
Integrating OLAP and Recommender Systems:
An Evaluation Perspective

Artus Krohn-Grimberghe
Information Systems and

Machine Learning Lab
University of Hildesheim,

Germany
artus@ismll.de

Alexandros Nanopoulos
Information Systems and

Machine Learning Lab
University of Hildesheim,

Germany
nanopoulos@ismll.de

Lars Schmidt-Thieme
Information Systems and

Machine Learning Lab
University of Hildesheim,

Germany
schmidt-thieme@ismll.de

ABSTRACT
The integration of OLAP with web-search technologies is a
promising research topic. Recommender systems are pop-
ular web-search mechanisms, because they can address in-
formation overload and provide personalization of results.
Nevertheless, the evaluation of recommender systems is a
challenging task. In this paper, we propose a novel frame-
work for evaluating recommender systems, which is multidi-
mensional and takes into account for the multiple facets of
the recommendation algorithms, data sets and performance
measures. Emphasis is placed on supporting business ap-
plications of recommender systems, notably e-commerce, by
allowing analysts to perform ad-hoc analysis and use popular
online analytical processing (OLAP) operations. Combined
with support for visual analysis, action such as drill-down
or slice/dice allow assessment of the performance of recom-
mendations in terms of business objectives. We describe
a detailed methodology for designing and developing the
proposed multidimensional framework, and provide insights
about its applications. Our experimental results, using a
research prototype, demonstrate the ability of the proposed
framework to comprise an effective way for evaluating rec-
ommender systems.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
Algorithms, Experimentation

Keywords
Integration, Recommender Systems, Recommendation, Mul-
tidimensional, OLAP, Exploratory Data Analysis, Perfor-
mance Analysis, Data Warehouse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’10, October 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0383-5/10/10 ...$10.00.

1. INTRODUCTION
Recommender systems are popular web-search mechanisms,

which are used to address information overload and provide
personalized results. Recommender systems can act as an
electronic sales assistant and may help exploring an online-
shop’s portfolio or increase revenue by offering cross-selling
opportunities. Classical recommender tasks are, thus, item
prediction [12] where the recommender suggests items to a
user based on a personalized profile and rating prediction [4]
where the task at hand is predicting how much something
is liked by a user.

The vast majority of related research evaluates recom-
mender algorithms usually with aggregated numeric scores [8].
Root mean square error (RMSE) or mean absolute error
(MAE) are the standards for rating prediction, precision /
recall / F-measure and AUC are their counterparts for item
prediction. Evidently, such measures can indicate the per-
formance of algorithms regarding some perspectives of rec-
ommender systems’ applications and they are well suited to
determine the winners of most of today’s challenges. But
generally, business analysts will also be interested in break-
ing down those aggregate numbers by dimensions known to
them (e.g., time, product, customer, ...) for more detailed
insight into the algorithms’ performance. Furthermore, they
are most certainly interested in testing recommender algo-
rithms according to their own criteria using ad-hoc queries
and in examining the effect of different algorithm parameters
over selected subsets of the data, too.

To address this, we propose a multidimensional framework
for evaluating recommender systems. Extending a sketch of
this idea [11], we describe a detailed methodology for design-
ing and developing the proposed multidimensional frame-
work, and provide insights about its applications.

Organizing the data in a principled way as facts, mea-
sures, dimensions and hierarchies enables two paths of anal-
ysis. One is the exploratory analysis of the data set itself,
leading, among others, to customer and item segmentation,
coverage analysis, insights into the business entities and a
breakdown of evaluation criteria such as the average rating
by the possibly interesting criteria. The other path is a de-
tailed performance analysis of the recommender algorithms’
past and present predictions broken down by valuable cat-
egories identified in the first step. One such analysis might
be F-measure vs. customer segment, another may be RMSE
of algorithm A compared to RMSE of algorithm B vs. cat-
egory.

Another key aspect from our evaluation framework is the

ease of use of the resulting tool. Though predefined reports
can be used, the strength lies in the ability to swiftly create
ad-hoc queries in a graphical way. This enables business an-
alysts to satisfy their own information needs and speeds up
the work of researchers. Together with the ability to drill
down along defined hierarchies in the data and the option
to refine queries by slicing and dicing, interactive work with
the data is encouraged. Besides that, it still remains possi-
ble to programmatically query the framework and to extend
queries with custom functions for deeper analysis.

