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ABSTRACT

A key element of the social networks on the internet such as
Facebook and Flickr is that they encourage users to create
connections between themselves, other users and objects.

One important task that has been approached in the lit-
erature that deals with such data is to use social graphs
to predict user behavior (e.g. joining a group of interest).
More specifically, we study the cold-start problem, where
users only participate in some relations, which we will call
social relations, but not in the relation on which the predic-
tions are made, which we will refer to as target relations.

We propose a formalization of the problem and a princi-
pled approach to it based on multi-relational factorization
techniques. Furthermore, we derive a principled feature ex-
traction scheme from the social data to extract predictors for
a classifier on the target relation. Experiments conducted
on real world datasets show that our approach outperforms
current methods.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering; Search process

General Terms
Algorithms

Keywords

Recommender Systems, Cold-Start, Multi-Relational Learn-
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Item Recommendation, Ranking, Joint Factorization

1. INTRODUCTION

Social media applications allow users to connect to each
other and to interact with items of interest such as songs,
videos, web pages, news, groups and the like. Users gener-
ally tend to connect to other users due to some commonal-
ities they share, often reflected in similar interests. One of
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the most important applications in this domain is to provide
each user with a list of items ranked according to the likeli-
hood that they could be interesting to him or her. Moreover,
in many real-life applications it may be the case that only
social information about certain users is available while in-
teraction data between the items and those users has not
yet been observed. In this paper we address how to make
use of social information on users for item prediction, espe-
cially when no collaborative information on the test users is
available.

This task is exactly the one demanded of recommender
systems, which are designed to predict whether and how
much a user will like an item and, in some cases, whether she
will buy, watch, use or evaluate it. Since users usually tend
to connect with others due to common interests and prefer-
ences, the connections between them in social networks may
contain useful information for predicting their preferences.
In [3], it has been shown that such information may indeed
help to improve the quality of rating prediction (i.e. estimat-
ing the rating that a user will give to an item), especially
for cold start users. In this work we restrict ourselves to the
related, but yet distinct task of item prediction, where we
present users a ranked list of items that are likely to suit
their interests. More specifically, we study the problem of
recommending items to users where only social information
is available, but no previous direct interactions with items
has been recorded, i.e. the cold-start problem.

This problem has been approached by Tang and Liu [14][15],
who extract user features from social networks and use them
as predictors of a multi-label classifier that predicts whether
each of the items is interesting to a given user.

One of the most prominent approaches for recommender
systems is matrix factorization. Since social media data is
usually presented as two or more matrices (the social and the
target relation), in order to apply factorization approaches
to social data, one has to resort to their multi-relational
variants [12]. However, special care is necessary if, as in the
cold-start scenario analyzed here, no information about the
test users is given on the target relation.

Approaching this problem with multi-relational matrix
factorization can be seen as a variant of [14], where both
the feature extraction and the item prediction are performed
by sparse factorization models. However, one crucial differ-
ence is that, whereas Tang and Liu perform the two steps
sequentially, plain applications of multi-relational factoriza-
tion methods simply simultaneously factorize all the matri-
ces, which means that both feature extraction and item pre-



diction are performed jointly. It is however unclear whether
the sequential or the joint approach is more appropriate.

Since the task at hand is to rank items according to the
preferences of a given user, it makes sense to optimize the
models for a suitable criterion. The Bayesian personalized
ranking (BPR) [9] has been shown to provide strong results
in many item recommendation tasks [9][10]. We argue that
it is a more suitable optimization criterion for the task ana-
lyzed and present an extension of it to the multi-relational
case.

The main contributions of this work are:

1. We formalize the problem of recommendation in so-
cial networks as a multi-relational learning problem
and present it in a multi-relational factorization frame-
work;

2. We extend the Bayesian personalized ranking (BPR)
framework to the multi-relational case and show how
it can be adapted to optimize for different evaluation
measures;

3. We provide empirical evidence that factorizing the re-
lations jointly is at least as good as the sequential ap-
proach, yielding most of the times better results;

4. Our experiments show that our multi-relational BPR
approach outperforms state-of-the-art approaches for
recommendation in social networks and for cold-start
recommendations in real world datasets.

2. RELATED WORK

The cold-start problem [11] has a long history in the area

of recommender systems and several approaches both attribute-

based and multi-relational have been proposed.

