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Abstract—Due to its various applications, time-series classifi-
cation is a prominent research topic in data mining and com-
putational intelligence. The simple k-NN classifier using dynamic
time warping (DTW) distance had been shown to be competitive
to other state-of-the art time-series classifiers. In our research,
however, we observed that a single fixed choice for the number of
nearest neighbors k may lead to suboptimal performance. This
is due to the complexity of time-series data, especially because
the characteristic of the data may vary from region to region.
Therefore, local adaptations of the classification algorithm is
required. In order to address this problem in a principled way by,
in this paper we introduce individual quality (IQ) estimation. This
refers to estimating the expected classification accuracy for each
time series and each k individually. Based on the IQ estimations
we combine the classification results of several k-NN classifiers
as final prediction. In our framework of IQ, we develop two
time-series classification algorithms, IQ-MAX and IQ-WV. In our
experiments on 35 commonly used benchmark data sets, we show
that both IQ-MAX and IQ-WV outperform two baselines.

Index Terms—time series; classification; individual quality (IQ)

I. INTRODUCTION

Classification of time series is a prominent research topic
in data mining and computational intelligence, because of
its numerous applications in various domains such as speech
recognition [1], signature verification [2], brainwave analy-
sis [3], handwriting recognition, finance, medicine, biometrics,
chemistry, astronomy, robotics, networking and industry [4].

The simple 1-nearest neighbor (1-NN) method using dy-
namic time warping (DTW) distance [1] has been shown to
be competitive or superior to many state-of-the art time-series
classification methods [5], [6], [7]. However, the choice of
parameter k in the k-NN classifier is known to affect the
bias-variance trade-off [8]: smaller values of k may lead to
overfitting, whereas larger values of k increase the bias and
in this case the model may capture only global tendencies.
Recent studies [9] have indicated that significant improvement
in the accuracy of the k-NN time-series classification can be
attained with k being larger than 1. This is due to intrinsic
characteristics in time-series data sets, such as the mixture
between the different classes, the dimensionality, and the
skewness in the distribution of error (i.e., the existence of “bad
hubs” [9] that account for a surprisingly large fraction of the
total error). Parameter k can be chosen using a hold-out subset
of the training data.

In complex time-series data sets, the intrinsic characteristics,
such as the ones mentioned above, may vary from region to
region. As a consequence, setting a single, global choice for
k (≥ 1) can become suboptimal, since each individual region
of a data set may require a different value of k.

In order to address the above problem in a principled way,
and allow for accurate k-NN classification of complex time-
series data, we propose individual quality (IQ) estimation. IQ
estimation is a mechanism that considers a range of values for
k and estimates for each time-series, t, that has to be classified,
the local quality of each k-NN classifier. With local quality we
mean the likelihood of correct classification of t by the k-NN
classifier. This way, a quality score q(t, k) is assigned to each
pair (t, k-NN) of a time series t and a k-NN classifier.

This information is then used by a meta level decision
method that combines the predictions of k-NN classifiers. In
our first approach, IQ-MAX, for each time series t to be
classified, the meta level decision method selects those k that
maximizes the estimated quality. As the quality estimation is
done for each time series t individually, for different time
series, different k values can be selected.

In our second approach, IQ-WV, the outputs of the different
k-NN classifiers are weighted according to the estimated
quality of the k-NN classifiers.

As we propose the classification of time-series based on
a quality score estimated individually for each of them, the
proposed approach is called time-series classification based on
individual quality (IQ) estimation. IQ estimation, in particular
the calculation of the quality score, is performed by regression
models that are trained in order to make accurate estimations
for the quality of the k-NN classifier.

In summary, our contribution can be described as follows:
(a) We introduce IQ estimation. This is a general technique,
that can be applied in context of many different classifica-
tion problems and algorithms (i.e., not just for the k-NN
classification of time-series). (b) We propose a novel method
for IQ estimation. We apply it to estimate k-NN classifiers’
quality for the task of classifying time series. (c) In the IQ-
estimation framework, we propose two approaches, IQ-MAX
and IQ-WV that use the output of IQ estimation in two
different ways in order to make time-series classification more
accurate. (d) We perform a thorough experimental evaluation
with 35 commonly used benchmark data sets. The results



indicate significant improvement in accuracy attained by the
proposed approaches when compared with the widely used 1-
NN classifier and with the k-NN classifier that determines a
single optimal k (k ≥ 1).

The rest of this paper is organised as follows: in Section II
we overview the related work, in Section III we outline IQ
estimation, whereas in Section IV we describe both proposed
approaches IQ-MAX and IQ-WV. In Section V we present
our experimental evaluation. We provide our conclusions in
Section VI.

