t=1

T∑
z=τ+1

αcβtγz ‖Xn,c,τ+z− (3)

f(Xn,:,1:τ , Λl, φp, T ; θ)c‖ρ

Where αc, βt, γz ∈ (0, 1) ⊂ R+ can be chosen with regard to the following insights:

i) Predicting the target metric (validation accuracy) is more important than
predicting other metrics i.e. αC > αc. On the other hand, αc > 0,∀c ∈ 1, ..., C
meaning we do not want to avoid predicting the other metrics since correlated
channels have a beneficial regularization effect. We emphasize that such an
objective formulation is a multi-task setting, where we have a target task/metric
(the validation accuracy) and a set of auxiliary tasks/metrics (training loss,
gradient norms, etc.).

6 We also normalize all meta-data in (0, 1) unit interval
7 We overload the notation, in this subsection w defines task-weight
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ii) Correct forecasts with few observations τ � T are more important than
estimations close to the converged epoch τ ≈ T . Practically speaking, we should
be able to predict the performance of a poorly-performing hyperparameter
configuration Λl after as few epochs as possible. Therefore, the weights β1:τ
can be set as exponentially decaying, which incorporates stronger penalization
towards the errors made with small t values in the objective. Concretely,
βt=1 ≈ 1 and βτ ≈ 0.

iii) Predicting the metric values at the last epoch is more important than the
next immediate epoch after τ , in the desired case when τ � T . Therefore,
the forecasts indexed higher in the prediction range [τ + 1 : T ] and their
corresponding loss terms need to be penalized stronger. In that regard, the
horizon task weights γτ+1:T can be formulated with the decay rate inverted
and generated similarly from the exponential function. Concretely, γτ+1 ≈ 0
and γT ≈ 1.

We make the effort to elaborate more on the earliness aspect of the objective
formulation given its distinct and novel formulation. In order to model for earliness,
we generate what are normally called roll-outs after each input timestep observed
from the learning curves. All roll-outs are multivariate multi-step forecasts till
the asymptote of the curves. During training, we set τ = T − 1, to utilize the full-
extent of the curves and the model subsequently generates forecasts of different H
length adjusted accordingly. Once all roll-outs are made, that is when τ = T − 1
we can weight the errors based on the combined weighting scheme motivated
above.

Exponential Weighting The exponential weighting is defined as follows:

β1:τ = exp

(
−|j − center|

g

)
(4)

g = −
(
τ − 1

log(u)

)
Where, j defines the index of roll-out and center is the parameter defining center
location of the weighting function. g defines the decay. We fix center = 0, u is
then the fraction of window remaining at the very end, that is the weight for last
indexed roll-out. Setting the value for u ∈ (0, 1) ⊂ R+ defines the entire set of
weights β1:τ . We can generate the weights γτ+1:T by defining another u value,
replacing τ with H and inverting the weights generated through Eq.(4).

4 Experiments8

4.1 Datasets, Meta-Datasets and Evaluation Protocol

Meta-Dataset We use the dataset created in [21]. Each sample contains mul-
tivariate training logs of a configuration trained on a particular underlying
8 github.com/super-shayan/multi-lcnet; Baseline implementation details in Appendix
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classification dataset. All datasets used to evaluate the configurations came from
the AutoML benchmark [11], in total numbering to 35. The overall meta-level dis-
tribution can be considered diverse in terms of underlying dataset characteristics
such as number of samples, features and classes. Exhaustive sets of meta-features
for each dataset are also available that besides these characteristics note addi-
tional many such. We also shed light on the configuration space that is used to
sample valid hyperparameter configurations through in Appendix 3. We note that
all architectures are funnel-shaped feed-forward networks, defined with respect
to number of layers and initial units. A total of 2000 configurations are sampled
from this configuration space and trained/validated/tested on the corresponding
splits of each underlying dataset for a total of 52 epochs. The resulting multivari-
ate channels also include global and layer-wise gradient statistics (max, mean,
median, norm, standard deviation, and quartiles Q10, Q25, Q75, Q90), learning
rate, runtime and balanced accuracies, up-to a total 54 channels. This results
into X,φp, Λl with shapes (N = 70000×C = 54× T = 52), (P = 35×M = 107)
and (L = 2000×K = 7) respectively. We label encoded, normalized all channels
besides validation accuracy between 0 and 1 and zero-padded in case of missing
values due to conditionally undefined layer-wise statistics, hyperparameters or
meta-features across these tensor and matrices.