Tang and Liu [14, 15] offer two bi-relational approaches.
Both methods can handle the cold-start problem when no
information is present in the target relation for the entity
receiving the predictions. In their setting, the first relation
comprises two different entities, users and labels, whereas
the second relation is an interaction between the users (friend-
ship). They predict whether users should be connected to
labels, and their methods treat this problem as a multi-label
relational classification task, with the links between users
and labels being the class labels. In both algorithms, the
training data is derived from the friendship relation during
a unique pre-processing step and fed into a SVM for learning.
For modularity maximization (ModMax) [14], the training
data are first k eigenvectors of the modularity matrix [8] of
the friendship relation. For edge clustering [15], a sparse
k-means clustering of the edges between the entities of the
friendship relation is used as a training feature. The labels of
the target relation are treated independently of each other;
the ones with the highest scores are suggested to the user.

Gantner et al. [1] focus on cold-start item recommenda-
tions. Their work is different from the work of Tang and Liu
insofar as they do not use auxiliary relational data but at-
tributes instead. Furthermore, in their work the attributes
belong to the items, but after a transposition of the user-
item-relation this difference is removed. The method pro-
posed by Gantner et al.—BPR-map—starts with a factoriza-
tion of the sparse user-item matrix and subsequently learns
a (linear) mapping on the user features from the factoriza-
tion and the auxiliary user-attribute matrix. The attributes

serve as predictors for the user features, making the model
able to offer predictions for non-observed users; the user
features predicted are in turn used to reconstruct the target
relation.

Ma et al. [6, 5] exploit a friendship relation for rating
prediction which is shown to be effective especially for users
with few ratings. They do not evaluate full-on cold-start sit-
uations, though. SoRec [6] proposes a joint multi-relational
factorization of both the user-item relation and the user-user
relation. As a pre-processing step, they require a normal-
ization of the user-user relation. STE (Social Trust Ensem-
ble) [5] is a weighted combination of a factorization on the
user-item relation and neighborhood score, derived from the
sum of the dot products of the item and the friends.

Jamali and Ester [3] extend the work of Ma et al. on
improving rating prediction by exploiting a social relation.
Their method, SocialMF, employs an additional regularizer
for a standard matrix factorization. The regularization term
forces a user’s features learnt during the factorization of the
target relation to be similar to her friends’ features. This
is shown to improve rating prediction performance at least
for users with few ratings. On the other hand, this method
cannot work for users with no ratings for which only social
information is available.

Singh and Gordon [12, 13] propose a framework for multi-
relational factorization models. They subsume models on
any number of relations as long as their loss function is a
twice differentiable decomposable loss (including Bregman
Divergences). In their work, they address both rating pre-
diction and item recommendation.

Zhang et al [17] contribute an extension of the probabilis-
tic matrix factorization to the multi-relational case. They
propose sharing only the user features among different rela-
tions via a covariance matrix learnt from the data. Addi-
tionally, the authors review different link functions in order
to transform the data within the relations, but their loss
function is always the square loss. Interestingly, they pro-
pose breaking up the item dimension into several smaller
dimensions (given additional information).

Yang et al. [16] model item prediction in a bi-relational
social network as a problem that consists of multi-relational
data and/or attribute data. They evaluate on a ranking
measure but still use a logistic loss or square loss derivatives
for learning. They also show that taking the non-negative
structure of the data into account is rewarded with better
prediction accuracy.

We will review the differences to our approach in section
3.2 after formulating the problem.

3. COLD-START ITEM RECOMMENDATION

IN SOCIAL NETWORKS

3.1 Problem Formulation

This problem can be seen as a specific case of a more gen-
eral relational learning setting. In the general case, there is a
set of entity types £ := {E1, E, ..., E|¢| }. Each entity type is
a set of entity instances F; := {egl), ceny eglEiD}. Entity types
are related through a set of binary relations between them
R ={Ri1,Ra, ..., Rjg|}, where R,,, C E; x E;. For almost all
applications, there is only one relation for which the model
employed should make a prediction. Consequently, we call
this relation the target relation and denote it by Y. The
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Figure 1: An overview of the multi-relational cold-start set-
ting in social networks.

other relations are called auziliary relations A := R\ {Y}
which contain information that is used to improve or enable
the prediction of the target values. In the specific case con-
sidered in this work, there are two entities, £ = {U, I}, where
U is the set of users and I is the set of items. The target rela-
tion represents information about interaction between users
and items is represented as a set of pairs Y C U x I. Finally,
auxiliary information is available in the form a social relation
A C U x U, which represents the existence of a relationship
between a pair of users, e.g. the users are friends. The
items could be videos, for instance, blog posts, or commu-
nities that the users can join; the edges of A may represent
friendship relationships among users; and the implicit feed-
back Y means that users have watched videos, read posts or
joined communities, thus allowing one to assume that they
are interested in them. Figure 1 depicts the general setting.