II. RELATED WORK

By reason of the increasing interest in time-series clas-
sification, various approaches have been introduced ranging
from neural [10] and Bayesian networks [11] to genetic
algorithms, support vector machines [12] and frequent pattern
mining [13], [14]. However, the k-nearest neighbor (k-NN)
classifier (especially for k = 1), has been shown to be
competitive to many other, more complex models [5], [6], [7].
Nearest-neighbor classification of time series uses Dynamic
Time Warping (DTW) [1], because it is an elastic distance
measure, i.e., it is robust w.r.t. shiftings and elongation in
the time series. Recent works aimed at making DTW more
accurate and scalable [15], [16]. DTW has been examined in
depth (a thorough summary of results can be found at [17]),
whereas Ding et al. found no other distance measure that
significantly outperforms DTW [6].

Our proposed approach, i.e., using IQ estimation for k-
NN time-series classification, could be related to works that
perform local adaptation of k-NN classifier. A locally adaptive
distance measure was proposed by Hastie and Tibshirani
[18], while Domeniconi and Gunopulos [19] used SVMs
to define a local measure of feature relevance, i.e., feature
weights depending on the location of a data point to be
classified. In [20] adaptive nearest neighbor classification in
high-dimensional spaces was studied. In contrast to these
works, our IQ estimation based approaches adapt by selecting
the proper value of k (IQ-MAX) and by combining several
k-NN classifiers (IQ-WV), but not by determining a localized
distance function.

Ougiaroglou at al. [21] presented 3 early-break heuristics
for k-NN which can be interpreted as adapting the num-
ber of nearest neighbors. Their heuristics, however, aimed
at speeding-up k-NN, while we focus on making nearest
neighbor classification more accurate using the principled
framework of IQ estimation.

Methods for quality estimation (a.k.a. error estimation)
are usually applied globally in order to estimate the overall
performance of a classification model [22], [23]. In our ap-
proach, we focus on individualized quality estimation. This is
similar to learning the residuals, i.e., the difference between
predicted and actual labels. Duffy and Helmbold followed this
direction and incorporated residuals into boosting of regression
models [24]. In contrast to this work, we do not focus on
boosting. Similarly to our work, Tsuda et al. [25] proposed an
individualized approach for estimating the leave-one-out error

of vector classification with support vector machines (SVM)
and linear programming machines (LPM). Compared to this
work, our proposed approach performs general IQ estimation
(not just for leave one out). More importantly our approach
exploits IQ estimation to improve accuracy of classification
and not as a per se task, as done in [25].

A set of earlier approaches to localized quality estima-
tion for the k-NN classifier was proposed by Wettschereck
and Dietterich [26]. However, these approaches were based
solely on heuristics such as using different k values per
class or per cluster (after clustering the training set). Our
proposed framework is more principled and more generic
than these simple approaches: we distinguish between the
quality estimation step and classification step, our framework
supports systematic usage of the estimated quality, and our
framework allows various classification and regression models.
Furthermore, while predicting a class, our IQ-WV method can
involve arbitrary number of models and arbitrary number of
meta models, whereas Wettschereck and Dietterich [26] use
fixed number models (mostly just one selected model) at the
elementary level, while they use heuristics instead of meta
models.

Finally, the aforementioned works concerned with classifi-
cation of vectors (point data), while we focus on time-series
classification.

III. INDIVIDUAL QUALITY ESTIMATION

In this section, we introduce the concept of IQ estimation,
which is the basis of the proposed algorithms that will be
detailed in Section IV. We first provide a motivating example
and then outline the approach we take for IQ estimation.

A. Motivating Example

As mentioned in Section I, the selection of a single value
of k for the k-NN time-series classification, can lead to sub-
optimal accuracy, because of varying characteristics among
different regions of the data. We investigate this phenomenon
in more detail by first presenting a motivating example for the
simple setting of binary classification of a 2-dimensional data
set.1

Figure 1 depicts a set of labeled instances from two classes
that are denoted by triangles and circles. The density in the
class of triangles (upper region) is larger than in the class of
circles (lower region). We consider two test instances, denoted
as ‘1’ and ‘2’, that have to be classified. We also assume
that the ground-truth considers test instance ‘1’ as a triangle,
whereas ‘2’ as a circle. For ‘1’, its 1-NN is a circle. Thus,
the 1-NN method classifies ‘1’ incorrectly. Using the k-NN
classifier with k > 1 (e.g., in the range between 3 and 6), we
can overcome this problem. However, the selection of a single
k from the above range results in incorrect classification of test
instance ‘2’. Due to the lower density in the circles’ class, by
setting k so that 3 ≤ k ≤ 6, we detect neighbors of ‘2’ whose

1In this example, we use a 2-dimensional data set, thus we depart for the
moment from the examination of time-series data that are in general high-
dimensional, in order to ease the presentation with an illustrative figure.