Evaluation Protocol The evaluation protocol is aligned to a realistic meta-
learning setting where prior meta-data across datasets is considered available
and the goal would be to warm start hyperparameter optimization for new
datasets as tackled in [8, 17, 18]. In light of this, we divide the meta-dataset into
meta-train, meta-validation and meta-test splits covering 25, 5 and 5 datasets
each. We highlight important characteristics of the validation and test split
datasets in Appendix 3. We refer the remaining 25 train split datasets and
a more thorough summary of data-set characteristics to [11, 21]. We split the
above noted tensor and data matrices accordingly. We now proceed to define
evaluation metrics that shall quantify success from different lenses. Firstly, we
rely on measuring the mean-squared-error on the prediction of the last timestep
(final performance) for the target metric i.e our main-task as formulated earlier
in Sec. 2. In alignment with previous works [2, 13], we judge the predictions
based on ≈ 20% of the curve as input. Nevertheless, as motivated earlier, for
the purpose of realistic hyperparameter optimization it is necessary to quantify
how early the predictions match the ground-truth asymptotic performance of the
curves as well. Therefore, we also evaluate our results as the average error of all
final-performance errors till observing ≈ 20% of the curve as input. And for com-
pletion’s sake, we report the average of all final-performance errors made till T −1.
We also report simple Regret, the difference between optimal accuracy (precom-
puted from meta-test data) and one achieved over a set of trials [8, 17,18].

4.2 Baselines

Learning Curve Baselines
Last Value [14] propagates the last observed value for H timesteps.
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LCNet [13] is a Bayesian Neural network that estimates parameters and creates
weighted ensembles of increasing and saturating functions from power law or
sigmoidal family to model learning curves. As input, however the model only takes
into account configuration features by repeating these along the time-axis and
learns joint embeddings via hidden layers. Hence, straight-forward application
would prevent meta-learning where we wish to forecast accuracy across datasets.
In light of this, we propose an extension of this model with meta-features which
we refer to as LCNet(MF) where we simply concatenate the configuration and
meta-features before joint embeddings are learned as in the standard setting.
ν-SRM is the model from [2]. The modeling for learning curves is based on
training T − 1 many feature engineered models, where each successive ν-Support
Vector Machine Regression (SVR) model takes an additional timestep of the
learning curve. All T − 1 many SVR models only predict for last timestep,
the validation accuracy at T . We train and validate the baseline SRM and its
extension with multivariate channels SRM(M) and with multivariate channels
plus meta-features SRM(MM) on meta-train and meta-validation datasets.
LCRankNet [18] learns latent features for learning curves via stack of non-linear
Convolutional layers and architectural embeddings via Sequence-to-sequence
networks. It embeds Dataset IDs for modeling learning curves across Datasets
which are however generated randomly for modeling across datasets and therefore
we propose to embed meta-features instead. We focus on only the ablation
reported on learning L2-loss based pairwise rankings, which proved to be better
for early predictions across all datasets and makes learning comparable to models
in this paper. We remove the Sequence-to-sequence based embeddings that
might be more applicable to deeper network topologies as tackled originally in
that paper. Extension of LCRankNet with multivariate channels is termed
LCRankNet(M), and like before we also craft LCRankNet(MM).

