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Abstract. An active area of research is to increase the safety of self-
driving vehicles. Although safety cannot be guarenteed completely, the
capability of a vehicle to predict the future trajectories of its surrounding
vehicles could help ensure this notion of safety to a greater deal. We cast
the trajectory forecast problem in a multi-time step forecasting problem
and develop a Convolutional neural network based approach to learn
from trajectory sequences generated from completely raw dataset in real-
time. Results show improvement over baselines.
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1 Introduction

Safety is of paramount importance while desiging self-driving cars. It is an ac-
tive area of research and never easy to answer "how safe is safe enough”. The
capability to predict the future trajectory of surrounding vehicles and react ac-
cordingly helps ensuring this notion of safety to a great deal. Besides safety,
infering the future behaviours of surrounding vehicles in a dynamic and suffi-
ciently complicated traffic environment grants autonomous vehicles the ability
to make tactical driving decisions such as overtaking and lane changing. Also, it
mimics the inherent human ability of constantly predicting every other vehicle’s
movement.

However, given a sufficiently complex traffic environment it can be a challenging
task. The difficulty lies in the fact that many factors influence a vehicle’s trajec-
tory which can eventually be very noisy to model. These factors could include
geometric structure of the road, vehicle sizes, driver intentions etc.

Broadly speaking, in order to design such a practical system, two steps are
required. Firstly, detection and subsequent tracking of surrouding vehicles in
real-time and secondly, design and implementation of less computationally com-
plicated algorithms in order to guarantee real-time inference.

In this paper, we study the problem of vehicle trajectory forecasting as a
multi-step time series regression. While considerable progress has been made
with aggressively exploring Recurrent Neural Networks and more specifically
LSTM based architectures to solve similar problems, in this paper we take a
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different approach and instead propose a Convolutional Neural Network archi-
tecture to infer from temporal data as an alternative.

In our proposed system, we base the first step on state-of-the-art methods in
object detection and tracking. Thus, the system is able to generate trajectory
sequences from raw camera input ignoring the need of complex sensors such
as LiDAR. Next, these trajectory sequences are fed to a Convolutional Neural
Network (CNN) which is able to forecast the paths of the surrounding vehicles.
Moreoever, we conduct experiments to show the outperformance of the proposed
approach over standard baselines.

The rest of this paper is organized as follows. In Section II, we briefly review
the related work. In Section III, we describe the dataset used and the system
setup used for developing the proposed prediction framework. In Section IV, we
describe the details on the proposed vehicle trajectory prediction framework. In
Section V, the experimental results are provided and the paper is concluded in
Section VI.

2 Related Work

Several recent studies have addressed the problem of vehicle trajectory forecast-
ing. A survey of previous work could be found in [Ig]. Previous approaches can
be grouped into two major classes. The first class of approaches treat the tra-
jectory forecasting as a time series classification task where the aim is to assign
class labels such as turn left, right or stay in lane for the trajectories. For such
classification, Markov based models [25] and Support Vector Machines have been
adopted [16]. Moreover, Neural Networks were also used in this direction where a
probabilistic multilayer perceptron based approach is proposed in [27] to model
how likely a vehicle is to follow a particular trajectory or a lane for a given input
of vehicle position history. Furthermore, the Long short term memory (LSTM)
network was also investigated in [I3] where a framework for activity classifica-
tion of on-road vehicles using 3D trajectory cues was proposed. [I4] also follows
a classification objective where an LSTM model is trained with sequence data
to produce softmax probabilities of future vehicle position on the grid.

On the other hand, the second class of algorithms cast the trajectory fore-
casting problem as a time series regression task where the aim is to predict the
exact position of the car in future timesteps. Wheareas the classification based
approaches make modelling the problem inherently less complex, they are less
expressive than their regression based counterparts which try to predict for some
time in future the path in it’s entirety instead of classifying the vehicle behav-
ior. This complete path can then be used for a more effective motion planning.
More specifically, the path prediction in terms of regression was studied with
various approaches such as linear regression [20], Kalman filters[12] and non-
linear Gaussian processes|26]. Moreover, approaches in this direction also include
time-series analysis[23] and autoregressive models[2]. In addition, analogous to
previous work done for trajectory classification, a large state of literature in the
time series regression direction is based on LSTM based approaches. Among



Data-Driven Vehicle Trajectory Forecasting 3

these approaches, [3] proposed an LSTM model trained to predict future set of
(x,y) positions for the target vehicle. Another interesting approach was proposed
in [I7] where a set of hypothetical future prediction samples are first obtained
through a conditional variational autoencoder, which are subsequently ranked
and refined by an RNN scoring-regression module.