Fig. 1. The optimal choice of the number of nearest neighbors is not unique
for the entire data, but it may be different from region to region: in case of the
classification of the unlabeled instance denoted by ‘1’, k > 1 (e.g., k = 3)
is required; whereas for ‘2’ we should choose k = 1. (We assume that the
ground-truth considers test instance ‘1’ as a triangle, whereas ‘2’ as a circle.)

majority belongs to the triangles’ class (we assumed ‘2’ is
a circle). This can be observed in Figure 1, where the large
dashed cycle around ‘2’ shows that among all its 6-NN, only
1 belongs to the circles’ class. Thus, unlike for ‘1’, k = 1
is a good choice for ‘2’, because its 1-NN (shown inside the
smaller dashed cycle) has the correct class.

The exemplified problem is amplified with time-series data
due to their higher dimensionality and complexity. We pro-
pose to estimate the likelihood of correct classification (the
quality) of the k-NN classifiers on an individualized basis,
i.e., separately for each test instance to be classified we aim
at estimating the performance of each classifier. Based on
this information, we want to choose the classifiers having the
best estimated quality and combine their outputs. Following
this approach in the example of Figure 1, besides the k-NN
classifier, we need an additional model, which will allow for
predicting that k1 = 3, k1 = 4, k1 = 5 and k1 = 6 are
good choices (i.e. the likelihood of correct classification is
high), when we classify instance ‘1’; whereas k2 = 1 is an
appropriate choice for the classification of instance ‘2’. In
the following we outline how the proposed approach can be
developed.

B. IQ Estimation for Classification: IQ-MAX and IQ-WV

We propose a mechanism for individualized quality (IQ)
estimation for k-NN classifiers, its schema is depicted in
Fig. 2. This mechanism for IQ estimation considers a range

of values for k.2 This examined range of n values for k is
denoted as {ki}ni=1. For each ki-NN classifier and for each
time-series t, that has to be classified, we estimate the local
quality: the quality score q(t, ki) denotes the likelihood that
the ki-NN classifier (1 ≤ i ≤ n) will correctly classify t.

For IQ estimation, i.e. for the calculation of the quality
scores q(t, ki), we introduce a second layer of models. We
refer to the models in this second layer as meta models,
denoted as M∗

i,j in Fig. 2. These meta models are regression
models that are trained to predict the likelihood of correct
classification of each considered ki-NN classifier. For each
ki-NN classifier, we train several meta models, and we use
the median of their outputs as quality score. Instead of the
median we could also use the average, however, we decided
to use the median because it is generally known to be more
stable than the average.

In our first approach, IQ-MAX, for each time series t to be
classified, we select k∗ ∈ {ki}ni=1 that maximizes estimated
quality: k∗ = argmaxki,1≤i≤n{q(t, ki)}. Finally, the k∗-NN
classifier is used to classify t. This is shown in Fig. 3.

Fig. 3. Summary of IQ-MAX approach for k-NN classification.

In our second approach, IQ-WV, the labels predicted by the
ki-NN classifiers are combined according to a weighted voting
schema, we use the quality scores as weights. Formally, we
can describe this approach as follows. Let M t

l denote the set of
ki-NN classifiers (models) that output label l as predicted class
label for a time series t. Denoting the class label predicted by
the ki-NN classifier for the time series t as yki(t), we can
write:

M t
l = {ki|yki(t) = l}

We can calculate wt
l , the weight of label l when classifying

time series t, as the sum of the quality scores associated to
those ki-NN classifiers that predict l as class label:

wt
l =

∑
ki∈Mt

l

q(t, ki)

As final result of the classification of time series t we select
the class label having maximal weight: y(t) =argmaxl{wt

l}.
Note that in terms of Fig. 2, IQ-MAX and IQ-WV differ

only in the meta-level decision method. In case of IQ-MAX
this meta-level decision method consists of selecting that ki-
NN classifier which is expected to be the best. In case of IQ-
WV, respectively, the meta-level decision method is realized
as weighted voting using q(t, ki) as weights of the respective
predicted class labels yki(t).

2Although this range is user-defined, its determination is much simpler
and intuitive compared to selecting a single k. This will be asserted by our
experimental results, which indicate that the range 1−10 was appropriate for
all examined benchmark data sets.



Fig. 2. Classification based on IQ estimation

A concrete algorithm for times-series classification is de-
veloped in the following section, by specifying the secondary
models that perform IQ estimation.