Multivariate Multi-Step Forecasting Baselines
TT-RNNs Tensor-train RNN is a sequence-to-sequence model [20]. The working
principle is to replace the first-order markovian dynamics abiding hidden states in
RNNs with a polynomial expansion computed over the last many hidden states.
Tensor decomposition is used for dimensionality reduction for this new state. We
train the baseline on all meta-train datasets but unlike above baselines, repeated
the static features including configuration and meta-features on the time-axis to
form additional channels for TT-RNN (MM).
MCNN is a multivariate time-series forecasting baseline crafted through heuris-
tically searched parameter sharing between stacks of convolutional layers and
exponentially decaying weighted schemes that tackle scale changes in long-term
forecasting. We also designed another meta-feature based extension named
MCNN(MM) where we stack non-linear embedded meta and configuration
features directly with the latent convolutional features before feeding to the stack
of fully-connected layers predicting for multiple channels and time-steps ahead.
Multi-Task LASSO induces shared sparsity among parameter vectors of mul-
tiple regularized linear regression models. In our setting, we can consider all
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timesteps to be forecasted as separate tasks and instead of solving multiple lasso
models independently, feature selection is stabilized by shared sparsity induced
via block-regularization schemes.

Model-free Hyperparameter Optimization Baselines
Random Search [3] samples hyperparameter configurations randomly from the
space of configurations defined in the meta-split.
Hyperband [14] is a bandit-based method that samples configurations randomly
and terminates sub-optimal configurations according to predefined downsampling
rates at each round, only advancing better performing ones to be run for more
iterations. We report results for different downsampling rates in brackets Table.
2 with fixed max-iterations i.e. 52 from meta-data.

Meta Learning Hyperparameter Optimization Baselines For the purpose
of hyperparameter optimization, most work has focused on meta learned Bayesian
Optimization (BO). Hence, we benchmark and propose orthogonal extensions to:
TAF from [19], given the same intuition of ours, transfers knowledge between
tasks in a meta-setting. Transferable Acquisition Function (TAF) incorporates
source and target relationships in the acquisition function during BO. The
acquisition function scores the next configuration based on expected improvement
on the target dataset and predicted improvement over the source datasets. We also
orthogonally integrate Multi-LCNet as a meta-learned forecasting model within
BO. The Gaussian Process (GP) surrogate updates its parameters sequentially
on early terminated estimations of Multi-LCNet instead of on final-performances
of configuration trained fully. We refer to the extension as TAF-MLCNet. Also,
early terminating only applies to meta-testing, source GPs remain unaltered.
MBO from [17] is the recent state-of-the-art baseline for Meta-learning in
Bayesian Optimization (MBO) that acquires next configurations efficiently in a
meta reinforcement learning setting and modeling the acquisition function with
a neural network. We also orthogonally integrate Multi-LCNet similar to above
crafting MBO-MLCNet.

Multi-LCNet Ablations
Multi-LCNet(M) does not embed meta-features. However, it uses configuration
features repeated and forecasted as channels.
Multi-LCNet(MM) embeds meta-features jointly with configuration features
and forms channels with these joint embeddings as noted earlier.

4.3 Forecasting Results

We report the comparison of our proposed Multi-LCNet with the learning curve
and multivariate forecasting baselines in Table. 1. We ran all baselines described
earlier with 3 different seeds and report mean performances across standard
objective with τ = 9 and the aggregated metrics A(9),A(51) that quantify



10 Shayan Jawed, Hadi Jomaa, Lars Schmidt-Thieme & Josif Grabocka

Table 1: Comparison against learning curve and multivariate forecasting baselines
in terms of MSE ·10−2 on validation accuracy scaled to [0-1]. Columnar least is
boldfaced, second-least is underlined.