The task now is to derive a ranked list of items, sorted ac-
cording to the likelihood that a given user will be interested
in each of them. More formally, given a user u, the task is
to derive a total order >, of all items I. In line with [9], this
can be achieved by learning a scoring function g : U x I — R
capable of generating predictions for users U™** and sorting
the items according to their scores.

In a full cold-start problem, the task gets increasingly in-
tricate due to additional requirements on the training data:
while auxiliary information in form of a social graph G :=
(U, A) is still available for all users, the training data Y C
U'm % I does not contain any information about the users
U'est. Mitigating cold-start effects and the incorporation of
information beyond the target relation are among the hard-
est problems in recommender systems nowadays. It should
also be noted that besides a full cold-start, our approach also
handles slow start situations when the first few user-item in-
teractions become available as well as regular recommender
scenarios.

3.2 State-of-the-Art Approaches

Table 1 lists three state-of-the-art approaches capable of
cold-start item recommendations, namely ModMaz [14], edge

clustering [15], and BPR-map [1]. All of them follow a two
step learning model. ModMaz and edge clustering first ex-
tract user features from the social graph (the auxiliary rela-
tion) and then feed those features into a classifier that pre-
dicts whether each item will be interesting to a given user.
Both approaches use a one-vs-rest linear SVM as a classi-
fier, but they use different feature extraction approaches.
ModMazx works with the top-k eigenvectors of the modular-
ity matrix of the social graph. edge clustering first clusters
the edges in the edge x user representation of the auxiliary
matrix, and then uses the resulting relation of users and
their cluster membership as predictors. BPR-map differs
from this in that it starts with learning from the target re-
lation, first extracting latent user features and item features
from the target relation using a factorization method. Sub-
sequently, it learns a mapping between the user features as
labels and the rows of the auxiliary matrix as predictors.

The predictions for the target relation are made by a (lin-
ear multi-label) SVM for ModMax and edge clustering and
a (linear) BPR regression for BPR-map using the features
learned from and the auxiliary relation.

The cited methods have in common that they learn their
models from the target and auxiliary relations separately in
a sequential way. In the next section, we propose to use an
approach that is able to learn from both relations simultane-
ously and show how it can be generalized to the sequential
case.

4. MULTIRELATIONAL LEARNING WITH
BPR

Following the formalization in section 3, the recommen-
dation task described here can be viewed as an instance of a
multi-relational learning problem which consists of two en-
tities, the users and the items, as well as of at least two
relations, namely the auxiliary relation A (represented by
the social graph) and the target relation Y, represented by
the user-item interaction (figure 1).

Multi-relational matrix factorization models [12] provide a
framework for jointly factorizing multiple relations. In this
section we cast the problem of ranking in social networks
as a multi-relational factorization problem and propose a
model and learning algorithms for it that address the issues
discussed here.

4.1 Ranking in Social Networks—A Multi-
Relational Factorization Problem

Matrix factorization models [4] represent a matrix as the
product of two lower-rank matrices. ! The goal is, given a
partially observed matrix R, to find two matrices E1 and
E2 such that

argmin L(R, E1E2") + Reg(Eq1, Ez) (1)
Eq{,Ez
where L is a loss function that measures the reconstruction
error of R given E; and E2 and Reg a regularization term
to prevent overfitting.
A matrix can be viewed as a relation between two entity
types. When we follow equation (1), we may represent each
entity type E; by a matrix E; € RIP:>%% where the rows

"Matrices are denoted in bold face to avoid confusion with
entity type and relation identifiers.



ModMax EdgeClustering BPR-map
Target relation treatment dense binary dense binary sparse unary
Model on target relation N/A N/A matrix factorization

Auz. relation treatment
Model on auz. relation
Meta Model

dense modularity matrix
PCA

eigenvectors as predictors to

dense graph
k-means
see ModMax

dense matrix
N/A

auxiliary matrix as predictor

multi-class SVM with labels
as classes

to a regression on latent user
features

Table 1: Baseline methods for the cold-start item prediction task.

are latent feature vectors of the entity type instances and k
is the number of latent features, chosen by model selection.
The two entities participating in a relation R; are denoted by
ERr,;1 and ERr;2. Each relation R is represented by a matrix
R/Fr1IXIEr2| where each entry is given by

R o0 y._ )1 if (ely) e ) E€R,
(eERl ) eER2) T
unobserved  else

Thus the factorization of relation R; is given by R; =
ERilERigT. To make notation simpler, we define the set of
all model parameters © := {E1,..E¢|}.