IV. TIME-SERIES CLASSIFICATION BASED ON IQ
ESTIMATION

The proposed mechanism for classification based on IQ
estimation involves two types of models:

• Primary models (for simplicity we refer to them as
models, wherever it is not confusing) – they classify time
series using the k-NN approach (with the DTW distance).

• Meta models – they estimate the quality of the primary
models, see M∗

i,j in Fig. 2.
To train the meta models, we partition the original training

data set, D, in two disjoint subsets D1 and D2 (i.e., D1∪D2 =
D,D1 ∩ D2 = ∅). D2 is called hold-out set. For each time
series t ∈ D2, and for each examined value of ki in a range
{ki}ni=1, we use D1 to classify t with the ki-NN classifier.
Based on the class label of t that is given in D2, we determine
if the ki-NN classifier (for each 1 ≤ i ≤ n) has correctly
classified t. In case of correct classification, we associate with
t a quality score q(t, ki) = 1, otherwise q(t, ki) = 0. Thus,
from the hold-out set D2 we can generate n new data sets D′

i,
1 ≤ i ≤ n. Each D′

i contains all time-series of the hold-out
set D2 along with their associated quality scores (1 or 0) for
the corresponding ki-NN classifier:

D′
i = {∀t ∈ D2 : (t, q(t, ki))}

Next, each generated D′
i acts as the training set for the cor-

responding meta models. Thus, based on the associated quality
scores in each D′

i, the corresponding meta models are trained
as regression models in order to be able to predict the quality
score of the ki-NN classifier (i.e., the corresponding primary

model) for new time series. This is summarized in Fig. 2. The
quality of each primary ki-NN classifier is estimated by n′

meta models, denoted as M∗
i,j , 1 ≤ j ≤ n′. The estimation

outputted by the meta model M∗
i,j is denoted as qj(t, ki). As

already mentioned, we aggregate these quality estimations by
taking their median: q(t, ki) = median{∀j : qj(t, ki)}.

We implement each meta model M∗
i,j as a k′j-NN regression

model based on the DTW distance. (We denote k′j in order
to distinguish from ki that is used in the primary ki-NN
classification models.) The secondary level prediction for a
new time series t∗ ̸∈ D is calculated the following way:

qj(t
∗, ki) =

∑
tN∈N (t∗)

q(tN , ki)

k′j

where N (t) ⊂ D2 is the set of k′j nearest neighbors of t∗ and
q(tN , ki) is the associated quality score of each tN ∈ N (t)
and the ki-NN classifier.

A. Efficiency Considerations

We have to clarify that the training of meta models is
being performed in an off-line fashion, i.e., the process of
partitioning the train data into D1 and D2 and generating meta
level training sets D′

i is performed off-line, independently of
the (online) classification of unlabeled (or test) time series.

Regarding the (online) time needed to classify a time series,
first note, that the DTW can be calculated fast and nearest
neighbors can be found efficiently using recent indexing tech-
niques [16], [27], [28]. Furthermore, we would like to point out
that the schema presented in Fig. 2 is a conceptual description
of our approach; in order to implement it efficiently, one can
exploit an interesting property of nearest neighbor classifica-
tion and regression which we describe below. Suppose we want
to classify a time series t using its k1 < k2 < ... < kn nearest



neighbors.3 For this task, most of the computational costs are
spend for finding the nearest neighbors. However:

1) While we classify t with kn nearest neighbors, with
minimal additional overhead we can produce the clas-
sification results for the other cases too, because the
sets of k1, k2, ..., kn−1 nearest neighbors of t, denoted
as Nk1(t),Nk2(t), ...,Nkn−1(t), are subsets of the kn
nearest neighbors: Nk1(t) ⊂ Nkn(t), Nk2(t) ⊂ Nkn(t),
..., Nkn−1(t) ⊂ Nkn(t). Therefore, the nearest neighbors
required for k1-NN, k2-NN, ... , kn−1-NN classifications
can be found fast among the kn nearest neighbors.

2) Furthermore: if the time series in two data sets are
identical, only their class labels differ, and we want to
classify a new time series t∗, we need to determine the
nearest neighbors of t∗ only once. This can be exploited
in our case, because the train sets of all the meta models
consist of same time series (only the class labels differ).

Taking both of the above observations into account, the
whole meta level, containing in total n× n′ nearest neighbor
regression models, can be implemented at approximately the
same computational costs as one single nearest neighbor
regression model with k′ = max{k′1, k′2, ...k′n′}. Similarly, all
the primary level models together can be implemented at ap-
proximately the same computational costs as one single nearest
neighbor classification model with k = max{k1, k2, ...kn}.

Regarding the training procedure and the respective off-
line (training) time of our approach, the computationally
expensive part of the calculations consist of the classification
of the time series of the hold-out data set D2. The same is
done in case if we search for a globally optimal k for the
k-NN classifier. Therefore, the execution time of the (off-
line) training procedure of our approach is the same as the
time required for finding a globally optimal k for the k-NN
classifier using the hold-out data set D2.