It is worth noting that LSTMs are considered the state-of-the-art in time
series forecasting currently because of the capability of these networks to ac-
cess the entire history of previous time series values using its recurrent property.
Alternatively, other authors have investigated Convolutional Neural Networks
(CNN) to model temporal data taking advantage of the convolutional operation
that makes the number of trainable weights smaller and thus speeds up training
and prediction. This motivation was explored in recent work such as [2I] where
an undecimated fully convolutional neural network based on causal filtering op-
erations was proposed for time series modeling. This architecture introduces
a wavelet transform-like deconvolution stage, which allows for the input and
output lengths to match. Also, authors in [5] proposed a convolutional network
extension of standard autoregressive models equipped with a nonlinear weighting
mechanism for forecasting financial time series. Moreover, based on an adaption
of the recent deep convolutional WaveNet architecture[22], [6] proposed a net-
work containing stacks of dilated convolutions that allow it to access a broad
range of history when forecasting. The common intuition in these works is that
by modeling time series via CNNs, representative filters for repeating patterns
in the series could be learned and effectively used to forecast the future values.

Also, previous literature lacks an approach completely based on raw camera
input. Raw camera input is the most readily accessible information in real-time
as access to other driving vehicles motion model or speed is not easily possible.
Moreover, previous approaches rely heavily on LiDAR based tracking ignoring
the recent advances in object detection and tracking.

In this paper, we propose a two phased dynamic approach where surround
vehicles are firstly detected and then tracked for a limited time. The resulting
sequences are then input to a deep Convolutional Neural Network (CNN) model
which outputs trajectories for the same amount of time in future. The approach
is dynamic in the sense that after a selected period of time the detection and
tracking of surrounding vehicles is reinitiated to generate new trajectory se-
quences. This way, the surround vehicles might be the same or it could be that
new vehicles might enter in the time period that follows. Accordingly, trajectory
forecasts would be made for each period.

3 Dataset

The Udacity dataset consists of 30,000 frames recorded at 20 frames per second.
The data was captured with a camera mounted to the windshield of the car
while driving in Mountain View California. The dataset contains a fair amount
of lightning changes, number of turns, lane merges and driving on a multi-lane
divided highway. Moreover, in parts of the dataset there is quite an amount of
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traffic as well. These characteristics make the dataset suitable for our task as
they represent real-life scenarios.

Fig. 1: Surrounding vehicles tracked

4 Method

We formulate the vehicle trajectory estimation problem as a multi-variate, multi-
step time series regression process, where the objective is to predict the future
trajectories of N tracked vehicles Y = {Y(l), Yy®, Y(N)} given the past trajec-
tories X = {XM, X® XN} The past trajectory of the i" tracked vehicle is

defined as X = {(a:EQO, yt(iz)o)7 (xgl, yt(i)l), . (x(i) yt(;)a)}, and the future tra-

t=a>
jectory is defined as Y () = {(wgaﬂ, yt(l:)aﬂ), (x§2a+2, y,gz:)aJrz), - (xgﬁ, yt(lz)ﬁ)}
Here, (2¢,y!) represents the x and y coordinates of the center of the it" sur-
rounding vehicle in a captured frame at timestep ¢ while a and 3 represent the
maximum sequence for past and future timesteps respectively.

In this section, we describe the details of our method in the following struc-
ture: We first explain the Classic Bootstrapping method used to generate tra-
jectory data from raw input data in Section 4.1 and then present the learning
models used to predict the future trajectories in Section 4.2.

4.1 Classic Boostrappping

The manual labelling of vehicles in the raw image dataset for generating trajec-
tory data is a tedious task. Instead, we follow a classical bootstrapping approach
to generate trajectories for the surrounding vehicles. A first version of the sys-
tem is developed to generate training data and to reduce the effort of manual
labelling. The output is then corrected to insure the robustness of the bootstrap-
ping system.

