
Invariant Time-Series Classification

Josif Grabocka1, Alexandros Nanopoulos2, and Lars Schmidt-Thieme1

1 Information Systems and Machine Learning Lab
Samelsonplatz 22, 31141 Hildesheim, Germany
2 University of Eichstaett-Ingolstadt, Germany

{josif,schmidt-thieme}@ismll.de,alexandros.nanopoulos@ku.de

Abstract. Time-series classification is a field of machine learning that
has attracted considerable focus during the recent decades. The large
number of time-series application areas ranges from medical diagnosis up
to financial econometrics. Support Vector Machines (SVMs) are reported
to perform non-optimally in the domain of time series, because they suf-
fer detecting similarities in the lack of abundant training instances. In
this study we present a novel time-series transformation method which
significantly improves the performance of SVMs. Our novel transforma-
tion method is used to enlarge the training set through creating new
transformed instances from the support vector instances. The new trans-
formed instances encapsulate the necessary intra-class variations required
to redefine the maximum margin decision boundary. The proposed trans-
formation method utilizes the variance distributions from the intra-class
warping maps to build transformation fields, which are applied to series
instances using the Moving Least Squares algorithm. Extensive experi-
mentations on 35 time series datasets demonstrate the superiority of the
proposed method compared to both the Dynamic Time Warping version
of the Nearest Neighbor and the SVMs classifiers, outperforming them
in the majority of the experiments.

Keywords: Machine Learning; Time Series Classification; Data-Driven
Transformations; Invariant Classification

1 Introduction

Time series classification is one of the most appealing research domains in ma-
chine learning. The generality of interest is influenced by the large number of
problems involving time series, ranging from financial econometrics up to medical
diagnosis [1]. The most widely applied time series classifier is the nearest neigh-
bor (NN) empowered with a similarity/distance metric called Dynamic Time
Warping (DTW), hereafter jointly denoted as DTW-NN [2]. Due to the accu-
racy of DTW in detecting pattern variations, DTW-NN has been characterized
as a hard-to-beat baseline [3].

Support Vector Machines (SVMs) are successful classifiers involved in solving
a variety of learning and function estimation problems. Yet, experimental studies
show that it performs non-optimally in the domain of time series [4]. We explore

2 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

an approach to boost the classification of time series using SVMs, which is di-
rectly inspired by the nature of the problem and the reasons why SVMs fail to
build optimal decision boundaries. In most time series datasets, the variations of
instances belonging to the same class, denoted intra-class variation, are consider-
ably numerous. Variations appear in different flavors. A pattern of a signal/time
series can start at various time points (translational variance) and the duration
of a pattern can vary in length (scaling variance). Even more challenging, such
variances can partially occur in a signal, in multiple locations, by unexpected di-
rection and magnitude of change. There exist more, theoretically infinitely many,
possible variations of a particular class pattern, compared to the present num-
ber of instances in the dataset. Ergo, such lack of sufficient instances to cover
all the possible variations can affect the maximum margin decision boundary in
under-representing the ideal decision boundary of the problem.

In order to overcome the lack of instances, the insertion of virtual transformed
instances to the training set has been proposed. In the case of SVMs, support
vectors are transformed/deformed, the new virtual support vectors added back
to the training set and the model is finally retrained [5, 6]. An illustration of
the effect of inserting virtual instances and its impact on redefining the decision
boundary is shown in Figure 1. The most challenging aspect of this strategy is to
define efficient transformation functions, which create new instances from exist-
ing ones, enabling the generated instances to represent the necessary variations
in the feature space.

The main contribution of our study is in defining a novel instance transfor-
mation method which improves the performance of SVMs in time series classi-
fication. In our analysis the transformations should possess four characteristics.
First the transformations should be data-driven, concretely an analysis of the
intra-class variance distributions should be taken into account. Secondly, local-
ized variations are required since the variations of series instances appears in
forms of local deformations. Thirdly, in order to overcome the time complex-
ity issues, only a representative subset of the instances should be selected for
producing variations. Finally the transformations should accurately redefine the
decision boundary without creating outliers or over-fit the training set.

