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Abstract

Jet engines need to be certified before going into service, i. e., any dangerous
vibration has to be detected. Therefore the eigenmodes, displayed as curves in
Campbell diagrams, need to be identified first. At the moment this is done man-
ually by engineers. In this paper we introduce a way of automatically detecting
eigenmodes in Campbell diagrams by introducing an extension of Hough trans-
form.

1 Introduction

Jet engines need to be certified before going into service: dangerous vibrations have to be detected
and resolved by redesign. The vibration data is usually visualized as image, called Campbell dia-
gram, having speed on the x-axis and frequency on the y-axis. The stress (or intensity of vibration)
is usually encoded in the color value of the pixel at any given speed and frequency coordinate. In
this diagram, characteristic patterns can be observed: for example the so called Eigenmodes are
quadratic curves that can be approximated by lines (as linear terms usually dominate). Analysis of
Campbell diagrams is usually performed manually by the engineers. They use two sources of back-
ground information: predictions from the Finite Element Model (FEM) of the engine components
and results of sensor (strain gauge) calibration experiments from the laboratory. Our approach aims
at supporting this analysis with machine learning techniques.

Components in jet engines are exposed to vibrations caused by unsteady forces, i. e., relative motions
of rotating and non-rotating parts. Vibration in general can be described by the equation of motion,

kx + cẋ + mẍ = f ,

a differential equation which describes a system consisting of a spring k, a damper c and a mass m.
Furthermore, x describes the displacement of the system. These components determine the force f .

There are two different kinds of vibrations:

1. Every component has a series of natural frequencies, also called eigenmodes or eigenfre-
quencies, which are the frequencies where the component vibrates freely.

2. A system has a series of excitation frequencies (also called excitation orders), which are
time-dependant due to rotational motion.

In Campbell diagrams, eigenmodes are represented as nearly horizontal lines. Excitation orders can
be seen as linear functions having zero offset. Their slope can be calculated for a given engine,
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while their intensity is variant and needs to be measured during tests. Resonance, i. e., oscillation
at the system’s maximum amplitude, occurs at the intersection points of eigenmodes and excitation
frequencies in Campbell diagrams. Intersection points (high stresses) lead to high cycle fatigue, i. e.,
the component brakes after a number of cycles [1]. Campbell diagrams are usually recorded during
engine tests. The aim of the engineers is to detect those resonance points. Currently they are doing
this by manually analyzing the eigenmodes in Campbell diagrams and using additional information
from measurements taken beforehand. In this paper we concentrate on automating the eigenmode
identification.

The problem can be described as follows: Given an image i containing both eigenmodes and exci-
tation orders, find all visible lines and dissect eigenmode lines (Li

e) from excitation order lines.
An eigenmode l ∈ Li

e can be described using the slope-intercept form, i.e., having frequency
f(t) = tan−1(β)t + y0. For the slope we are using the angle representation denoted by β. Further-
more, two sets of eigenmodes are given: Li

lab denotes the set of eigenmodes from sensor calibration
experiments; Li

FEM contains predictions for eigenmodes from the FEM.

In the eigenmode identification problem, it is also important to assign the unique so called eigen-
mode number to the lines. However, not all possible eigenmodes are always present in a Campbell
diagram, thus some of the eigenmode numbers will not be assigned. This makes the assignment of
eigenmode numbers a difficult problem.

2 Method Description

The objective of our method is to detect eigenmodes in a Campbell diagram. Eigenmodes are usually
blurred and lie close to each other. Our approach is based on Hough Transform [2,3] and uses
background knowledge (Li

lab, Li
FEM ). Hough Transform is used in image analysis for recognition

of lines or other parameterizable shapes. The algorithm is given in figure 1:

1 HoughTransform(i, βmin, βmax) :
2 ∀ (x, y) ∈ i :
3 for β ∈ [βmin, βmax] do
4 y0 := y − x · tan(β)
5 H[β][y0] = H[β][y0] + (x, y)
6 H[β][y0 − 1] = H[β][y0 − 1] + λ · (x, y)
7 H[β][y0 + 1] = H[β][y0 + 1] + λ · (x, y)
8 od
9 return H

Figure 1: Simple Hough Transform

Hough Transform takes an image i and an interval of slopes (angles from βmin to βmax) as input. For
each pixel (x, y) ∈ i it calculates which lines this pixel may belong to. These lines are characterized
by their offset y0 and slope β. The stress (color value) at (x, y) ∈ i votes for all possible lines to
which that pixel may belong. These votes are stored in the accumulator array H . To reduce the
effect of blurring, we transfer the intensity at pixel (x, y) not only for position (β, y0) (to which it
actually belongs), but also to two of its neighbors, (β, y0 − 1) and (β, y0 + 1). We empirically set λ
to 0.8. Obviously, arg max(β,y0) H denotes the most significant line in image i.

For the eigenmode lines being blurred in the campbell diagrams, several (local) maxima in H may
correspond to the same line (since they only differ slightly in either β, or y0). Thus, traditional
hough transform needs to be extended, as shown in figure 2. Here Hough Transform is performed
several times. After each iteration, the most significant line in the accumulator array H is deleted
with a width of w from the original image. The line is only added to L̂ if it is not an excitation order.
Excitation orders cross the origin, mode line do not. However, as the lines are blurred, we can not
expect that excitation orders have exactly zero offset. Thus the currently found line is considered as
eigenmode if the offset of a line is greater than offset threshold θ. To calculate θ, we average the
minimal offset in Li

lab and the minimal offset in Li
FEM and take the half of it. Estimations of w:

to be noise-robust the deletion width w should be as large as possible under the condition that no
other line will be deleted, only the currently found one. We average the minimum distance of lines
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in Li
lab and the minimal distance of lines in Li

FEM . As deleting in both directions (upper and lower
from the current line) with this average distance might cause the elimination of an other mode line
having the minimal distance to the currently detected one, this average has to be reduced. Currently,
we simply multiplied it by 0.75. If very few lines are contained in Li

lab or Li
FEM , the average might

be too high, thus we restrict w not to exceed a user-defined maximum (wmax).