The first version of the system involves two steps, detection of surrounding
vehicles ig,...ixy in the raw image dataset at timestep ¢ = 0 (first frame) and
then subsequently tracking the respective vehicles until timestep ¢ = . This
will generate the trajectories of the N detected vehicles in a time horizon of
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length 3 with the trajectory of the i* vehicle being determined by the sequence
of its center coordinates {(2}_o,¥f—o), (¥{=1,Yi=1)»(T{_z¥j—p)}- The system is
then restarted again after each [ timesteps to detect and track vehicles starting
from timestep t = k(8 + 1) where k € [O,int(%)] and T is the total number of
frames in the dataset. The vehicles trajectories dataset is finally generated as
the set of vehicles trajectories with time horizon length of 3 for int(7) horizons.

Next, the output of this system is manually corrected where a human detects
the instances where the tracking failed and removes them from the dataset. For
example on a curved lane or if the vehicle is detected on the opposite lane an
otherwise consistent tracking might fail. An example of tracking failure could
be seen in Fig 1. (d) where a vehicle traveling in the opposite direction is being
tracked. Indeed, if a car is detected in a curved lane, it means that it is somehow
far away from the driver’s vehicle since it is not in the nearby area and thus it
would be better not to consider it as a surrounding car. Also, it would not be
relevant to consider a car in the opposite lane as a surrounding car since it will
only appear for a short time compared to our tracking time horizon especially if
the car is on the highway (less than a second).

Moreover, we also develop an unsupervised approach to detect such tracking
failures, as explained in further detail in the last subparagraph of this section.

Vehicle Detection using Faster R-CININ with Resnet101 Modern object
detection is based on the use of convolutional neural networks (CNNs). Object
detectors such as Faster R-CNN, R-FCN, SSD have shown a lot of promise in a
variety of applications including real-time detection. In order to understand how
these differ in terms of speed and accuracy, authors in[I1] created a framework
based on Tensorflow where they vary factors such as the choice of feature extrac-
tor (e.g. VGG, Resnet etc.), image resolution etc. With respect to this analysis,
and experiments conducted on the Udacity dataset, we base our vehicle detec-
tion system on the Faster R-CNN framework in[24] with the feature extractor
being Resnet 101 [I0] pre-trained on the Microsoft COCO dataset [19].

Faster R-CNN, is composed of two modules. The first module is a region
proposal network (RPN) that proposes regions of an image having higher chance
to contain an object. These regions are then used by the second module, Fast
R-CNN [9] for detection. More specifically, the entire image is firstly pushed
through a feature extractor and feature maps are cropped at some intermediate
layer of this extractor. The RPN module then uses these features to generate
box proposals called also “anchors”. Subsequently, these anchors are then used
to crop features from the same intermediate feature map and are then fed to
the Fast R-CNN to predict a class and and class-specific box refinement to fit
the ground truth for each anchor. Following this anchors methodology and the
multi-task loss in Fast R-CNN, the loss function for Faster R-CNN for an image
is given as:

1 . 1 « x
L({pi}. {t:i}) = N > Las(pi,p}) + Ay > D Lreg(tist7) (1)
cls reg
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where 7 is the index of an anchor and p; is the predicted probability of anchor
i being an object, vehicle in our case. The ground-truth label p; takes 1 if the
anchor is positive, and 0 if the anchor is negative. t; is a vector representing the
4 parameterized coordinates of the predicted bounding box, and ¢ is that of the
ground-truth box associated with a positive anchor. The classification loss L.
is the log loss over two classes (object vs. not object) and the regression loss
is the robust loss function (smooth L;) defined in [J]. The term p}L,., means
the regression loss is activated only for positive anchors (p} = 1) and is disabled
otherwise (p; = 0). The outputs of the cls and reg layers consist of p; and ¢;
respectively. The two terms are normalized by N¢, and N,., and subsequently
weighted by a balancing parameter \.

MIL Tracking Vehicles detected at timestep t = 0 are subsequently tracked
for a time period of t =1 ... t = 8. Tracking is based on the Online Multiple In-
stance Learning algorithm [4]. Given the locations of the surrounding vehicles in
the first frame, instead of having multiple positive and negative patches around
the location of each car which might confuse the classifier, in MIL based tracking
multiple patches form a single bag and the bag of m patches B; = {b;1, .., bim }
is labeled positive (y; = 1) if there exists at least one positive example. Subse-
quently, a boosting classifier is trained to maximize the likelihood of the all the
bags:

logl = Z(logp(yi =1|By)) (2)

where the probability of a bag being positive p(y;|B;) is expressed in terms of
its instances as follows:

pilyi = 1B;) = 1= [[(1 - p(yi = 1]bs;)) (3)
J
Notably, in the online algorithm the MIL classifier H(x) = Zszl Ahi () is
updated with positive and negative example bags for every frame by choosing
the K weak classifiers sequentially as follows:

hy = argmax logL(Hg—1+ h) (4)
he{ha,har}
We use the open-source implementation of the Online Multiple Instance Learning
provided with the OpenCV contrib extension [7].