The novel transformation method we introduce satisfies all the above raised
requirements. The proposed method analyses the translational variance distribu-
tions by constructing warping alignment maps of intra-class instances. The time
series is divided into a number of local regions and transformation fields/vectors
are created to represent the direction and magnitude of the translational variance
at every region center, based on the constructed variance distributions. Finally,
the application of the transformation fields to time series is conducted using the
Moving Least Squares algorithm [7].

The efficiency of the proposed method is verified through extensive experi-
mentation on 35 datasets from the UCR collection3. Our method clearly outper-
forms DTW-NN on the vast majority of challenging datasets, while being on a
par competitive with DTW-NN in the easy (low error) ones. Furthermore, the

3 www.cs.ucr.edu/~eamonn/time_series_data

Invariant Time-Series Classification 3

Fig. 1. a) An ideal max-margin decision boundary for the depicted binary (0/1) clas-
sification problem. Circled points denote support vectors. b) An actual version of the
problem where most class 1 instances are missing. The actual max-margin decision
boundary differs from the ideal boundary in a). c) The under-fitting of the actual
boundary (solid) to represent the ideal boundary (dots) produces the shaded misclas-
sification region. d) Transforming the class 1 instance in coordinate (3,3) and inserting
the transformed instances (pointed by arrows) back to the dataset, helps redefine the
new max-margin boundary (solid). Consecutively, the area of the misclassification re-
gion is reduced.

results indicate that our proposed method always improves the default SVM.
The principal contributions of the study can be summarized as:

– A novel time series transformation method is presented
– For the first time, the approach of Invariant SVMs is proposed in time-series

domain
– Extensive experimentations are conducted to demonstrate the superiority of

the proposed method

2 Related Work

2.1 Time Series Classification

Time series classification has been elaborated for more than two decades and
a plethora of methods has been proposed for the task. Various classifiers have

4 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

been applied, ranging from neural networks [8, 9] to bayesian networks [10], from
decision trees [11] to first-order logic rules [12], and from Hidden Markov Models
[13] to tailored dimensionality reduction [14].

Dynamic Time Warping Despite the major effort spent in building accu-
rate time series classifiers, still the nearest neighbor classifier combined with a
similarity technique called Dynamic Time Warping (DTW) was reported to pro-
duce more accurate results [15]. DTW overcomes the drawback of other methods
because it can detect pattern variations, such as translations/shifts, size and de-
formations. The metric builds an optimal alignment of points among two time
series by dynamically constructing a progressive cost matrix. It computes the
the path of the minimal overall point pairs’ distance [2]. Adding warping window
size constraints have been reported to occasionally boost the classification [16].
In contrast to DTW-NN, our study aims at building a competitive max-margin
classifier.

2.2 Invariant SVMs Classification

Even though the challenge of handling invariance in time series classification
is rather new, it has, however, been applied long ago to the domain of image
classification. Significant effort to the problem of invariant classification was
followed by the SVM community, where one of the initial and most successful
approaches relies on creating virtual instances by replicating instances. Typi-
cally the support vectors are transformed creating new instances called Virtual
Support Vectors (VSV), with the aim of redefining the decision boundary [5, 17].
VSV has been reported to achieve optimal performance in image classification
[6]. An alternative technique in handling variations relies in modifying the kernel
of the SVM, by adding a loss term in the dual objective function. Such a loss
enforces the decision boundary to be tangent to the transformation vector [6, 18].
Other approaches have been focused on selecting an adequate set of instances
for transformation [19]. Studies aiming the adoption of SVM to the context of
time series have been primarily addressing the inclusion of DTW as a kernel
[20, 21]. Unfortunately, to date, all proposed DTW-based kernels we are aware
of, are not efficiently obeying the positively semi-definite requirement [4]. The
DTW based kernels have been reported to not perform optimally compared to
state-of-art [22]. Generating new instances based on the pairwise similarities has
also been applied [4], with limited success compared to DTW-NN. In compari-
son, our method applies a novel transformation technique along with the VSV
approach.