Singh and Gordon [12] generalized the problem in equa-
tion (1) in cases where there is more than one relation. The
problem is now to find a set of matrices © that minimizes
the sum of the losses on all relations:

argmin Z arL(R,Er1ERr2") + Reg(©)
©  Rer

where ar is an application specific weight for the loss of
relation R and weights are normalized such that:

ZaR:I

ReER

In the specific case considered in this work, there are two
entities, i.e &€ = {U, I} and two relations, R = {Y, A}. Con-
sequently, the specific loss to the problem approached in this
paper is the following:

argmin oy L(Y, UT") + a4 L(A, UUT) 4+ Reg(U,T) (2)
(U.1)

The advantage of formalizing the problem this way, in
comparison to the multi-label classification view in [14, 15]
is twofold. Firstly, it allows for a more straightforward way
to incorporate new entities and relations into the model, as
it would just require adding the loss for the new relation and
the regularization terms for the new entities on the general
loss. Secondly, the models in [14, 15] are able to generate
predictions for one relation alone. With the formalization
proposed here, recommendations can be made for all entities
on all relations, without the need to retrain.

4.2 Multi-Relational Factorization with BPR

Since we are dealing with a ranking problem, it makes
sense to use a loss function that is optimized for ranking.
The Bayesian personalized ranking optimization criterion
(BPR-Opt) [9] has been shown to be a suitable criterion

for ranking in general and item prediction in particular. An-
other reason that makes BPR suitable for the task of ranking
in social networks is that it is tailored to data where only
positive feedback is available (unary data). In fact, for the
task at hand the Y relation is a typical representative of
positive feedback only recommender data. Thus, (u,i) € Y
can be interpreted as a positive feedback given by the user
u about item i. The opposite, however, (u,j) ¢ Y, only
tells us that the user has not yet interacted with item j. For
most applications, it would be unjustified to treat all those
j as being equally valued by the respective user, e.g., assign
all items that he is unaware of and all those items explicitly
ignored the same score (i.e. 0). The same holds true for the
social relation: the fact that a connection between two users
is not observed in the data does not necessarily imply that
there is no connection in the real world.

BPR-Opt makes use of the assumption that, for a given
user u, an item ¢ where (u,7) € Y should be ranked higher
than an item j where (u,j) ¢ Y. For convenience, we define
for each relation R, a set Dr as being the set of triples Dg :=
{(u,%,7)|(u,i) € RA (u,j) ¢ R}. Throughout this section,
we stick to the (u,i,j) notation, although these values do
not necessarily denote users and items as in the example
above; u nonetheless denotes an instance of the first entity
involved in the relation, and 7 and j instances of the second
entity.

If #(u, i) is the predicted score for the (u, ¢) pair on relation
R and i’ﬁi,j = 7(u,1) — #(u, j), BPR-Opt can be defined as
in equation 3.

BPR-Opt(R, Er1Er2") := )

(u,%,j)€EDR

mo(&y.,)  (3)

where o(x) := —1— is the sigmoid logistic function. It is

worth noting that BPR-Opt should be maximized. Opti-
mizing for BPR-Opt is a smoothed version of optimizing for
the well-known ranking measure Area under the ROC Curve
(AUQ). For a proof and more details about BPR-Opt, please
see [9].

Having chosen a loss function, an appropriate regulariza-
tion term still needs to be chosen. In this case, we use Ls
regularization, since the La-regularization terms are differ-
entiable, allowing us to apply gradient-based methods.

In the case of item recommendations for multi-relational
cold-starts, there is more than one relation involved. Con-
sequently, an extension of BPR-Opt for the multi-relational
case is necessary. Following the framework of [12, 13|, we
propose the following extension for multi-relational ranking
in social networks with Bayesian personalized ranking:



1: procedure LEARNMR-BPR(D, R, &)
2 initialize all E € ©
3 repeat
4 for R € R do
5 draw (u,,7) from Dg
2R

14e Tuij
7 end for i
8 until convergence
9 return ©
10: end procedure

Figure 2: Multi-relational extension of the LearnBPR algo-
rithm proposed in [9] with learning rate p and regularization
Ae.