Tracking failures In some cases such as the one showed in Fig 1. (d), a vehicle
might be detected even though it’s on the other side of the highway, and subse-
quently tracked for a specific time. This would obviously be a tracking failure as
the vehicle shall not be present in the future frames. An unsupervised approach
is proposed to detect such tracking failures and to manually remove such in-
stances from the dataframe. It works by generating the histograms of the crops
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of the vechicle of interest from the first few frames. It also computes the his-
tograms of crops at all four directions (up, down, left and right) of equal length
as the crop of the vehicle itself from the first frame where the detection is done.
Thus the crops containing the vehicle could be thought of as positive crops and
the other ones as negative. At the end of the tracking sequence, the histograms
of crops of the vehicle from the last few frames are compared to these of the
first few positive and negative using the Kullback—Leibler divergence measure
(KL-divergence) defined as follows:

Hl(I)) 5)

N
d(Hy,Hy) = ZH1(I)10g <H1(I)
7

If the KL-divergence is larger between the last and positive crops than the last
and negatives then the system could identify it as a tracking failure.

4.2 Models

In this section, we explain three implementation choices for multi-step prediction
of a trajectory Y = {(xEQaJrl? yt(Z:)aJrl)v ($§2a+27 y§2a+2)7 ) (xgg’ ygl:)g)}

Iterative Method In the iterative method, the model predicts for a single step.
This prediction is then iteratively used to predict ahead.
To predict for one time step ahead:

Y = 1x ) (6)
For two time steps ahead:
Y o= FXDUYicatn) (7)

Similary the process is followed until ¢ = 8. The technique however suffers from
the problem of accumulating errors which affect future forecasts.

Joint Method In the joint method, a single model predicts fort = a+ 1..t =3
all at the same time.
YO = f(x) (8)

Independent Method Using this method we predict for multiple horizons
using multiple independent models. Within each horizon there might be multiple
timesteps to be predicted for which the joint strategy is used. For example for
two n-sized horizons:
vy
t=a+n

x @
ﬁ( ) o)

(4) _
Y;:(a+n)+n - (X( ))
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Since each model is dedicated to predicting its own horizon, this method is
effective where each forecast horizon is unique.

Both, independent and joint method are better suited for problems involving
forecasting for large horizons compared to the iterative strategy. Also worth
noting is that while there is the appealing notion of parameter sharing accross
the complete horizon to be forecasted in the joint method it is however a much
more complex strategy than the other two.

CNN A CNN architecture is built by stacking a sequence of convolutional layers.
A convolutional layer is implemented with a convolution operation by sliding a
filter over the input in an iterative fashion, and computing the dot products
between the filter and the input. The network learns then filters that are able
to recognize specific patterns. More accurately, given a one dimensional input
tensor V' € R? where 3 is the length of the trajectory sequence. We define the
convolution operation, denoted by V*! = Vs W' as follows:

Vil+1 _ Z W *Vil-w—lvi c [l,wlﬂ] . 10)
i €[1,z2]

Where V! € R? and V!*! € R? are the input and output tensors, respectively

and W' € R? is the filter to be learned. Zero padding is used to maintain the

same sized output.

Specifically in our approach each sequence is fed to the CNN to encode the
sequence into a feature vector. We stack 7 convolutional layers in successive
order with filter sizes 24, 32, 64, 128, 256, 512 and 1024 respectively. After the
sequence has passed through each of these, we apply a global max pooling layer
and three fully connected layers of dimensions 256, 128 and 64. For all layers, we
use linear activations and zero-padding for same sized output. Finally once the
sequence has been encoded we stack as many dense layers as needed for Joint
strategy and the independent strategy with dimensions of 2 each for both x and
y coordinates. The model is then trained end-to-end.