We summarize this discussion by pointing out that, de-
spite its complex schema, our approach can be implemented
efficiently. Assuming such an implementation, the execution
times do not drastically differ from that of one single a
k-NN classifier. The online time necessary to classify new
time series, only increase by a small factor, while the offline
(training) time is approximately the same as the time required
to find a globally optimal k for one single k-NN classifier.

V. EXPERIMENTAL EVALUATION

A. Experimental Configuration

To assist reproducibility, we provide a detailed description
of the configuration of our experiments.

Methods. We compare the proposed methods, denoted
as IQ-MAX and IQ-WV, against two baselines: the 1-NN
classifier and the k-NN classifier that selects k using a hold-
out set from the training data. The latter baseline uses the
same hold-out set as the proposed method, examines the same
range of values for k, and selects the one that produces the

3In this discussion we assume that each ki is much smaller than the number
of all time series in the train data: ∀ki : ki << |D|.

smallest average error for all time series in the hold-out set.
All examined methods are based on the same DTW distance
that constrains the warping window size at 5% around the
matrix diagonal [17].

Data sets. Out of all the 38 data sets used in [6], we
examined 35 data sets: we excluded 3 of them (Coffee, Beef
and OliveOil) due to their tiny size (less than 100 time series).
The names of the remaining data sets and their size (number
of time series they contain) are listed in the first and second
columns of Table I.

Parameters. At the primary level of our both proposed
methods, we use k-NN classifiers with all k values in the
range 1− 10. We experimented with larger k values as well,
but we observed that they increase the bias and deteriorate the
resulting accuracy. For both of our proposed approaches, we
implement the meta models as k′j-NN regressors as described
in Section IV. For IQ-MAX, in oder to keep the approach
simple, we use a single value of k′ = 5 at the meta level. Our
experimental results show that this was appropriate for all the
examined benchmark data sets.4 In case of IQ-WV, we used
a range of 1-10 as k′ values.

Comparison protocol. We measure the misclassification
error using 10-fold cross validation, with the exception of three
data sets (FaceFour, Lighting2, and Lighting7) for which we
used the leave-one-out protocol due to their small size. In each
round of the 10-fold cross validation, out of the 9 training
splits, we used 5 to train the primary models (D1), the rest 4
splits served as hold-out data (D2).5 For classifying test data,
i.e., after selecting for training IQ-MAX, IQ-VW and selecting
the best k for k-NN, we can again use all training splits.

After using the above evaluation procedure, we made a
striking observation about the performance of all examined
methods (proposed and baselines): in the majority of data sets,
the misclassification error was rather low (less than 5%). To
have a challenging comparison with non trivial classification,
we choose to affect intrinsic characteristics of the data sets.
According to the findings in [9], time-series data sets usually
have high intrinsic dimensionality and, thus, some of their
instances tend to misclassify a surprisingly large number of
other instances when using the k-NN classifier (k ≥ 1). These
instances are called “bad hubs” and are responsible for a very
large fraction of the total error. For this reason, for each time
series, t, in a data set, we measured two quantities: the badness
B(t) of t and the goodness G(t) of t. B(t) (G(t), respectively)
is the total number of time series in the data set, which have
t as their first nearest neighbor while having different (same,
respectively) class label from t. For each data set, we sort all
time series according to the G(t)−B(t) quantity in descending
order. Then we change the label of first p percent time series

4Note that we also experimented with other single k′ values for IQ-MAX.
For k′ ≥ 5 we observed similar results, whereas for small values of k′, such
as 1 or 2, we observed worse performance.

5Ratios other than the examined 5-4, gave similar results. In case of leave-
one-out, the training data was split according to 5 to 4 proportion into D1

and D2.



Fig. 4. Classification error (vertical axis) depending on the noise level (horizontal axis) for some data sets.

in this ranking (p varies in range 0-10%).6 Since the above
procedure results in data sets that have stronger “bad hubs”
and a less clear separation between classes, the comparison
among the examined methods becomes more challenging and
can characterize better the robustness of the methods.

B. Experimental Results

The results on classification error are summarized in Table I.
For brevity, in Table I we only report results at p = 1% and
5% noise, however we observed similar tendencies at all other
noise ratios in the examined range of p: for four data sets,
Motes, SonyAIBORobotSurface, Trace and Plane Fig. 4 shows
the classification error for all the examined values of p.