1 iterativeHT(i,K, w, θ, βmin, βmax)
2 Li

e := ∅, k = 0
3 while k < K do
4 H = HoughTransform(i, βmin, βmax)
5 (β, y0) = arg max(β,y0)∈H H
6 if y0 > θ
7 Li

e = Li
e ∪ {(β, y0)}, k = k + 1

8 fi
9 delete line (β, y0) from image i with width w

10 od
11 return Li

e

Figure 2: Iterative Hough Transform

The algorithm presented so far recognizes lines in terms of their offsets and slopes. To assign
eigenmode numbers we match the lines recognized by Hough Transform either i) to the eigenmode
lines in the Finite Element Model Li

FEM , or ii) to the eigenmodes in Li
lab and use that eigenmode

numbers as predictions for the detected lines.

To quantify the differences between lines we use the integral between them. There are different
possibilities to match the recognized lines to the lines in the background model. We implemented:

1. GreedyBestFitMatch: For each detected line le ∈ Li
e we determine its pair p(le) ∈ Li

lab

or Li
FEM . (p is not necessary bijective.) Let l′e =argminle∈Li

e
{difference(le, p(le))}. We

assign the mode number of p(l′e) to l′e. We remove l′e from Le, and p(l′e) from Li
lab or

Li
FEM . We repeat it until no eigenmodes are left in Li

lab or Li
FEM .

2. PriorityMatch: We take into account the detection order of lines in an image and first match
those lines to eigenmodes in Li

lab or Li
FEM which have been found first.

As both matching techniques are greedy, we perform local search to optimize the difference between
the recognized lines and the lines in the background model.

3 Preliminary Evaluation

As our work is still on-going, we only present preliminary results of our evaluation. For evaluating
our approach we used a real-life data set from a major jet engine manufacturer consisting in total
of 201 Campbell diagrams from 14 engine tests performed on one engine. Tests performed several
times using the same settings resulted in equivalent Campbell diagrams. To reduce noise and make
eigenmode lines clearer, as a preprocessing step we aggregated the equivalent Campbell diagrams
pixelwise. This led to 42 non-equivalent Campbell diagrams. Furthermore the data set contained in
total 571 FEM eigenmode predictions and 271 eigenmodes detected in the laboratory in total (i.e.
on average 14 FEM predictions and 6-7 lab-detected eigenmodes per diagram). We measured the
quality of our new approach by Root Mean Squared Error (RMSE) regarding the area (integral)
between the detected line lj and the true (annotated) line laj . We performed mode line recognition
and calculated RMSE for each Campbell diagram individually, we report the avergage of them.

RMSE =

√√√√∑|Li
e|

j=1 (
∫
|lj − laj |)2

|Li
e|

We performed three experiments. According to domain experts’ advise we set the hyperparameter
K to 30 in both experiments. The first experiment aims at evaluating the accuracy of our line
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recognition algorithm (i.e., without evaluating the assignment of eigenmode numbers), the 2nd and
3rd experiment assesses the overall quality of our approach including the assignment of eigenmode
numbers. In the first experiment setting we matched the detected lines to the eigenmodes annotated
by experts (GreedyBestFitMatch with local search). Figure 3 shows the results of this experiment.
Here, HTBK x denotes our approach, Lab and FEM are the baselines: RMSE for lines in Li

lab and
Li

FEM . To ensure fair comparision, in HTBK Lab and HTBK FEM for each Campbell diagram
i the count of matched and evaluated lines correpsond to the count of lines in Li

lab and Li
FEM

respectively. Our algorithm clearly outperforms the baselines, i.e. Li
lab and Li

FEM .

In the 2nd experiment we first matched the detected lines against Li
FEM and measured the RMSE

regarding the area between detected lines (assigned with the eigenmode numbers in matching step)
and annotated lines. The results are shown in figure 4. We see that our approach performs better
than the FEM model, the best results were achieved with Priority Matching with local search. The
3rd experiment is similar to the 2nd one, but we matched the detected lines against Li

lab. Results are
depicted in figure 5. We see that our algorithm has nearly the same performance as the lab model,
which it is already very accurate. It must be noted that lab measurements are taken on only a few
components, s. t. only a few lines are available at all. Here the best results have been achieved with
Greedy Best Fit without local search.

Figure 3: Mode line detec-
tion without mode number
assignment

Figure 4: Mode line detec-
tion and mode number as-
signment with Li

FEM

Figure 5: Mode line detec-
tion and mode number as-
signment with Li

lab

4 Conclusion

We presented an extension to Hough Transform which has been shown to have high line recognition
accuracy of eigenmodes. Furthermore, HTBK is able to improve the accuracy of the both back-
ground models, i.e. Li

lab and Li
FEM in terms of RMSE. Future work will extend our work in several

directions. Additional background knowledge will be used to further improve both line detection
and mode number assignment. For the latter one, we will also use supervised machine learning
methods.
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