5 Results

In this section we compare the proposed method with the baselines by predicting
the future trajectories of the surround vehicles. We define an evaluation strategy
where in order to best judge the performance of the models randomly 80% of
trajectory sequences are chosen in the training and the rest 20% to test upon.
We make a design choice and set the o = 25 and the § = 50. This way the
length of all vehicle trajectory sequences is fixed to be 50. This corresponds to
a horizon of approximately 2.5 seconds. By fixing the sequence length and max-
imum vehicles ¢,, = 3 as such we could generate at most 1800 unique trajectory
sequences from a total of 30,000 images. Out of these only 1281 trajectory se-
quences were non-empty given that some image sequences might have at max 3
whereas in some only 2,1 or even no surround vehicles to keep track of. Following
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the above defined evaluation protocol we end up with 1024 training sequences
and 257 testing sequences. Given the scarcity of sequences we ignore the removal
of sequences where tracking might have failed as recognized by a human or the
unsupervised approach of comparing the histograms. The unsupervised approach
detected a total of 580 sequences where the tracking had failed, whereas the hu-
man calculation was 553 such tracking failures. It is also worth noting that the
unsupervised approach and the human results had close agreement guarenteeing
the effectiveness of the unsupervised approach.

Vehicle trajectories
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Fig. 2: Randomly sampled vehicle trajectories in 3D

5.1 Evaluation metrics and Baselines

We define the loss as the mean squared error between the prediction and the
ground truth at multiple timesteps. It is worth noting that due to the accumu-
lation of errors and higher inference time, we ignore training the model via the
iterative approach but mentioned it before nevertheless as a possible strategy.
For the independent method, 5 separate CNN models were trained each with an
independent forecast horizon of 5 timesteps but with same input at o = 25. The
forecast horizons and respective errors are shown in Table 1. As stated in the
introduction however, the focus of the paper was on delivering real-time infer-
ence and hence the joint strategy which is the fastest among the three is adopted
for all baselines and the CNN. The independent strategy for CNN is considered
as baseline. Baselines include the two simple approaches of predicting the mean
and the last value for all the trajectory sequences. Lastly, the CNN model is
trained with joint strategy is evaluated against linear regression which estimates
linear parameters by minimizing the least squared error and the Decision Tree
based regression. The decision tree regression algorithm was trained by setting
the maximum depth to be as much until all leaves contained 2 samples per split.
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Fig. 3: A sampled trajectory coordinates x and y. Green, blue and red correspond
to the train, test and predicted values respectively.

Independent Method Horizon| MSE Me.thod MSE

— 55808 Decision Tree 39516.815
25-30 . Baseline: Last Value 23511.61
t30—35 1574.35 - -

Linear Regression 19600.36
t35-40 2684.40 _
7 117205 Baseline: Mean 7259.255
t40_45 6192.45 Independent CNN Approach| 15181.55
45-50 : Joint CNN Approach 3393.64

Table 1: MSE for different horizons Table 2: MSE for approaches

5.2 Learning Detalils

We train the model using the Adam optimization [I5] with the initial learning
rate fixed to be 0.0001. All five of the independent models and the joint model
were trained for 10,000 epochs with batch size 3. The learning curves are shown
in Fig. 4.

Moreover it was also observed that the losses for the timesteps close to the
« were comparitively much less than the losses closer to 8 as shown in Fig. 5.
which makes sense intuitively as predicting for a much higher future horizon
would be difficult. All models were implemented using Keras[8] with Tensorflow
background [I] and trained end-to-end on Nvidia GTX 1080 Ti. Training time
was approximately 28 hours each for the independent models and approximately
48 hours for the training of the joint strategy.

6 Conclusion

In this work, we proposed a convolutional neural network architecture for ve-
hicle trajectory forecasting. We approached the problem as object tracking in



Data-Driven Vehicle Trajectory Forecasting 11

0 —— Independent BO00 =25
— Joint =26
5000 t=48
150000 =49
4000
ﬁ w
L0000 8 3000
2000
50000
| 1000
N . ol N
o 2000 1000 000 8000 1o 0 2000 4000 6000 8000 10000
Epochs Epoch
(a) (b)
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Fig.5: Learning curves for the independent methods with different horizons.

a sequence of images, where the goal was to forecast the position of the vehi-
cles being tracked in future frames. Towards this end, we implemented a CNN
based approach trained with the independent and joint strategies to forecast
multi-time step ahead. The CNN based approach outperformed more classical
methods such as linear regression, decision trees and naive baselines.

As future work, we shall try to incorporate larger tracking sequences in order
to forecast for longer periods in future. Furthermore, we shall research possible
methods to output probability distributions instead of single values to yield a
confidence measure for better motion planning.
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