MR-BPR(R,©) =~ ar BPR-Opt(R, Er1Er2")
RER

+ > AelEI® (4)

Ecg

where \g is the regularization constant for entity F.

The optimization problem described in equation (4) can
be solved using a stochastic gradient descent algorithm. In
[9], just such an algorithm, called LearnBPR, is proposed for
the unirelational case, i.e. when there is only one matrix to
be factorized. Figure 2 provides an extension to LearnBPR
that considers the multi-relational case. At each iteration,
one sample is uniformly drawn from Dpg for each relation
R and the parameters are updated in the opposite direction
of the loss function’s gradient at the point sampled. The
derivative of the loss function presented in equation (4) is:

~R
—e Tuij o R

OMR-BPR(R, u,1,j N
(R, u,1,7) ﬁ'%xuij"")\@'@
1+4e Twii

00

= QR

The ﬁ?ﬁj partial derivatives are:

(if —iy) if0=nuy,
o n Juy ito =i,
901 T —uy, if 0 =i,
0 else

where f denotes the f-th latent feature of the entity in-
stance in question. The parameters are optimized using
equation (4).

4.3 Pivotization

The problem of item recommendation can be viewed from
two perspectives:

1. Given a user, which items could be interesting to her?

2. Given an item, which users could be interested in it?

The first perspective is the one taken into account for BPR
optimization as presented before. This is reflected by the
samples Dy, which are composed of a user u and two items
¢ and 7, one a positive example, one a negative. In order
to train a BPR model for the second perspective, Y can be
transposed and samples drawn from Dyr = {(i,u,v)|i €

1: procedure LEARNMR-BPR-P1voTIZATION(D, R, £)
2 initialize all E € ©
3 repeat
4 for R€ R do
5: draw (u,i,j) from Dg
—gR
6 @e@Jr/L(aR%-%ﬁﬁjJr/\@-@)
1+e —uij
7 draw (i,u,v) from Dpr
8

4R
@<—e+u<aR%-%fcﬁ;v+A@~e>
1

+e Tiuv
9: end for
10: until convergence
11: return ©
12: end procedure

Figure 3: Optimizing models for BPR with bootstrapping
based stochastic gradient descent. With learning rate o and
regularization \e.

IAu,v € UN(u,i) € Y A(v,4) ¢ Y}. This is the perspective
adopted in [14] and [15] by one of the evaluation criteria.

The question is: which one of the perspectives is the most
appropriate? Clearly, this depends on the measure employed
to evaluate the algorithm. In a classical recommender sce-
nario, where the ranking performance is evaluated per user
and then averaged, it makes sense to resort to the first per-
spective. On the other hand, in an evaluation setup like the
one in [14, 15] where the recommender performance is evalu-
ated per item, learning under the second perspective should
provide better results. We propose to take both views into
account by sampling from Dgr and Dpr alternately, as de-
scribed in Algorithm 3. We call this horizontal and vertical
sampling pivotization.

4.4 Sequential Learning

The multi-relational extension of the LearnBPR algorithm,
LearnMR-BPR (figure 2), goes in line with the guidelines in
Singh and Gordon [12], where the parameters are learned
simultaneously by sampling examples from all the relations.
In order to investigate the benefits of this joint factorization
approach, we propose to compare it with an analogous model
that learns in a step-by-step fashion, such as ModMaz, edge
clustering, and BPR-map. In order to do this, we will first
learn the user parameters on the auxiliary relation using the
original LearnBPR algorithm, and then factorize the target
relation with the traditional LearnBPR algorithm, making
sure to only update the item parameters (keeping the user
parameters constant at the values obtained during the fac-
torization of the auxiliary relation).

Figure 4 details the sequential MR-BPR variant of our
multi-relational learning approach.

5. EVALUATION
5.1 Datasets

We have three social network datasets: one from a larger
blogging website (Blogcatalog), one from flickr.com (Flickr),
and one crawled from youtube.com (YouTube); each dataset
consists of two relations, with one relation between users and
labels (target), and an additional social relation between
users and other users (auxiliary). Table 2 shows detailed
statistics.



Dataset relation dimensionality | # observations avg. observa- | avg. observa- | sparsity
tions per user | tions per label

Blogcatalog | target 10312x39 14,476 1.4 371.2 96.40%
auxiliary 103122 667,966 64.7 (med 21) - 99.37%

Flickr target 80513x195 107,741 1.3 552.5 99.31%
auxiliary 805132 11,799,764 146.6 (med 46) - 99.82%

YouTube target 31,703x47 50,691 1.6 1,078.5 96.60%
auxiliary 1,138, 4992 5,980,886 5.3 (med 1) - 99,9995%

10:

11:
12:

1
2
3
4
5:
6
7
8
9

Table 2: Statistics of the BlogCatalog, Flickr, and YouTube datasets.