To assess the benefits of the proposed framework, we im-
plemented a research prototype and present experimental
results that demonstrate its ability to comprise an effective
way for evaluating recommender systems. In particular, our
experimental results are able to provide insight regarding al-
ready identified types of behavior by existing recommender
systems. Our main contributions are summarized as fol-
lows: i) A flexible multidimensional framework for evaluat-
ing recommender systems that can serve as a template for
researchers using it with their own recommender datasets.
ii) A comprehensive procedure for efficient development of
the framework in order to support analysis of both, data
set facets and algorithms’ performance using ad-hoc OLAP
queries (e.g., drill-down, slice, dice). iii) The consideration
of a much extended set of evaluation measures, compared to
standards such as the RMSE. iv) Experimental results with
interesting findings that relate to the recent popular $1M
Netflix prize (netflixprize.com).

2. RELATED WORK
The integration of OLAP and recommender systems was

introduced by Adomavicius et al. [2, 1], who treat recom-
mender systems together with their common dimensions of
users, items, and ratings as inherently multidimensional.
These works focus on the multidimensionality of the gen-
eration of recommendations and suggest that recommenders
themselves are multidimensional entities that may be queried
like OLAP cubes. In contrast, our work acknowledges the
multidimensional nature of recommender systems but fo-
cuses on the multidimensional evaluation of their recommen-
dations.

Existing frameworks for recommender systems analysis
usually focus on the automatic selection of one recommen-
dation technique over another. E.g., [7] researches an API
that allows retrieval and derivation of user satisfaction with
respect to the recommenders employed. The AWESOME
system by Thor and Rahm [14], the closest approach to
ours, shares the data warehousing approach, the description
of the necessary data preparation (ETL), and the insight of
breaking down the measures used for recommender perfor-
mance analysis by appropriate categories. But contrary to
the approach presented here, the AWESOME framework is
solely focussed on website performance and relies on static
SQL-generated reports and decision criteria. Furthermore,
it incorporates no multidimensional approach and does not
aim at easing end-user-centric analysis or providing dynamic
analysis at all.

Recent interesting findings with respect to data set char-
acteristics that have a noteworthy effect on recommender
performance, when modeled appropriately, are e.g. the re-
sults obtained during the Netflix challenge [3, 10] on user and
item base-effects and time-effects in data. The long time it
took to observe these properties of the data set might be an

Figure 1: The three tiers of the framework. The bottom tier
consists of source data and the necessary extract-transform-
load process. The middle tier represents the relational data
warehouse structure and the top tier consists of the OLAP
cubes available to the end users.

indicator that with currently available tools proper analy-
sis of the data at hand is more difficult and tedious than it
should be. This motivates the creation of easy to use tools
enabling thorough analysis of the data sets and the recom-
mender algorithm’s results and presenting results in an easy
to consume way for the respective analysts.

3. PROPOSED FRAMEWORK
Analysis of recommender algorithms works by calculating

an (error) score per prediction given a ground truth. Usu-
ally, those scores are then aggregated over the whole dataset
or each < prediction, groundtruth > pair, resulting in a sin-
gle condensed number.

Considering these (error) scores as fact information re-
garding the recommender algorithms’ performance, we aim
at relating the relevant dimensions to these facts (measures).
This paves the way for multidimensional analysis, where ag-
gregate scores still are available, but slicing, dicing, drill-
down, and combining different measures in ways meaningful
to business analysts becomes feasible, too. Thus, we nat-
urally reach an OLAP approach, which is based on linking
factual information to dimensions used for interpretation.

Our framework will be helpful to business users and rec-
ommender algorithm researchers, who can use it as a tem-
plate for their own datasets without changing anything but
the data load (ETL) component. Business analysts already
employing multidimensional analysis tools can use our frame-
work as a guide to extending analytic capabilities to recom-
mender systems. Extending our framework and adding ex-
isting dimensions from corporate OLAP cubes for extended
analysis capabilities is possible and encouraged.

3.1 Overview of the Framework
The proposed multidimensional framework (figure 1) fol-

lows a three-tier design approach.
The foundation of the framework is the data gathered

for the analysis of recommender systems. This data, stem-
ming from the algorithms’ predictions and from external

Figure 3: Core data and its enrichment through derived data
(increase-insight data)

sources (e.g., ERP, CRM), resides on tier 1 together with the
dataset-specific Extract-Transform-Load (ETL) prepared it
for the above tiers. From the respective source, the master
data, the transactional data, and the algorithm predictions
are cleaned, transformed, and subsequently imported into a
data warehouse, while referential integrity between the ele-
ments is maintained.