Methods Segment Shuttle Sylvine Vehicle Volkert
τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51)

LCNet(MF) 1.83 3.57 2.98 32.24 27.1 35.44 3.28 2.38 3.25 2.29 5.39 3.21 2.69 3.03 5.34
SRM 0.95 2.04 0.46 2.02 4.45 1.09 0.42 1.08 0.22 0.4 0.83 0.19 0.24 0.38 0.1
SRM(M) 1.37 3.21 0.69 2.55 5.35 1.38 0.87 2.58 0.5 0.67 1.24 0.29 0.2 0.39 0.1
SRM(MM) 1.29 2.75 0.6 2.9 6.07 1.43 1.05 2.51 0.52 0.63 1.22 0.28 0.19 0.3 0.08
LCRankNet 1 1.7 0.4 1.24 2.67 0.63 0.27 0.79 0.16 0.58 1.39 0.3 0.6 1.83 0.36
LCRankNet(M) 1.34 2.81 0.63 1.86 3.94 0.96 0.76 2.32 0.48 0.55 1.28 0.29 0.21 0.56 0.13
LCRankNet(MM) 0.99 1.62 0.49 1.43 2.79 0.94 0.62 1.25 0.35 0.75 1.35 0.44 0.49 0.84 0.2
Last Value 1.51 3.57 0.76 2.76 6.15 1.61 0.69 1.72 0.35 0.73 1.6 0.35 0.31 0.78 0.17
TT-RNN 1.56 2.29 – 4.95 5.72 – 0.97 1.5 – 1.15 1.79 – 1.2 2.64 –
TT-RNN(MM) 5.63 4.62 – 10.08 11.47 – 5.12 4.99 – 7.84 7.06 – 5.15 2.86 –
MCNN(M) 7.25 7.04 7.1 5.05 5.28 5.18 2.42 2.5 2.46 7.51 7.26 7.31 9.54 9.14 9.25
MCNN(MM) 7.14 7.1 7.04 5.13 5.29 5.2 2.47 2.5 2.48 7.38 7.33 7.23 9.32 9.21 9.14
MTL-LASSO(M) 1.35 1.99 – 6.32 7.85 – 1.49 1.95 – 0.96 1.31 – 0.77 0.94 –
Multi-LCNet(M) 1.02 1.47 0.38 1.57 2.27 1.42 0.27 0.68 0.15 0.92 1.53 0.38 1.46 3.27 0.7
Multi-LCNet(MM) 1.07 2.09 0.5 2.68 3.9 1.43 0.61 1.38 0.32 0.4 0.75 0.21 0.32 0.94 0.2

earliness and dynamic performance throughout the curve length. A(9),A(51)
denote the Average of final-performance errors (main-task) made observing
curves till τ = 9 and τ = 51 respectively. A number of interesting observa-
tions can be drawn from these results. Firstly, we can see that Multi-LCNet is
able to outperform the baselines across multiple metrics on all datasets besides
one. Most interesting are the lifts on A(9) compared to other metrics, since
it quantifies performance with regard to earliness. We can credit the auxiliary
supervision provided to the model through multivariate multi-step forecasting
as the basis for these leads. This stands to reason, provided learning curve
baselines already rely on deep learning primitives such as feed-forward layers
and convolutions in LCNet and LCRankNet. Crucially, the baselines are all
provided input of the same dimensionality with their respective extensions.

Another set of observations can be derived from benchmarking the perfor-
mance of machine learning baselines to the naive last value forecasting baseline.
We can validate the finding from prior works about this baseline’s exceptionally
strong performance on learning curves, which have a natural tendency to plateau
rather early. Nevertheless, we can see that majority of learned baselines outper-
form it especially on the first two metrics that quantify earliness.