2.3 Instance Transformations

Intentional transformations and deformations of time series has shown little in-
terest because of the limited studies of VSV classifiers in the domain. Among
the initiatives, morphing transformation from a time series to another has been

Invariant Time-Series Classification 5

inspected [23]. However, deformations have been more principally investigated
in the domain of images. Moving Least Squares is a state-of-art technique to pro-
duce realistic deformations [7]. In this work we use the Moving Least Squares
method for applying the transformations over series.

3 Proposed Method

3.1 Principle

In order to boost the classification accuracy our method needs to generate new
instances via transformations. In order to capture the necessary patterns’ intra-
class variations, the transformation technique should aim for certain character-
istics and requirements. In our analysis, the transformations should obey to the
following list of properties:

– Data-Driven: Variance should be generated by analyzing the similarity
distribution of instances inside a class.

– Localized: Intra-class variations are often expressed in local deformations,
instead of global variations.

– Selective: Transforming all the instances becomes computationally expen-
sive and many instances can be redundant w.r.t to the decision boundary.
Therefore it is crucial to select only a few class-representative instances for
generating variations.

– Accurate: The transformed instances should help redefine the decision
boundary, however care should be payed to avoid excessive magnitudes of
transformation, in order to avoid generating outliers.

3.2 Method Outline

The transformation method and the instance generation technique we are intro-
ducing, does answer all the requirements we raised in section 3.1. Initially we
define the local transformation fields in subsection 3.3, which are used to trans-
form time series using the Moving Least Squares algorithm. The transformation
fields are constructed by measuring the translational variance distributions sub-
section 3.5. The variance distributions are obtained by building the intra-class
warping maps, defined in subsection 3.4. Finally, the transformation fields are
applied only to the support vectors following the Virtual Support Vector classi-
fication approach, defined in subsection 3.6.

3.3 Transformation Fields and Moving Least Squares

In this subsection we present only the technicalities of how a time-series can be
transformed by a particular localized transformation, while the actual method
that creates intelligent transformation magnitudes will be introduced in forth-
coming subsections. Variations of time series are often occurring in localized

6 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

forms, meaning that two series differ only in the deformation of a particular
subsequence rather than a global difference. In order to include the mechanism
of localized variances we first introduce the concept of a transformation field,
denoted F . We split the time series into K many regions, and then we define the
left/right translation that is required for each region. Each region will be trans-
formed dedicatedly, while the transformation will be applied to the centroid of
the region. Such centroids are denoted as control points. The amount of trans-
lational transformation applied to every control point (hence every region) is
denoted as the transformation field vector F ∈ RK . For instance Figure 2 shows
the effect of applying a transformation field on two regions of a time series, where
each region is denoted by its representative control point.

Fig. 2. Demonstrating the effect of applying a transformation field vector of values
[+20 -10] to the control points positioned at [95 190] highlighted with vertical lines,
on an instance series from the Coffee dataset. The transformation algorithm (MLS) is
described in Algorithm 1.

The mechanism of applying a transformation field to a series is conducted
via the deformation algorithm called Moving Least Squares (MLS), which is
described in Algorithm 1. This algorithm is used to transform one signal that
passes through a set of points P , called control points. The transformation is de-
fined by a new set of control points Q, which are the transformed positions of the
control points P [7]. The control points Q are obtained, in our implementation,
by applying transformation fields F translations to the original control points
P . MLS applies the transformation by initially creating one local approximation
function lv for each point v of the time series. Thus, for every point we solve the

Invariant Time-Series Classification 7

Algorithm 1 MLS [7]

Require: A series: S, A transformation field: F, Control Points: P
Ensure: New transformed instance: T
1: Q← [P1 + F1, P2 + F2, ...]
2: for v = 1 to |S| do
3: Search lv that minimizes

argminlv

∑|P |
i=1 wi|lv(Pi)−Qi|2 , where wi = 1

|Pi−v|2α

4: T [v]← lv(S[v])
5: end for
6: return T

best affine transformations that approximates the new control points Q [line 3 of
Alg 1]. There is a weight decay in the importance of the control points compared
to the point for which we are defining a local transformation, approximation of
near control points get more impact. The speed of decay is controlled by a hyper
parameter α.