The second tier is a relational data warehouse and it is
used to connect the fact information present in the frame-
work with the available dimensions and to enforce referential
integrity. Additionally, derived information is made avail-
able via views.

The top tier, tier 3, contains the multidimensional cal-
culations, aggregations and partitions the cubes for rating
prediction and item recommendation comprise of. This is
the layer the users of the framework connect and interact
with. Together with the base data, the dimensions and core
measures used in the proposed framework in more detail in
the following subsection.

3.2 Architecture of the Framework
Following the flow of the data, we will start with present-

ing in more detail what data is loaded into the framework.
First, the algorithm’s training data is loaded into the rela-

tional data warehouse. For most of today’s algorithms this
is so-called explicit or implicit feedback data consisting of
previous ratings, shopping baskets, click-logs or similar. To-
gether with the training data, the test data (test set) used
for evaluation of the recommender and the predicted infor-
mation (i.e. ratings or items) are loaded into the respective
tables for train, test and prediction. Additionally, the re-
spective dimensions for analysis are loaded into the frame-
work. They are the metadata for analysis and to a large
extend should be available as corporate master data; see
table 1 for a reference of the dimensions.

Fact information and the regular dimension information

Framework Dimensions

User
Occupation
Item
Category
Component
PredictionMethod
Date
Time
Age
Experimentation
eCommerce

Table 1: The dimensions proposed for our framework.

forms what we will call core data as it is present in every
recommender setting.

Additionally, in a recommender scenario it is often mean-
ingful to use facts as dimension members: i.e., it is certainly
interesting to explore recommender performance against cus-
tomer classification or against item sales or training instances
per user or item. This information, which we will call increase-
insight data is present in the respective fact tables in and
can usually only be used as a slicer with complex and slow-
running query statements. In the framework, this informa-
tion is added to the dimensions it belongs to, such as User
or Item, via views.

Exemplarily, figure 3 shows rating fact data that is related
to the respective user dimension to provide some increase-
insight data (here: the number of active days as DaysActive,
the number of ratings spent as CountRatings, and informa-
tion about the first and the last rating). Table 2 shows
available information for the user dimension. The item di-
mension share analogous members.

Core data represents the algorithms’ training data, their
persisted predictions and the related dimensions. Com-
mon examples for training data include, e.g., past rat-
ings, purchase transaction information, click streams
from an online shop and audio listening histories. The
metadata used for analysis of the fact data is added
to the framework by means of dimensions and their
hierarchies.

Increase-insight data Especially in business scenarios not
all users or items are equal. This leads to the fact
that algorithm prediction errors may have different
weight depending the subject in question. Many per-
formance indicators for importance with respect to a
business scenario are easily derived but they consti-
tute fact information instead of dimension information.
Increase-insight data describes former fact (measure)
data that is pivoted to dimension members for addi-
tional analysis capabilities. Examples include dynamic
abc-analysis information, rating or purchase counts,
days of activity and activity co-efficients.

Users should only connect to OLAP cubes for Rating Pre-
diction and Item Recommendation. Furthermore, the di-
mensions in the multidimensional space mostly parallel their
relational cousins. Thus, we now proceed with the descrip-
tion of the multidimensional space as presented in figure 2.

Square Error
(f) Mean Absolute Error
(f) Mean Square Error
(f) RMSE
(f) RMSE Difference

User

Item

Category

Credits

PredictionMethod

Date

Time

User

User

Item

Category

Credits

PredictionMethod

Date

Time

Predicted Rating
(f) Avg Predicted Rating
(f) Avg Pred Rating StDev

User

Item

Category

Credits

Date

Time

All / Train / Test Ratings
(f) Average xyz Rating
(f) Avg xyz Rating StDev

User

Item

Category

Credits

Numbers

(User Age in Days)

Numbers

(Item Age in Days)

Lifetime Analysis
(f) Average Rating
 (Lifetime)

Classic
Members

Derived
Members

Item

Classic
Members

Derived
Members

Category

Category
Tree

Credits

Date Time

Rating Prediction Cube

Information Retrieval
(f) Precision
(f) Recall
(f) F-measure
(f) F-m. Difference
(f) Average Rank