: procedure LEARNBPR-SEQUENTIAL(Dy, Dgs,U, I)

initialize U
repeat
draw (u,i,7) from Dg
UeU+p(as% W MJ+)\U U)
wig

1+e
until convergence

initialize I
repeat
draw (u,1,7) from Dy
I+—TI+u (as 17 .
14e Fuig
until convergence

return U, 1

13: end procedure

Figure 4: Sequential MR-BPR learning algorith

The high sparsity of all relations is instantly noticeable, al-

though there are some differences between the three datasets.
In comparison with Blogcatalog, on Flickr the target rela-

tion is almost an order of magnitude sparser.

Blogcatalog

and YouTube show virtually the same sparsity level on the
target relation, but YouTube is three orders of magnitude
sparser on the network relation with a median of one user
being connected to another.

5.2 Baseline Methods

For better evaluation of the proposed MR-BPR method,

we will field the following well-known and strong baseline
methods (already have been detailed in section 3.2):

e Modularity maximization (ModMax). ModMax [14] is

essentially a PCA on the auxiliary matrix followed by
a SVM-multilabel regression between the labels on the
target relation and the top eigenvectors of the PCA as
features. The interesting aspect of ModMax is that the
auxiliary relation gets converted into a modularity ma-
trix 8] before the eigenvectors are extracted. ModMax
already outperforms wvRN, LBC, and other classical
relational learning algorithms.

Edge clustering. Edge clustering [15] does a k-means
clustering of the edges of the auxiliary relation inter-
preted as a graph. The resulting sparse clusters are
subsequently normalized in a row-wise manner and
used as features for a multi-label SVM like with Mod-
Max.

BPR-map. BPR-map [1] also is a two-step process. In
the first step, a factorization model is learnt on the ob-
served (sparse) part of the target relation. As a regular

factorization model, this does not yield any features for
elements not observed in the training data. In the sec-
ond step, a linear mapping between the user features
from the factorization model and the corresponding
entries in the auxiliary relation is learnt. The aux-
iliary relation serves as a predictor for this mapping
and thus, given information in the auxiliary relation,
the model is able to make predictions for users not ob-
served in the initial factorization of the target relation.

5.3 Measures

For a consistent evaluation with the social analysis litera-
ture, two classical measures for multi-label classification are
employed: Micro-F1 (cf. equation (7)) and Macro-F1 (cf.
equation (6)).

To better capture the overall ranking performance of the
algorithms, the area under the ROC curve, AUC (cf. equa-
tion (9)), is analyzed too.

2 * correct(i)

F(@) = true(i) + predicted(i)’ (%)
L F1(2
MacroF1 := 7216[” @ (6)
MicroF] 2% Y, correct(i) )

Yieq true(i) + 3, predicted(i)

AUC(u) 1= —— 7 37N 6(&wi; >0),  (8)
I HI \ ierd INIF
AUC
AUC = 7Z”€U|U| v 9)

The functions correct(i) counts the "hits” of the prediction
model for an item i where an element from the ground truth
is among the elements predicted. The function true(i) emits
the number of elements in the ground truth, and predicted()
returns the number of elements in the respective recommen-
dation list.

5.4 Experiment Protocol

For the experiment protocol, we follow [15] for better com-
parability.

We evaluated a cold-start scenario in which some users
already have social information in the auxiliary relation but
are not yet present in the target relation. The aim is to
predict which labels the cold-start users interacted with on
the target relation.



The experiments were set up as ten-fold cross-validated
experiments at different train-test split ratios. For each
train-test split ratio, the respective ratio of the available
users in the target relation is used for training, together
with all information from the social relation. The remain-
ing percentage of users in the target relation was used as
test data for evaluation. For each train-test split ratio, ten
different splits were generated randomly and continued to
provide equal conditions for all algorithms and to get more
reliable performance estimates. Test data was never used
during training.

As suggested in [15], we remove the dependency on the
length of the top-N list for performance evaluation w.r.t.
Micro-F1 and Macro-F1 by assuming that the number of
true instances is known at prediction time.