Once the local transformation function lv is computed, then the value at point
v in the transformed series is computed by applying the searched transformation
function over the value in the original series. In order for the transformed series
to look as realistic compared to the original series, the transformation should be
as rigid as possible, that is, the space of deformations should not even include
uniform scaling, therefore we follow the rigid transformations optimization [7] in
solving line 3 of Alg. 1. This subsection only introduced the transformation fields
and the underlying algorithm used to transform a series, while the successive
subsections will show how to search for the best magnitudes of the transformation
fields vector elements, in order for the transformed instances to encapsulate intra-
class variations.

3.4 Warping Maps

Before introducing the main hub of our method concerning how the variance-
generating transformation fields are created, we initially need to present some
necessary concepts and means, which are used in the successive subsection to
analyze the intra-class variance.

DTW is an algorithm used to compute the similarity/distance between two
time series. A cost matrix, denoted W, is build progressively by computing the
subtotal warping cost of aligning two series A and B. The cost is computed
incrementally backwards until reaching a stopping condition in aligning the first
points of the series. The overall cost is accumulatively computed at the topmost
index value of the matrix, whose indices correspond to the length of series.

DTW(A,B) = Wlength(A),length(B)

W1,1 = (A1 −B1)2

Wi,j = (Ai −Bj)
2 + min(Wi−1,j ,Wi,j−1,Wi−1,j−1) (1)

8 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

An optimal warping path between series A and B, defined as τA,B or here
shortly τ , is a list of aligned indexes of points along the cost matrix. The sum
of distances of the aligned points along the warping path should sum up to the
exact distance cost of DTW. The list of the warping path indexes pairs (i, j)
corresponds to the chain of the recursive calls in the cost computation Wi,j . The
sum of the distances among the values of the aligned indexes of two series, yields
the minimum distance, which is equal to the DTW formulation.

τ(A,B) = {(i, j) |Wi,j called in the chain of recursion of DTW (A,B)} (2)

A warping map, denoted M , is a square matrix whose elements are built by
overlapping the warping paths of all-vs-all instances in an equi-length time series
dataset. In this overlapping context, a cell of the warping map matrix denotes
how often a warping alignment occur at that indexe. Equation 3 formalizes the
procedure of building a warping map as a superposition (frequency) of warping
paths of all time series pairs A,B from dataset S.

M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ(A,B)} | (3)

A filtered warping map is created similarly as shown in Algorithm 2, where
we filter only those warping paths that are either right or left aligned at a specific
point. For instance, if we need to filter for right alignment at a point P, we need
to build the DTW warping of any two series pairs, denoted τ , and then check
if the aligned index at the second series is higher than (right of) the index on
the first series. For instance, the notation τ(A,B)P denotes the aligned index at
series B corresponding to time P of first series A.

Algorithm 2 FilteredWarpingMap

Require: Dataset of time series S, Control Point P , Direction D
Ensure: Filtered warping map M
1: if D = right then
2: M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ(A,B) ∧ P < τ(A,B)P } |
3: else
4: M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ(A,B) ∧ P ≥ τ(A,B)P } |
5: end if
6: return M

In our forthcoming analysis we build warping paths by providing a filtered
dataset of instances belonging to only one class. Therefore we will construct one
warping map per class.

3.5 Variance Distribution Analysis and Creation of Transformation
Fields

In this section we present the main method of creating the transformation, which
is be based on the analysis of the variance distributions of warping paths. The

Invariant Time-Series Classification 9

transformation fields represent local perturbation vectors of the predefined re-
gions, R many, by translating the representative control points. Each control
point/region is translated both left and right, therefore creating 2 × R total
transformation fields. The amount of translational transformation to be applied
to every region is computed by making use of the warping maps. For each re-
gion, Ri, we filter in turn the right and left warping paths of instance warping
alignments at that region, in order to analyze the general left/right translational
variances of the warping alignments on other regions as an impact of a trans-
formation at Ri. An illustration is found on Figure 3. The time series is divided
into three regions defined by their centroid control points. In the image, part
b), c), d) we show the filtered warping maps for the right warping alignments
at every control points. Please note that three more filtered warping maps could
be created for left alignments, but are avoided due to lack of space.