User

Item

Category

Credits

PredictionMethod

Date

Time

Numbers (Rank)

User

Item

Category

Credits

PredictionMethod

Date

Time

Numbers (Rank)

Predicted / True
Positive / False Positive
Items
Item Count
Item Amount
(f) Item Value
(f) Average Item Value

User

Item

Category

Credits

Date

Time

All / Train / Test Items
Xyz Item Count
(f) Avg xyz Item Value

User

Item

Category

Credits

Numbers

(User Age in Days)

Numbers

(Item Age in Days)

Item Lifetime Analysis
Item Count
Item Amount
(f) Avg Value (Lifetime)

Item Prediction Cube

Numbers

Prediction
Method

Algorithm
Taxonomy

User

Item

Category

Credits

Prediction Method

Date

Time

Distinct Categories /
Items
Item Distinct Count
Category Distinct Count

LEGEND
Dimension Hierarchy Attribute

Dimension1

Dimension2

Measure Group
Measure1
(f) Calculated Measure2

Figure 2: The two cubes, their measure groups, and the related dimensions.

Sample increase-insight data

ABC-classification
Count of rated items
Count of items
Date of first rating
Date of first item
Number of active days
Ratings per active day
Items per active day

Table 2: User increase-insight data added for
train, test and the union of both.

The Date, Time, and Age dimensions are for temporal
analysis of both, the recommender algorithms’ predictions
and the base data. Age refers to the relative age of the user
or item at the time the rating is given / received and al-
lows for extended temporal analysis (c.f. section 4.2). User
and the related dimensions such as UserProfile and UserDe-
mographics allow for analysis by user master data and by
dynamically derived information such as activity related at-
tributes described above under increase-insight data. Item
and the related dimensions such as ItemCategory and Cred-
its (alternatively: Components) parallel the user-dimensions.
The PredictionMethod dimension allows the OLAP user to
investigate the effects of the various classes and types or
recommender systems and their respective parameters. As
recommender algorithms usually accompany a commercial
or scientific application (e.g., eCommerce) that will have
dimensions on its own, these dimensions can easily be inte-
grated into and be used by our framework. In case this
framework is used in an experimentation-driven scenario
[5], such as an online or marketing setting, Experimenta-
tionMethod related dimensions should be added. They are
analogous to the PredictionMethod dimension but are more
specific to their usage scenario. All dimensions are used in
both cubes as presented in figure 2.

The measures being analyzed in both cubes can be grouped
by basic statistical and information retrieval measures. Among
the basic statistical measures are counts and distinct counts,
averages and their standard deviations (stdev), ranks, (run-
ning) differences and (running) percentages of various totals
for each dimension table, train ratings, test ratings and pre-
dicted ratings. Several of them are directly exposed, while
others—such as the percentages and ranks—are provided via
MDX. A listing of the directly exposed measures for the Rat-
ing Prediction and the Item Recommendation cubes is found
in tables 3 and 4, respectively. Among the information re-
trieval measures are the popular MAE and (R)MSE for rat-
ing prediction, plus precision, recall and F-measure for item
prediction. We also support novelty, diversity, and coverage
measures, which improve the user experience. Furthermore,
for comparative analysis, the differences in the measures be-
tween any two chosen (groups of) prediction methods are
supported as additional measures.

4. RATING PREDICTION PROTOTYPE
This section describes the implementation of a research

prototype for the proposed framework and its application to
a standard recommender dataset. The prototype was imple-
mented using Microsoft SQL Server 2008 and the presented

SQUARE ERROR
Mean Absolute Error (MAE)
Mean Square Error
Root Mean Square Error (RMSE)
RMSE Difference (A minus B)

PREDICTED RATINGS
Average Predicted Rating
Average Predicted Rating StDev
Predicted Rating Count

ALL RATINGS
Average Rating
Average Rating StDev
Rating Count

TRAIN RATINGS
Average Train Rating
Average Train Rating StDev
Train Rating Count

TEST RATINGS
Average Test Rating
Average Test Rating StDev
Test Rating Count

LIFETIME ANALYSIS
Average Rating (Lifetime)

Table 3: Measure Groups in capital letters and their respec-
tive Measures for the Rating Prediction cube

The Item Recommendation Cube

INFORMATION RETRIEVAL
Precision
Recall
F-measure
F-measure Difference (A minus B)
Average Rank

PREDICTED ITEMS, TRUE POSITIVE ITEMS,
FALSE POSITIVE ITEMS
Item Count
Item Amount
Item Value
Average Item Value

ALL ITEMS, TRAIN ITEMS, TEST ITEMS
Item Count
Average Item Value

Table 4: Measure Groups in capital letters and their respec-
tive Measures for the Item Recommendation cube.

results could all be obtained graphically using Microsoft Ex-
cel 2007 and later.