On Blogcatalog we created nine different split percent-
ages from 10% to 90% of the target relation being used for
training. For Flickr and YouTube, we used 1% to 10%—a
setting in which hardly any interaction information on the
target relation remains available for training.

5.5 Results

The prediction performance on all three datasets is shown
in figures 5-7. Consistent with [15] we did not run modu-
larity maximization on the YouTube dataset due the to the
vast runtime and memory requirements of the given method.

The overall picture is the same across all three datasets
and all three evaluation criteria employed. In most cases,
the BPR-map yields the lowest performance, although this
method can sometimes tie with ModMax an/or edge clus-
tering, in rare cases even outperform those methods. Edge
clustering outperforms ModMax on Micro-F1 and Macro-
F1, except on Blogcatalog, where they are tied (figures 5—
6). For AUC, the performance is the complete opposite,
with ModMax easily outpacing edge clustering (figure 7).
Sequential MR-BPR is the runner-up method, while MR-
BPR performs best.

From a datasets perspective, it is interesting to note that
Flickr seems to be the toughest dataset with respect to
Micro- and Macro-F1, but not so for AUC (where we even
observe a reversal of the order of sequential MR-BPR and
jointly learning MR-BPR). The top-performing methods on
Flickr (AUC), MR-BPR and sequential MR-BPR, achieve
very stable and highly correct ordering in pairs. By com-
parison, Blogcatalog and YouTube seem to be rather easy
datasets, except for AUC. On Blogcatalog, edge clustering
manages to tie with the proposed MR-BPR algorithms for
the splits from 50% on for AUC.

The curves for the BPR-map and our MR-BPR are very
similar across all datasets and evaluation measures. Nonethe-
less, the performance of both approaches is very different
with MR-BPR easily outperforming BPR-map. Sequential
MR-BPR manages to tie with the jointly learning MR-BPR
on several occasions, such as on Flickr and YouTube AUC
and on YouTube Micro-F1. Though, in general MR-BPR
performs significantly better.

Finally, we note that for Macro-F1 the pivotization of MR-
BPR (section 4.3) leads to significantly improved results for
all three datasets compared to the version without pivotiza-
tion. Results omitted for brevity.

Criterion BPR- ModMax* Edge Clus-
SVM tering*
MicroF1 @ 10% | 0,2702 0,2756 0,2815
MicroF1 @ 90% | 0,3838 0,3756 0,3592
MacroF1 @ 10% | 0,1724 0,1735 0,1640
MacroF1 @ 90% | 0,2697 0,2390 0,2477

Table 3: Using an SVM on top of features learnt through
LearnBPR scheme vs. features learnt using modularity max-
imization and edge clustering. The results are on the Blog-
catalog dataset. Methods with an (*) used optimized hyper-
parameters. Higher values are better.

5.6 Discussion

ModMax and edge clustering are strong state-of-the-art
methods for the multi-relational cold-start item recommen-
dation problem. Both are known to outperform classical
relational learning algorithms in the present problem set-
ting[15]. While BPR-map is also a strong method, it is not
designed for a multi-relational setting, but rather for use
with i.i.d. attributes as auxiliary information; this is re-
flected by the results it can achieve.

As the ModMax [14] algorithm proposes the conversion
of the auxiliary relation into a dense modularity matrix [8],
we wanted to investigate the strength of this pre-processing
step. To do so, we replaced this feature extraction process
with a plain factorization of the auxiliary relation. The user
features learnt this way are treated as vectors, normalized
by their norm and subsequently fed into the same multi-
label SVM process as Tang and Liu (using the same hyper-
parameters they report). From the results in table 3, it is
clear that there is virtually no difference between the multi-
label SVM on the expensive eigenvectors of the modularity
matrix or the multi-label SVM on the user features from the
factorization.

This is an interesting observation, as the sparse matrix
decomposition [4] of the LearnBPR [9] methods is easy to
implement, of low complexity and additionally very fast, yet
principled. We may add that optimized hyper-parameters
have not been searched - neither for the BPR factorization
of the auxiliary relation nor for the SVM learning with the
BPR features as parameters. Instead, we simply re-used the
hyper-parameters from Tang and Liu for the SVM and from
MR-BPR for the factorization.