In Table I bold font denotes the best method(s) for each
data set, if both of our methods (IQ-MAX and IQ-WV)
outperform the baselines, both are marked bold. In case where
IQ-MAX and/or IQ-WV are/is superior to the baseline, we also
provide two symbols in the form: ±/± to denote the result of
statistical-significance test (t-test at 0.05 level) against 1-NN
and k-NN, respectively, where a + denotes significance and

6The time series whose labels were changed by this procedure, are assigned
to an additional class (not included in the original data set). To keep our
experimental evaluation meaningful, the time series with changed labels were
excluded from the test set.

TABLE II
NUMBER IQ-MAX’S AND IQ-WV’S WINS/LOOSES AGAINST 1-NN AND

k-NN.

p = 1 % p = 5 % total
IQ-MAX wins against 1-NN 29 (20) 34 (29) 63 (49)
IQ-MAX looses against 1-NN 5 (1) 1 (0) 6 (1)
IQ-MAX wins against k-NN 30 (15) 29 (9) 59 (24)
IQ-MAX looses against k-NN 5 (1) 5 (1) 10 (2)
IQ-WV wins against 1-NN 31 (21) 35 (31) 66 (52)
IQ-WV looses against 1-NN 3 (1) 0 3 (1)
IQ-WV wins against k-NN 31 (15) 34 (22) 65 (37)
IQ-WV looses against k-NN 4 (1) 0 4 (1)

− its absence. In case where the winner is neither IQ-MAX
nor IQ-WV, we provide the result (again in form of ±/±) of
statistical-significance test of the winner against IQ-MAX and
IQ-WV.

Table II summarizes these results by reporting the number of
cases, per noise level and in total, when IQ-MAX and IQ-VW
wins/looses against 1-NN and k-NN (in parenthesis we report
in how many cases wins/looses are statistically significant).

As shown, in the vast majority of the cases both IQ-MAX
and IQ-WV outperform the competitors, often significantly;
whereas when they loose, the difference is usually non-
significant. Note that in several cases, the errors of our IQ



TABLE I
CLASSIFICATION ERROR.

Dataset size p =1% p =5%
IQ-MAX IQ-WV 1-NN k-NN IQ-MAX IQ-WV 1-NN k-NN

50 Words 905 0.239 -/- 0.241 -/- 0.249 0.242 0.270 0.254 +/- 0.388 0.260
Adiac 781 0.373 -/- 0.377 -/- 0.381 0.384 0.415 +/- 0.411 +/+ 0.508 0.451
Car 120 0.279 0.270 -/- 0.278 0.303 0.310 +/- 0.283 +/+ 0.416 0.353
CBF 930 0.004 +/+ 0.001 +/+ 0.106 0.047 0.043 +/- 0.034 +/+ 0.328 0.057
ChlorineConcentration 4307 0.053 0.058 0.021 +/+ 0.021 +/+ 0.077 0.073 -/- 0.075 0.075
CinC 1420 0.003 +/+ 0.001 +/+ 0.033 0.011 0.008 +/- 0.004 +/+ 0.143 0.021
DiatomSizeReduction 322 0.006 +/+ 0.006 +/+ 0.031 0.038 0.010 +/+ 0.010 +/+ 0.141 0.049
ECG200 200 0.136 -/- 0.126 -/- 0.171 0.156 0.150 0.124 +/- 0.313 0.134
ECGFiveDays 884 0.013 +/+ 0.010 +/+ 0.041 0.045 0.020 +/+ 0.017 +/+ 0.164 0.136
FaceFour 112 0.063 0.072 0.108 0.072 0.075 0.075 0.234 0.112
FacesUCR 2250 0.029 +/+ 0.026 +/+ 0.059 0.039 0.044 +/- 0.033 +/+ 0.193 0.046
Fish 350 0.228 -/- 0.219 +/- 0.254 0.239 0.244 +/- 0.244 +/- 0.386 0.280
GunPoint 200 0.010 -/+ 0.010 -/+ 0.036 0.061 0.016 +/+ 0.011 +/+ 0.162 0.176
Haptics 463 0.490 +/- 0.482 +/- 0.582 0.532 0.540 +/- 0.533 +/- 0.681 0.553
InlineSkate 650 0.469 0.442 -/+ 0.461 0.483 0.523 -/- 0.504 +/+ 0.562 0.570
ItalyPowerDemand 1096 0.038 +/+ 0.034 +/+ 0.087 0.081 0.059 +/- 0.047 +/- 0.237 0.060
Lighting2 121 0.192 0.142 0.133 0.125 0.209 0.157 0.270 0.209
Lighting7 143 0.254 0.211 0.254 0.289 0.279 0.243 0.426 0.338
Mallat 2400 0.014 +/- 0.012 +/- 0.055 0.018 0.019 +/+ 0.017 +/+ 0.178 0.034
MedicalImages 1141 0.212 -/- 0.203 -/- 0.228 0.234 0.228 +/- 0.211 +/+ 0.339 0.256
Motes 1272 0.059 +/+ 0.055 +/+ 0.090 0.078 0.073 +/+ 0.065 +/+ 0.206 0.107
OSULeaf 442 0.320 0.301 0.287 -/- 0.292 0.363 0.308 +/+ 0.402 0.345
Plane 210 0.005 +/+ 0.005 +/+ 0.034 0.038 0.020 +/+ 0.010 +/+ 0.148 0.114
SonyAIBORobotSurface 621 0.026 +/+ 0.031 +/- 0.073 0.068 0.035 +/+ 0.034 +/+ 0.234 0.083
SonyAIBORobotSurfaceII 980 0.034 +/+ 0.032 +/+ 0.063 0.067 0.037 +/- 0.034 +/+ 0.212 0.119
StarLightCurves 9236 0.076 0.071 +/- 0.119 0.073 0.096 +/- 0.089 +/+ 0.253 0.098
Symbols 1020 0.023 +/- 0.024 +/- 0.061 0.031 0.029 +/- 0.031 +/- 0.196 0.036
SyntheticControl 600 0.020 0.018 0.076 0.017 -/- 0.028 +/- 0.035 +/- 0.227 0.058
SwedishLeaf 1125 0.170 +/+ 0.169 +/+ 0.206 0.197 0.189 +/+ 0.181 +/+ 0.328 0.216
Trace 200 0.005 -/- 0.005 -/- 0.046 0.036 0.005 +/- 0.005 +/- 0.180 0.064
TwoLeadECG 1162 0.001 +/+ 0.001 +/+ 0.041 0.052 0.005 +/+ 0.002 +/+ 0.175 0.025
TwoPatterns 5000 0.001 +/+ 0.001 +/+ 0.065 0.007 0.014 +/- 0.012 +/+ 0.236 0.019
Wafer 7164 0.003 +/- 0.003 +/- 0.042 0.004 0.006 0.005 +/- 0.160 0.005 +/-
WordSynonyms 905 0.224 -/- 0.220 -/- 0.238 0.241 0.270 +/- 0.257 +/+ 0.379 0.287
Yoga 3300 0.071 +/+ 0.072 +/+ 0.099 0.114 0.085 +/- 0.080 +/+ 0.223 0.115