4.1 Prototype Implementation
In our evaluation, the prototype considers the Movielens

1m data set [6], which is freely available and a common
benchmark for recommender systems. It consists of 6.040

users, 3.883 items, and 1.000.209 ratings received over roughly
three years. Each user has at least 20 ratings and the meta-
data supplied for the users is userid, gender, age bin, oc-
cupation, and zip-code. Metadata for the item is movieid,
title, and genre information.

For the ETL process, SQL Server Integration Services
were used loading the Movielens 1m data set from text files
into the framework’s relational data warehouse. Data types
were adapted, surrogate keys created, and the respective
lookups performed.

The tables used in the warehouse of the prototype are
Date, Time, Genre (instantiation of Category), Item, Item-
Genre (table needed for mapping items and genres), Num-
bers (a helper table for the age / lifetime analysis), Occupa-
tion, PredictedRatings, PredictedItems, PredictionMethod,
TestRatings, TestItems, TrainRatings, TrainItems, and User.
The Item and User table are in fact views over the master
data provided with the Movielens data set and dynamic in-
formation gathered from usage data (c.f. section 3.2. Fur-
ther views are SquareError, AllRatings, and AgeAnalysis.

On top of the warehouse prototype, the Rating Predic-
tion OLAP cube was created using Microsoft SQL Server
Analysis Services. The Item Recommendation cube was not
implemented.

As measures we created the respective counts and sums,
and further derived measures such as distinct counts, aver-
ages, stdevs, ranks, (running) differences and (running) per-
centage. From square error the core measures MSE, RMSE,
and MAE are derived as presented in section 3.2.

4.2 Performance evaluation
We evaluate the usefulness and effectiveness of the pro-

posed framework by using our prototype. Our focus is on
demonstrating the flexibility and ease with which we can an-
swer important questions for the performance of recommen-
dations. Due to lack of space, we present only the most char-
acteristic results. Since our prototype performs movie rec-
ommendations, we show findings that relate to noteworthy
conclusions drawn from the $1 Million Netflix prize, which
attracted large popularity far beyond the recommender sys-
tems community.

As discovered during the Netflix prize, it is useful to ex-
plicitly model the effects describing changes in the rating be-
havior over the various users (user base-effect), items (item
base-effect), and age of the respective item or user (time
effects) [3, 9, 10]. For this reason, we choose to demon-
strate the benefits of the proposed framework by setting our
scope on those effects followed by an example of comparative
performance analysis. The framework allows an easy visu-
alization of the item effect described e.g. in [9], namely that
there usually is a systematic variation of the average rating
per item. More than that, when bucketing the rating counts
by roughly equal number of items, a trend of heavier rated
items being rated higher can be observed (figure 4). Further
research shows there are two aspects to this effect: first, that
movies receiving more ratings per day are on average rated
higher (blockbuster effect; see figure 5) and, second, that,
in accordance with [10], the average rating increases with
increasing item age (all-time classics effect, figure 6). From
a line of business application point of view, the speed-up in
decision time that can be achieved when using the ratings-
per-day effect is crucial.

Running the same analysis on the users (results omitted

2

2.5

3

3.5

4

4.5

1
 -

 2

3
 -

 5

6
 -

 9

1
0

 -
 1

5

1
6

 -
 2

1

2
2

 -
 2

8

2
9

 -
 3

5

3
6

 -
 4

3

4
4

 -
 5

2

5
3

 -
 6

3

6
4

 -
 7

6

7
7

 -
 9

2

9
3

 -
 1

0
8

1
0

9
 -

 1
2

9

1
3

0
 -

 1
4

8

1
4

9
 -

 1
7

3

1
7

4
 -

 1
9

9

2
0

0
 -

 2
2

7

2
2

8
 -

 2
6

5

2
6

6
 -

 3
0

3

3
0

4
 -

 3
5

5

3
5

6
 -

 4
0

9

4
1

0
 -

 4
7

8

4
7

9
 -

 5
7

5

5
7

7
 -

 7
0

4

7
0

5
 -

 8
8

6

8
8

8
 -

 1
1

9
9

1
2

0
5

 -
 3

4
2

8

A
ve

ra
ge

 R
at

in
g

Number of ratings per item

Figure 4: The effect of the number of ratings per item on
the average rating.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 - 1.12 1.12 -
1.41