With regard to auxiliary supervision through multivariate multi-step fore-
casting baselines, we observe that MTL-LASSO and TT-RNN perform equally
well across datasets and metrics, but indeed are less generalizable than counter-
part learning curve baselines. We hypothesize that the reason for this sub-par
performance is due to the rather fixed dimensionality forecasts that prohibit
all multivariate forecasting baselines considered to exploit training on dynamic
length input curves. These baselines were initially proposed for long range input
as compared to extremely short learning curves where data cannot be gener-
ated through rolling windows and rather every curve needs to be partitioned
into a fixed conditioning and prediction range beforehand. This explains why
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despite MCNN and LCRankNet being both convolutional neural networks, the
LCRankNet baseline and extensions can perform much better by modeling for
only 1 fixed window but exploiting the same curves multiple times with dynamic
conditioning history. This is also the reason why one joint model across all input
length for LCNet, SRM, MTL-LASSO, TT-RNN, MCNN is not possible and we
did hyperparameter tuning for validating their performance for only τ = 9 and
re-trained the baselines for all other τ = [2...51]. We also dropped the comparison
given scalability challenges with TT-RNN, MTL-LASSO for metric A(51) as
noted by ’–’ in Table. 1. Except for these baselines, we tuned the hyperparameters
for all other models on the metric A(51). On the other hand, this highlights yet
another advantage of Multi-LCNet which can be trained on dynamic conditioning
history as well as exploit auxiliary regularization through multivariate forecast-
ing as it can generate dynamic length forecasts from any window of the curve.

Additional observations can be made with regard to multivariate channels,
hyperparameter configuration features and lastly meta-features. SRM baseline is
unable to cater for both multivariate gradient statistics and meta-features, as
evident by higher errors made throughout the metrics and datasets by respective
extensions. This could be because the model is considered rather shallow and
unable to learn non-linear feature interactions as the deep learning counterpart
methods are able to. In fact, we see that LCRankNet and Multi-LCNet both
benefit from additional multivariate information plus meta-features comparatively
more so. On the other hand, we can observe that directly feeding all static fea-
tures as channels through repetition on time axis lead to downgrade in modeling
accuracy for both the TT-RNN and MCNN baselines. This is the reason why
for Multi-LCNet we explored another way to embed meta-features to a more
fine-grained representation explained earlier in the method section.

4.4 Accelerating Hyperperameter Optimization

In this section, our aim is to firstly formulate a predictive termination criterion
based on the predictions from Multi-LCNet. We follow the lead of [2, 4, 6], and
model a similar criteria that is essentially based on the heuristic that if at any
given time the forecasted accuracy from a partially observed configuration’s curve
falls below a certain best observed accuracy in a given set of configurations, then
this configuration can be early terminated to save valuable compute and time
resources. Specifically, we adapt the criteria from [2] to a meta-setting. To ground
the termination decision in probabilistic terms, one can model the forecast as a
Gaussian perturbation around the original estimate to safeguard against poor out-
of-sample generalization. To fix ideas, we randomly sampleM � N configurations
where m ∈ 1, ...,M and at each successive epoch τ , we generate forecasts,
X̂1:M,C,T for all M configurations. To model the uncertainty associated with the
forecasts we estimate the standard deviation σ by leave-p-out cross-validation
9. Specifically, we account for the uncertainty by keeping dropout active and
noting the σ among {(τ − p)...τ} forecasts of X̂1:M,C,T . With the uncertainty, we

9 We overload notation σ to denote standard deviation, p in cross-validation
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can estimate the forecasts as a gaussian perturbation ŷ1:M,C,T = N (X̂1:M,C,T , σ).
Finally, the probabilistic termination criterion: p(ŷ1:M,C,T ≤ max(X1:M,C,1:τ )) =
Φ(max(X1:M,C,1:τ ); ŷ1:M,C,T , σ), where Φ(.;µ, σ) is the Cumulative distribution
function (CDF) of the Normal distribution. For configuration m if probability
p(ŷm,C,T ≤ max(X1:M,C,1:τ )) ≥ ∆ does not hold, we can early terminate it.
Where, ∆ balances the tradeoff between early terminating configurations for
more significant acceleration or on the other hand the risk of observing higher
regret. Additionally, for ensembling’s sake, one can let the top-η confs to complete
training. For our experiments we set ∆, p and η via cross-validation on the
validation datasets based on observing the regret. We note that this criteria
despite sharing characteristic similarities differs from the one in [2], given the
cross-dataset setting. This setting does not require any burn-in period to observe
learning curves completely for new datasets. As a downside however, we track
the maximum observed accuracy from [1..τ ] for all new configurations instead of
the accuracy at T from the burn-in period. Other notable differences include a
more robust estimation of uncertainty given dropout and multi-horizon recursive
forecasts and tuning of ∆, p and η on meta-validation. We also refer to an example
termination in Appendix 4.