estimation based methods are an order of magnitude lower
than the error of 1-NN and k-NN: see e.g. TwoLeadECG at
p = 1% (for both IQ-MAX and IQ-VW) and at p = 5% (for
IQ-WV), furthermore GunPoint and Trace at p = 5% (for both
IQ-MAX and IQ-VW) in Tab. I. As expected, IQ-WV, which
is more sophisticated than IQ-MAX, generally performs better
than IQ-MAX, e.g. at p = 5% noise IQ-VW is superior to IQ-
MAX on 29 datasets, whereas IQ-MAX is better than IQ-VW
in only 2 cases.

C. Execution Time

Even for the large data sets, we observed the execution
times of our methods to be reasonable, e.g. for IQ-MAX
we measured 12.9, 19.8 and 6.8 minutes off-line (training)
times (on a Xeon 2.3 GHz processor) for the data sets Wafer,
TwoPatterns and ChlorineConcentration respectively. Note that
this off-line time refers to the time required for training the
regression models at the meta level, which has to be performed
only once. The same off-line time was necessary for k-NN
to find the globally optimal k. This is because training is
dominated by the classification of the hold-out set D2 in both
cases. For IQ-MAX the on-line time required to classify a
new time series was 0.22, 0.51 and 0.23 seconds (for the
above mentioned data sets). For IQ-WV we measured similar

execution times which justify our expectations based on the
discussion in Section IV-A. Therefore it is evident that our
approaches are able to maintain fast classification of new time
series.

VI. CONCLUSION

We examined the problem of time-series classification based
on the k-NN classifier and the DTW distance. Although the
1-NN classifier had been shown to be competitive, if not
superior, to many state-of-the art time-series classification
methods, we argued that in several cases we may not only
consider k > 1 for the k-NN classifier, but also estimate
quality of various k-NN classifiers in an individual base for
each time series that has to be classified.

We proposed an IQ estimation mechanism that considers
a range of k-NN classifiers (for different k values) and uses
meta-level regression models that estimate the quality of each
such classifier. In the framework of IQ estimation, we proposed
two approaches.

Our first proposed approach, IQ-MAX, selects separately
for each time series the classifier with the maximum estimated
quality. Our second approach, IQ-WV combines the results of
the primary-level classifiers according to the weighted voting
schema, for which we used the estimated qualities as weights.