Fig. 3. An illustration concerning the warping map belonging to label 0 of the OSULeaf
dataset. The time series are divided into three region R1, R2, R3 for analysis. The center
of each region is defined as a control point on time indices [71,213,355]. a) All-vs-all
warping map. b) Warping map created by filtering only right warping paths at control
point of R1 at index 71. c) Warping map at control point of R2 at index 213. d) A
similar right warping filter of R3 at 355.

10 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

Fig. 4. Approximation with Gaussian Probability Density Functions (PDF) regarding
the warping distribution of filtered warping maps in Figure 3, images b and c. a) The
warping distribution as a result of right-warping occuring at R1/CP1. b) The warping
distribution as a result of right-warping occuring at R2/CP2.

Once we built the warping map, we can successively construct the distribution
of the warped alignments at every control points. For every region where we
apply left/right translational perturbations, the transformation field is created
to be equal to the means of the warped points, as an impact of the perturbation.
The means are selected as transformation field, because they represents the
tendency of variations at every control point. An illustration of the distributions
is depicted in Figure 4. Only two distribution plots are shown belonging to the
warping maps in Figure 3, part b) and c).

Algorithm 3 ComputeTransformationFields

Require: Dataset of time series: S, A class: label, A list of control points CP
Ensure: List of transformation fields: L
1: L← ∅
2: Slabel ← {A ∈ S | A has class label}
3: for P ∈ CP do
4: for direction ∈ {left, right} do
5: M ←FilteredWarpingMap(Slabel, P,direction) from Algorithm 2
6: for P ′ ∈ CP do
7: Fj ← 1

‖Mj,∗‖
∑|Slabel|

k=1 (Mj,k · (k − P ′)) , j ∈ [1...|CP |]
8: end for
9: L← L ∪ {F}

10: end for
11: end for
12: return L

For instance, the means of the distributions, which also form transformation
fields at image a), represents the warping distributions as an impact of pertur-

Invariant Time-Series Classification 11

bation of R1 are [34 24 0]. We can conclude that a right perturbation at R1

causes a right translational impact on R2, but fades away at R3. Therefore the
transformations of instances at R1, will be in proportional to this distribution.
Similarly in image b) there is a perturbation on R2, which has a stronger impact
on R1 than on R3.

The Algorithm 3 describes the creation of transformation fields. For every
control point [line 3], we analyze the right and left variations [line 4] and get
respective filtered warping maps [line 5]. The impact of such variation on other
control points [line 6] is taken into consideration by the weighted mean variance
at each other control point [line 7].

3.6 Learning and Virtual Support Vectors

The defined transformation fields are used during the classification of time series.
Even though in principle various classifiers can benefit from larger training set,
still transforming all instances deteriorates the learning time of methods. SVMs
have a crucial advantage because they point out the important instances (support
vectors) which are needed to be transformed. In our study only the support
vectors of a SVM model are transformed, called Virtual Support Vectors (VSV)
[5]. Such selective approach ensures that the decision boundary is redefined only
by instances close to it, hence the support vectors. The training set is extended
to include MLS transformations of the support vectors as shown in Equation 4.
Given a list of control points, denoted CP, and a list of transformation fields,
denoted TF , a transformation scale factor µ, then Equation 4 represents the
addition of transformed support vectors obtained by building a model, denoted
svmModel, from the training set Strain.

S∗
train = Strain ∪ {MLS (sv, µ · v,CP) | sv ∈ supportV ectors(svmModel)

∧ v ∈ TFlabel(sv)} (4)

Algorithm 4 describes the classification procedure in pseudo code style. The
values of the transformation scales are computed by hyper-parameter search on
a validation split search during the experiments.

4 Experimental Setup

In order to evaluate the performance of our proposed method, denoted as In-
variant SVM, or shortly ISVM, we implemented and evaluated the following set
of baselines:

– SVM: The default SVM is a natural choice for a baseline. The performance
of our method compared to the standard SVM will give us indications on
the success of redefining the decision boundaries, by injecting transformed
support vectors.