4.5 Acceleration Results

This section reports the results on accelerating hyperparameter optimization
through early termination. For our first set of experiments we accelerate Random
Search (RS-MLCNet) given its simplicity and vast utility. We randomly sam-
ple two sets of confs. i.e. M=50 and M=100 and report corresponding time(m)
and regret in Table. 2. We report the average of 10 runs. We set δ = 0.99,
η = 5 and p = 5 for both Multi-LCNet(RS-MLCNet) and SRM based early
stopping (RS-SRM). The regret is stated in terms of percentage classification
accuracy. We first note the comparison between RS and its counterpart ac-
celeration with Multi-LCNet. The results indicate huge gains with regard to
time saved with very little to no harm in regret. We also note that the stan-
dard deviation is on a similar scale. Since initial random selection of 50 or
100 configurations from 2000 is bound to affect the final regret, we keep these
same for RS, and its acceleration through Multi-LCNet & SRM across all runs.

We also compare these gains with SRM based early termination. In terms of
retrieving the optimal model among the initial trials, both RS accelerations lead
to similar regret given the same early stopping criteria. Our initial assumption
was that the difference in MSE would result in better acceleration performance,
but however in terms of regret computed for optimal configuration the gains in
forecasting accuracy did not transfer gracefully.

We also compare accelerated RS (RS-MLCNet) to Hyperband. Hyperband
also randomly samples configurations and uses the last value based extrapolation
to early terminate. However, Hyperband dynamically selects the configurations
to evaluate, which prohibits reporting results for 50 or 100 trials. To report a
fair comparison, we report results for Hyperband initialized with three different
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downsampling rates. Among the two trial settings for RS-MLCNet and Hyper-
band variants, we can see that on Segment, Shuttle and Volkert we are able
to outperform Hyperband in terms of balance between regret and time taken.

Lastly, we benchmark the meta-learned approaches TAF and MBO. Firstly,
we note that both these baselines stand out due to consistent minimal possible
regret across both trial settings 10. This is consistent with known superiority of
Bayesian optimization to RS. The efficacy of RL framework from MBO saves even
more time compared to BO based TAF. We observed that MBO can ask to run
the same configuration repeatedly, in contrast to TAF if it discovers the optimal
configuration early on. Hence, we count the regret and time taken for only unique
configurations among the 50 or 100 specified initially 11 and can see that the
difference in time for the two initial trial sets remains similar for MBO. We turn
to report the results for Multi-LCNet integrated counterparts MBO-MLCNet
and TAF-MLCNet that enable early termination for both these methods. Given
the drawback that TAF and MBO are both sequential approaches, we modify
the early stopping criteria to consider the values until current timestep for only
the single incumbent configuration. This puts the early stopping criteria at a
disadvantage, but nevertheless we observe a clear lift across all datasets without
loss in regret. Equally worth noting is the fact that early terminated objectives
do not generally interfere with acquisitions within the context of either BO
nor RL. This is important because one might worry that the sequential chain
of successive configuration acquisitions might be affected if the underlying GP
parameters are updated on the early stopped performance (objectives) for target
dataset configurations instead of on their final performance. Nevertheless, when
provided with early stopped objectives, the number unique confs. did arise for
MBO-MLCNet@100 for Shuttle and Sylvine datasets notably. We hypothesize this
is due to comparable fewer differences between configurations on these datasets
compared to other datasets as evident in lower standard deviation for RS regret
too. Still, with higher number of configurations, the times were less.