An important factor in the performance we saw on the
various datasets and evaluation methods, we believe, should
be attributed to interpreting the underlying multi-relational
data in a more appropriate way: BPR treats input data
as sparse and unary. This benefits MR-BPR in two ways.
Firstly, it treats the auxiliary relation as sparse and unary
while BPR-map, ModMax, and edge clustering do not do so.
Secondly, ModMax and edge clustering do not take this data
property for the target relation into account, while MR-BPR
and BPR-map do. We argue that edge clustering performs
better than its cousin, ModMax, because it generates sparse
features (from a dense interpretation of the matrix) for its
final learning step. Further to this, we believe that the sim-
ilarity in shape of the performance curves of BPR-map and
MR-BPR may result from the conceptual similarity with re-
spect to the interpretation of the target relation as positive-
only feedback and the application of the BPR-Opt ranking
criterion.
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We should add that there may also have been more po-
tential for edge clustering and ModMax (and BPR-SVM for
that matter) if the parameters had been optimized for the F-
measure evaluation scheme. Although it is hard to optimize
directly for F-measure, Musicant et al. [7] have shown that
for the SVM both, C4+ and C_ need to be searched for an
approximate optimization. It is worth noting that the BPR
learning framework does not directly optimize, but simply
leaves enough room for general optimizations to arbitrary
evaluation criteria. For that matter, all hyper-parameters
for the BPR family algorithms have been searched such that
optimized conditions for an evenly weighted combination of
the evaluation criteria were created.

The joint learning of the full multi-relational factoriza-
tion is what we consider a major improvement over pre-
vious methods. Not only is it in line with the findings
from [12], but it is also highly scalable (i.e., virtually for
free) and performs well. However, we do agree that it would
be difficult for the competing SVM approaches to realize
such joint learning without an expectation maximization ap-
proach. We would have expected the jointly learnt MR-BPR
to outperform its sequentially learnt cousin on a more pro-
nounced level. For this reason, more detailed research on
this this trait will be a part of our work in future. Our con-
jecture is that a better factorization on the auxiliary matrix
is meaningless when is not accompanied by an improved fac-
torization on the target relation.

5.7 Reproducibility of the Experiments

For modularity maximization and edge clustering, the op-
timal hyper-parameters (the number of latent dimensions
for the feature selection and the SVM cost parameter) for all
datasets are taken from [15]. For BPR-map and MR-BPR,

the optimal hyper-parameters have been estimated via grid
search on the largest training split of each respective dataset.
BPR-map has two sets of hyper-parameters, where the first
set is used for the initial factorization of the target relation
(u=0.01, A, = 0.01, A; = 0.01, A; = 0.00005 and 300 iter-
ations for all datasets and k = 500 for Blogcatalog, k£ = 200
for Flickr and YouTube) and the second set is used for the
subsequent mapping of the latent feature to the auxiliary
relation (A, = 0.0025, A\; = 0.0025, A\; = 0.00025, p = 0.01,
300 iterations, Amapping = 0.01, 15000 mapping iterations,
Mmapping = 0.1 for all datasets and k& = 500 for Blogcatalog
and k = 200 for Flickr and YouTube). For MR-BPR the
hyper-parameters are k = 500, u = 0.02, Ayser = 0.0125,
Aitem = 0.0005, 300 iterations, « 0.5 for Blogcatalog;
k = 200, = 0.05, Auser = 0.005, Xjtermn = 0.0005, a = 0.5,
300 iterations for Flickr; and k = 200, = 0,1, A = 0,0125,
Aitem = 0,0125, a = 0,5 and 300 iterations for YouTube.

The code for MR-BPR is available at: http://www.ismll.
uni-hildesheim.de/software.

The code for BPR-map is available in the MyMediaLite
framework [2]. The code for ModMax and EdgeClustering
is available from the homepage of the first author of [14].

The datasets are available from the homepage of the first
author of [14].

6. CONCLUSION

In this work, we formalized the special link prediction
task of item recommendation in social networks in a multi-
relational framework. We then presented a multi-relational
factorization approach to the problem. Since the task of item
prediction is a ranking task, the Bayesian personalized rank-
ing (BPR) framework was extended to the multi-relational



case, so that the approach proposed here offers a model op-
timized for a ranking loss function.

Our experiments on real world datasets show that our ap-
proach outperforms state-of-the-art competitors in different
evaluation measures without the need higher runtime.

One of the advantages of multi-relational matrix factor-
ization techniques against state-of-the-art approaches like
ModMax and edge clustering is that there is no need for any
kind of preprocessing of the auxiliary relation, such as mod-
ularity matrix computation or clustering of edges. Instead
of factorizing relations separately, our experiments suggest
that learning them jointly yields at least comparable results.
A thorough comparison between joint an sequential learning
of the auxiliary and target relations is left for future work.
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