12 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

Algorithm 4 LearnModel

Require: Training set of time series: Strain, SVM hyper parameters: θ, Transformation
Fields: TF , Control Points: CP , Transformation Scale: µ

Ensure: SVM model: svmModel
1: svmModel← svm.train(Strain, θ)
2: for sv ∈ supportV ectors(svmModel) do
3: label← sv.label
4: TFlabel ← Field vectors of TF for class label
5: for v ∈ TFlabel do
6: V SV ←MLS(sv, µ× v, CP) from Algorithm 1
7: Strain ← Strain ∪ {V SV }
8: end for
9: end for

10: svmModel← svm.train(Strain, θ)
11: return svmModel

– DTW-NN: Characterized as a hard-to-beat baseline in time series classifi-
cation, which has been reported to achieve hard-to-beat classification accu-
racy [15]. The relative performance of our method compared to DTW-NN
will give hints whether a refined maximum-margin is competitive, or not.

The UCR collection of time series dataset was selected for experimentation.
Very few large datasets whose transformation fields creation was excessively
time consuming were omitted. All the datasets were randomly divided into five
subsets/folds of same size (5-folds cross-validation). Each random subset was
stratified, meaning that, the number of instances per label was kept equal on all
subsets. In turn each fold was used once for testing the method, while three out
of the remaining four for training and one for validation. The inhomogeneous
polynomial kernel, k(x, y) = (γ x · y + 1)d, was applied for both the standard
SVM as well as our method. The degree d was found to perform overall optimal
at value of 3. A hyper parameter search was conducted in order to select the
optimal values of the kernel’s parameter γ and the methods transformation scale
µ of Algorithm 4, by searching for maximum performance on the validation set
after building the model on the train set. SVM’s parameter C was searched
among {0.25, 0.5, 1, 2, 4}. The number of regions/control points was found to be
optimal around 10. The performance is finally tested with a cross-validation run
over all the splits4.

5 Results

A cumulative results table involving the experimentation results is found in Ta-
ble 1. For every dataset, the mean and standard deviations of the cross validation
error rates is reported in columns. The non-overlapping 1-σ confidence interval
results, representing significance of ISVM/SVM results versus DTW-NN, are

4 The authors provide the source code upon request.

Invariant Time-Series Classification 13

annotated with a circle (◦). We grouped the datasets into two categories, easy
ones and challenging ones. The criteria of the split is based on an error rate
threshold, where values greater than 5% of the default SVM are grouped as easy
dataset. The values in bold indicate the best mean error rate for the respective
dataset/row. The last row indicates a sum of the wins for each method, where
draw points are split to ties. In brackets we denote the wins with significant and
non-significant intervals.

The first message of the experiments is that the performance of our method
is improving the accuracy of a standard SVM. In various cases like 50words,
Cricket X, Cricket Y, Cricket Z, Lighting7, OSULeaf, WordsSynonyms, the im-
provement is very significant ranging from +5% up to +11% accuracy. Thus it is
appropriate to use our method for boosting the SVM accuracy, without adding
noise.

The second and more important message is that our method produces better
mean error rates than DTW-NN, winning on the majority of the datasets. The
performance on the easy datasets is even (7 to 7). However, our method out-
performs DTW-NN on the majority (11 to 5) of the challenging datasets. The
invariant SVM looses significantly only on Cricket * and Lighting2. In contrast,
it significantly outperforms DTW-NN on 50words, Fish, OliveOil, SwedishLeaf,
uWaveGestureLibrary * and WordsSynonyms. Thus, our experiments demon-
strate the superiority of our approach to DTW-NN.

The transformation scale parameter introduced in Algorithm 3, controls the
scale of the transformation fields perturbations to be applied to the instances. In-
tuitively, optimal transformation fields redefine the decision boundary, while ex-
cessive magnitudes of transformations deteriorate into noisy instances. A demon-
stration of the transformation fields’ scale parameter behavior is presented in
Figure 5.