4.6 Ablation Study on the Meta-Validation Set

The above objective function comprehensively captures the entirety of the multi-
task output space, with sub-objectives exploiting inherent characteristics of the
learning curve forecasting problem setting. However, there exist possibilities of
designing the objective functions in between the two extremities, as given by Eq.
(1) and Eq. (3). Specifically, if we consider either of the earliness, multi-target
or the multi-step outer loop as either present or discarded leads to 23 = 8 pos-
sibilities with respect to objective formulation. We can study if either of the
unstated 6 combinations, for example the standard function in Eq. (1) equipped
with earliness and associated hyperparameters β1:τ dictating the exponentially

10 The results for MBO and TAF are not averaged across runs given the stationarity of
GP modeling and meta-data; based on personal correspondence with the authors.

11 Optimization is not terminated when regret is 0 to simulate real-world testing where
regret is unknown apriori.
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Table 2: Accelerated Hyperparameter Optimization results.
Methods Segment Shuttle Sylvine Vehicle Volkert

Time Regret Time Regret Time Regret Time Regret Time Regret
MBO@50 35.29 0.0 164.61 0.0 40.76 0.0 25.84 0.0 75.09 0.0
MBO@100 46.43 0.0 170.5 0.0 47.86 0.0 27.38 0.0 82.18 0.0
TAF@50 78.02 0.0 186.59 0.0 66.3 0.0 72.52 0.0 268.16 0.0
TAF@100 160.77 0.0 364.68 0.0 146.86 0.0 125.33 0.0 447.14 0.0
MBO-MLCNet@50 24.39 0.0 129.29 0.0 31.9 0.0 18 0.0 52.14 0.0
MBO-MLCNet@100 30.81 0.0 145.47 0.0 36.08 0.0 18.72 0.0 68.89 0.0
TAF-MLCNet@50 43.22 0.0 117.68 0.0 55.01 0.0 47.07 0.5319 169.24 0.0
TAF-MLCNet@100 93.97 0.0 200.75 0.0 110.45 0.0 84.24 0.0 322.75 0.0
Hyperband(2) 24.9±3.2 4.3±0.7 57.±9.1 1.0±0.5 38.1±5.1 0.5±0.4 26.6±3.0 3.0±3.1 62.6±6.3 7.2±3.2
Hyperband(2.5) 15.4±2.0 4.4±1.4 32.9±3.4 1.2±0.5 20.5±1.8 0.7±0.5 15.±1.3 3.4±2.2 37.6±5.0 7.8±4.3
Hyperband(3) 9.1±0.9 5.6±0.9 22.5±5.5 1.5±0.3 16.3±3.4 0.6±0.5 10.±1.3 4.3±1.5 21.8±2.7 8.7±3.3
RS@50 57.4±4.4 5.6±2.4 126.1±11.6 0.5±0.6 60.2±7.1 1.1±0.7 53.1±5.8 6.3±1.4 188.1±24. 8.2±3.8
RS@ 100 135.5±12.5 3.3±0.7 298.6±24.1 0.4±0.2 146.4±11.7 0.4±0.4 131.±7.7 5.0±0.7 384.3±14.9 5.3±3.3
RS-SRM@50 8.0±0.7 5.6±2.4 25.7±3.9 1.1±0.7 9.±1.3 1.5±1.1 7.8±1.0 6.7±1.3 24.1±1.1 8.9±4.5
RS-SRM@100 13.2±0.8 3.4±0.9 38.6±5.3 1.0±0.6 16.2±1.5 1.1±0.9 13.2±1.1 5.0±0.7 43.3±3.5 5.3±3.3
RS-MLCNet@50 8.0±0.7 5.7±2.5 25.5±4.0 1.1±0.7 9.1±1.1 1.5±1.1 8.0±1.3 6.7±1.3 35.1±3.1 8.5±4.0
RS-MLCNet@100 13.±0.7 3.4±0.9 36.9±3.9 1.1±0.6 15.9±2.0 1.2±0.8 13.4±1.2 5.0±0.7 64.3±3.7 5.3±3.3