Both approaches allow for adapting to characteristics that
are varying among the different regions in a data set and
overcoming the problem of selecting a single k value.

Our experimental evaluation used a large collection of real
data sets. Our results indicate that the proposed methods are
more robust and compare favorably against two examined
baselines by resulting in significant reduction in the classi-
fication error. Other advantageous properties of the proposed
methods are their small sensitivity against the parameters it
uses and the small overhead it adds in execution time.

It is important to state that the proposed IQ estimation mech-
anism has several generic features. For the k-NN classifier, IQ
estimation can be employed for learning other parameters than
k, such as the distance measure or the importance of nearest
neighbors. More importantly, IQ estimation is not limited for
the problem of k-NN classification of time-series data, since it
can be used in combination with other classification algorithms
and data types, whenever the complexity of the data requires
such an individualized approach. Therefore, our future work
involves the examination of IQ estimation in a more general
context of classification problems.

REFERENCES

[1] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[2] C. Gruber, M. Coduro, and B. Sick, “Signature verification with dynamic
RBF networks and time series motifs,” 2006.

[3] S. Marcel and J. Millan, “Person authentication using brainwaves (EEG)
and maximum a posteriori model adaptation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, pp. 743–752, 2007.

[4] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: A survey and empirical demonstration,” Data Mining and
Knowledge Discovery, vol. 7, no. 4, pp. 349–371, 2003.

[5] T. Rath and R. Manmatha, “Word image matching using dynamic time
warping,” in Conference on Computer Vision and Pattern Recognition,
vol. 2. IEEE, 2003.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison of
representations and distance measures,” in Proceedings of the VLDB
Endowment, vol. 1, no. 2, 2008, pp. 1542–1552.

[7] E. Keogh, C. Shelton, and F. Moerchen, “Workshop and
challenge on time series classification,” 2007. [Online]. Available:
http://www.cs.ucr.edu/˜eamonn/SIGKDD2007TimeSeries.html

[8] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Verlag, 2009.

[9] M. Radovanovic, A. Nanopoulos, and M. Ivanovic, “Time-Series Clas-
sification in Many Intrinsic Dimensions,” in SIAM International Con-
ference on Data Mining, 2010, pp. 677–688.

[10] A. Kehagias and V. Petridis, “Predictive modular neural networks for
time series classification,” Neural Networks, vol. 10, no. 1, 1997.

[11] P. Sykacek and S. Roberts, “Bayesian time series classification,” Ad-
vances in Neural Information Processing Systems, vol. 2, pp. 937–944,
2002.

[12] D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler,
“Genetic algorithms and support vector machines for time series classi-
fication,” in Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, vol. 4787, 2002, pp. 74–85.

[13] K. Buza and L. Schmidt-Thieme, “Motif-based classification of time
series with Bayesian networks and SVMs,” Advances in Data Analysis,
Data Handling and Business Intelligence, pp. 105–114, 2010.

[14] P. Geurts, “Pattern extraction for time series classification,” in Principles
of Data Mining and Knowledge Discovery (PKDD). Springer, 2001,
pp. 115–127.

[15] C. Ratanamahatana and E. Keogh, “Making time-series classification
more accurate using learned constraints,” in SIAM International Confer-
ence on Data Mining, 2004, pp. 11–22.

[16] E. Keogh and M. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2000, pp. 285–289.

[17] C. Ratanamahatana and E. Keogh, “Everything you know about dynamic
time warping is wrong,” in SIGKDD International Workshop on Mining
Temporal and Sequential Data, 2004.

[18] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor
classification,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, no. 6, 1996.

[19] C. Domeniconi and D. Gunopulos, “Adaptive nearest neighbor classifi-
cation using support vector machines,” Neural Information Processing
Systems (NIPS), 2001.

[20] C. Domeniconi, J. Peng, and D. Gunopulos, “Locally adaptive metric
nearest-neighbor classification,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2002.

[21] S. Ougiaroglou, A. Nanopoulos, A. Papadopoulos, Y. Manolopoulos, and
T. Welzer-Druzovec, “Adaptive k-nearest-neighbor classification using a
dynamic number of nearest neighbors,” in Advances in Databases and
Information Systems. Springer, 2007, pp. 66–82.

[22] A. Molinaro, R. Simon, and R. Pfeiffer, “Prediction error estimation: a
comparison of resampling methods,” Bioinformatics, vol. 21, no. 15, p.
3301, 2005.

[23] A. Jain, R. Dubes, and C. Chen, “Bootstrap techniques for error estima-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
no. 5, pp. 628–633, 2009.

[24] N. Duffy and D. Helmbold, “Boosting methods for regression,” Machine
Learning, vol. 47, no. 2, pp. 153–200, 2002.
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