1.41 -
1.95

1.95 -
2.82

2.82 -
3.63

3.65 -
4.62

4.63 -
6.11

6.16 -
7.50

7.60 -
7.76

7.97 -
9.31

A
ve

ra
ge

 R
at

in
g

Number of Ratings per Day of Activity

Figure 5: The effect of the number of ratings per day an
item receives on the average rating.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
7
1

A
ve

ra
ge

 R
at

in
g

Item Age in Days

Figure 6: The all-time classics effect. Ratings tend to in-
crease with the age of the movie at the time the rating is
received. Age is measured in days since the first rating on
the respective item is recorded.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
 -

 0

1
 -

 1

2
 -

 4

5
 -

 8

9
 -

 1
2

1
3

 -
 1

6

1
7

 -
 2

1

2
2

 -
 2

7

2
8

 -
 3

4

3
5

 -
 4

3

4
4

 -
 5

3

5
4

 -
 6

6

6
7

 -
 8

0

8
1

 -
 9

5

9
6

 -
 1

1
4

1
1

5
 -

 1
3

6

1
3

7
 -

 1
6

5

1
6

6
 -

 1
9

6

1
9

7
 -

 2
4

1

2
4

2
 -

 3
0

4

3
0

6
 -

 3
8

8

3
8

9
 -

 5
5

1

5
5

2
 -

 1
7

1
5

R
M

SE

Item Train Rating Count

Figure 7: RMSE of the Matrix Factorization algorithm vs.
ratings available per item on the train data set.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0
 -

 0

1
 -

 1

2
 -

 4

5
 -

 8

9
 -

 1
2

1
3

 -
 1

6

1
7

 -
 2

1

2
2

 -
 2

7

2
8

 -
 3

4

3
5

 -
 4

3

4
4

 -
 5

3

5
4

 -
 6

6

6
7

 -
 8

0

8
1

 -
 9

5

9
6

 -
 1

1
4

1
1

5
 -

 1
3

6

1
3

7
 -

 1
6

5

1
6

6
 -

 1
9

6

1
9

7
 -

 2
4

1

2
4

2
 -

 3
0

4

3
0

6
 -

 3
8

8

3
8

9
 -

 5
5

1

5
5

2
 -

 1
7

1
5

R
M

SE
 D

if
fe

re
n

ce

b
et

w
e

e
n

 G
A

 a
n

d
 M

F

Item Rating Count on Train

Figure 8: Difference in RMSE between Matrix Factorization
(MF) and Global Average (GA) vs. ratings available per
item on the train data set.

for brevity), it is interesting to note that the user rating
count effect is inverse to the item rating count effect de-
scribed above: the higher the amount of ratings spent by a
given user, the lower his or her average rating. One expla-
nation to this behavior might be that real heavy raters en-
counter a lot of rather trashy or at least low quality movies.

For algorithm performance comparison, the Movielens 1m
ratings were randomly split in two nearly equal size parti-
tions, one for training (500103), and one for testing (500104
ratings). As an example, a vanilla matrix factorization [13]
(RMSE of 0.8831 given the presented train-test-split) was
compared to the global average as baseline method. Algo-
rithm parameter estimation was conducted on the training
samples only using 5-fold cross validation. Figure 8 reveals
that for this factor model, as expected, more ratings on train
do increase the relative performance. But beyond a certain
point the static baseline method will regain lost ground. In-
vestigation into this issue might be interesting for future
recommender models.

In order to demonstrate how easily the previously shown
figures can be generated with the presented framework, fig-
ure 9 show the process of generating figure 7: Starting with
an OLAP client (Microsoft Excel 2010) connected to the
Rating Prediction cube (figure 9a) we see the characteristic

pivot table. Note that with Excel you have the opportu-
nity to only display dimensions and measures related to a
specific measure group, which was employed here—Square
Error is selected. The first step then is adding a dimen-
sion to the pivot table by clicking on it or dragging it to the
”Values” box. This yields figure 9b, presenting the aggregate
RMSE of 1.007 over all predictions by all algorithms. The
next action is limiting the report to show only the results of
the matrix factorization algorithm which is done by adding
the PredictionMethod dimension to the ”Report Filter” field
and selecting the appropriate value from the filter drop down
list (figure 9c). Finally, we can add the desired dimension
member, i.e. Item.[Train Count Rated], on rows (leaving
RMSE values as the column dimension) and, technically, we
are done (figure 9d). Pressing the ”Pivot Chart” button and
tidying up the resulting graphic will lead to figure 7.