decaying scheme for task weights models the main-task more accurately than the
objective in Eq. (3). Moreover, we can also study whether any of the associated
components in the input space, channels c ∈ {1, ..., C − 1}, the configuration
features Λl and the meta-features φp lead to improvement or on the contrary
decline in modeling accuracy with respect to the main-task. To fix ideas, we
term the changes to the objective function and removal of input configuration or
meta-features as ablations and refer to number of recurrent layers, number of
hidden units, number of fully connected layers and respective units, activation
functions, dropout, batch sizes, learning rate as standard hyperparameters to the
network that need to be tuned regardless the ablation. Additionally, we consider
the auxiliary task weights αc, βt, γz as conditional hyperparameters that are only
defined when the corresponding ablation is chosen. Attention is considered as ad-
ditional conditional hyperparameter that is defined only for ablations considering
encoder-decoder modeling of the entire horizon. We tune the hyperparameters of
each ablation together with well-defined associated hyperparameter configura-
tions, since one hyperparameter config. might not generalize to another ablation.

For all ablations besides the proposed objective formulation and input space,
we introduce another model termed as Standard-Net. This model is characterized
as an encoder-only network with an output fully-connected-layer whose dimen-
sionality corresponds to the dimensionality of the target space. The target space
can vary from a single point to forecast for the main channel (as in standard
objective) or all channels at the last horizon and lastly forecasting all channels
for the entire horizon. Interestingly, the Standard-Net cannot be trained with an
Earliness sub-objective when impeded by fixed dimensionality of output. Also, con-
ditional upon the ablation Standard-Net can incorporate all input channels, meta-
features and configuration features, but however cannot incorporate attention.

Including root-level binary valued hyperparameters that define presence or
absence of ablative sub-objectives and input features, hyperparameters condi-
tioned upon these ablations (α, β, γ) and standard network hyperparameters
leads to 14-dimensional hyperparameter configurations. Given this relatively large
search space, we rely on Hyperband [14], to conduct a thorough analysis in order
to better judge whether the proposed formulation of Multi-LCNet leads to a
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Fig. 1: In each cell we plot the ratio of
StandardNet configurations selected to
Multi-LCNet configurations across differ-
ent successive halving iterations in Hy-
perband. We can observe that Hyper-
band increasingly selects Multi-LCNet
configurations as successive halving con-
tinues and hence the ratio decreases

gain in predictive accuracy over Standard-Net. The working principle behind
Hyperband also qualitatively expresses whether a particular configuration is
iteratively selected consecutively in various levels of Successive Halving. We
define a large search space to randomly sample configurations from and observe
that configurations trained with the proposed objective formulation are given
increasingly higher budget, which testifies modeling accuracy of the proposed
method to be higher than counterpart ablations. We note for Hyperband that all
initial search spaces and following number of successive halving rounds are de-
fined with respect to maximum number of iterations. By setting this to 1000 and
default downsampling rate (=3), we allow for the possibility of multiple rounds
and larger initial search spaces before these rounds. In these spaces ablations
outnumber the Multi-LCNet configurations by 8x, however, across all successive
halving iterations (y-axis of Fig. 1), the ratio converges to 0 (x-axis) showcasing
that Hyperband spends more budget on selected Multi-LCNet configurations

5 Conclusion

In this work, we propose a novel meta-learned forecasting model that models vali-
dation accuracy and several additional gradient statistics in a weighted multi-task
loss. Empirical evaluation showed the model outperformed multiple forecasting
baselines and forecasts can be used to accelerate hyperparameter optimization
in the simple case of random search and also meta Bayesian optimization. As
future work, we shall extend the modeling in novel meta-learning directions.
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