5. CONCLUSIONS
We have proposed a novel multidimensional framework

for integrating OLAP with the challenging task of evalu-
ating recommender systems. We have presented the ar-
chitecture of the framework and described the implemen-
tation of a research prototype which can serve as a template
for other datasets. Our evaluation considered the popular
task of movies recommendation, and our results indicate
the suitability of the prototype to easily provide conclusions
whose importance has been indicated during the recent Net-
flix prize. Moreover, we demonstrated the ease of obtaining
the presented results and highlighted the reusability of the
framework due to its template character for recommender
datasets.

In our future work, we will consider the extension and
generalization of our research prototype as well as developing
a web-based implementation that will promote its usage.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge the partial co-funding

of their work through the European Commission FP7 project
MyMedia (www.mymediaproject.org) under the grant agree-
ment no. 215006 and through the European Regional Devel-
opment Fund project LEFOS (www.ismll.uni-hildesheim.de)
under the grant agreement no. 80028934. Furthermore, the
corresponding author thanks Vladimir Stepa for discussions
and advice regarding Microsoft SQL Server Analysis Ser-
vices.

7. REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and

A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional
approach. ACM Trans. Inf. Syst., 23(1):103–145, 2005.

[2] G. Adomavicius and A. Tuzhilin. Multidimensional
recommender systems: A data warehousing approach.
In WELCOM ’01: Proceedings of the Second
International Workshop on Electronic Commerce,
pages 180–192, London, UK, 2001. Springer-Verlag.

[3] R. Bell, Y. Koren, and C. Volinsky. Modeling
relationships at multiple scales to improve accuracy of
large recommender systems. In KDD ’07: Proceedings
of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 95–104,
New York, NY, USA, 2007. ACM.

(a) An empty pivot table. . .

(b) Added the measure ”Root Mean Square Error”

(c) Filtered by ”matrix-factorization”as prediction algorithm.

(d) Drilled down by Item Rating Count on Train.

Figure 9: The making of figure 7.

[4] J. Bennett, S. Lanning, and N. Netflix. The netflix
prize. In In KDD Cup and Workshop in conjunction
with KDD, 2007.

[5] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham.
Seven pitfalls to avoid when running controlled
experiments on the web. In KDD ’09: Proceedings of
the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages
1105–1114, New York, NY, USA, 2009. ACM.

[6] GroupLens. Movielens data sets.
http://www.grouplens.org/node/73.

[7] C. Hayes, P. Massa, P. Avesani, and P. Cunningham.
An on-line evaluation framework for recommender
systems. In In Workshop on Personalization and
Recommendation in E-Commerce (Malaga. Springer
Verlag, 2002.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[9] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434, New York, NY, USA, 2008. ACM.

[10] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 447–456, New York,
NY, USA, 2009. ACM.

[11] A. Krohn-Grimberghe, A. Nanopoulos, and
L. Schmidt-Thieme. A novel multidimensional
framework for evaluating recommender systems. In
Proceedings of the ACM RecSys 2010 Workshop on
User-Centric Evaluation of Recommender Systems and
Their Interfaces (UCERSTI). CEUR-WS, to appear.

[12] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In 1994 ACM
Conference on Computer Supported Collaborative
Work Conference, pages 175–186, Chapel Hill, NC,
10/1994 1994. Association of Computing Machinery,
Association of Computing Machinery.

[13] G. Takács, I. Pilászy, B. Németh, and D. Tikk.
Investigation of various matrix factorization methods
for large recommender systems. In NETFLIX ’08:
Proceedings of the 2nd KDD Workshop on Large-Scale
Recommender Systems and the Netflix Prize
Competition, pages 1–8, New York, NY, USA, 2008.
ACM.

[14] A. Thor and E. Rahm. Awesome: a data
warehouse-based system for adaptive website
recommendations. In VLDB ’04: Proceedings of the
Thirtieth international conference on Very large data
bases, pages 384–395. VLDB Endowment, 2004.