Fig. 5. The effect of increasing the transformation field scale on three typical datasets.
The accuracy improves proportionally with the scale, until a minimum point is reached.
After the optimal error rate, the large transformations produce noise and deteriorate
accuracy, as for instance in OSULeaf, after minimum at scale value 1.3.

14 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

Table 1. 5-fold Cross-Validation Experiments Results - Error Rate Fractions

(i) ISVM : Our proposed method Invariant Support Vector Machines
(ii) DTW-NN : Nearest Neighbor with Dynamic Time Warping
(iii) SVM: The default Support Vector Machines

Dataset
ISVM DTW-NN SVM

mean st.dev. mean st.dev. mean st.dev.

Easy Datasets

CBF 0.002 0.003 0.000 0.000 0.002 0.003

Coffee ◦0.000 0.000 0.073 0.010 ◦0.000 0.000

DiatomSizeReduction ◦0.000 0.000 0.006 0.000 ◦0.000 0.000

ECGFiveDays ◦0.001 0.003 0.007 0.000 ◦0.001 0.003

FaceAll 0.020 0.007 0.024 0.000 0.027 0.005

FaceFour 0.036 0.038 0.054 0.006 0.045 0.056

FacesUCR ◦0.021 0.007 0.031 0.000 0.026 0.010

Gun Point ◦0.030 0.027 0.075 0.001 0.050 0.040

ItalyPowerDemand ◦0.026 0.019 0.051 0.000 ◦0.026 0.019

MoteStrain 0.050 0.016 0.045 0.000 0.060 0.020

SonyAIBORobotSurface ◦0.008 0.011 0.027 0.000 ◦0.008 0.011

SonyAIBORobotSurfaceII 0.004 0.004 0.029 0.000 ◦0.003 0.005

Symbols 0.027 0.016 0.019 0.000 0.029 0.012

synthetic control 0.020 0.013 ◦0.007 0.000 0.022 0.015

Trace 0.030 0.027 ◦0.000 0.000 0.045 0.048

TwoLeadECG 0.002 0.002 0.001 0.000 0.002 0.002

Two Patterns 0.001 0.001 ◦0.000 0.000 0.006 0.001

wafer ◦0.002 0.002 0.006 0.000 ◦0.002 0.001

Wins (Sig./Non-Sig.) 7 (5/2) 7 (3/4) 4 (4/0)

Challenging Datasets

50words ◦0.199 0.008 0.287 0.001 0.272 0.035

Adiac ◦0.202 0.038 0.341 0.001 0.206 0.037

Beef ◦0.267 0.109 0.467 0.009 ◦0.267 0.109

Cricket X 0.300 0.025 ◦0.197 0.001 0.391 0.033

Cricket Y 0.271 0.021 ◦0.213 0.001 0.388 0.045

Cricket Z 0.306 0.043 ◦0.188 0.000 0.399 0.031

ECG200 0.110 0.052 0.160 0.003 0.125 0.040

Fish ◦0.094 0.031 0.211 0.000 0.103 0.031

Lighting2 0.289 0.025 ◦0.099 0.002 0.297 0.013

Lighting7 0.252 0.054 0.285 0.010 0.357 0.068

OliveOil 0.083 0.083 0.133 0.006 0.083 0.083

OSULeaf 0.296 0.039 0.285 0.003 0.346 0.059

SwedishLeaf ◦0.079 0.017 0.185 0.001 0.082 0.014

uWaveGestureLibrary X ◦0.193 0.012 0.251 0.000 0.197 0.013

uWaveGestureLibrary Y ◦0.253 0.009 0.342 0.000 0.259 0.009

uWaveGestureLibrary Z ◦0.249 0.008 0.301 0.000 0.256 0.011

WordsSynonyms ◦0.200 0.038 0.270 0.000 0.261 0.027

Wins (Sig./Non-Sig.) 11 (9/2) 5 (4/1) 1 (0.5/0.5)

Invariant Time-Series Classification 15

Finally, it is worth mentioning that the time complexity of our method is
obviously worse than that of a normal SVM, because of the enlarged training
set. Yet, the computational time is not prohibitive in terms of run-time feasibility.
In Table 2 you can find some test run times in minutes, of typical prototypes
of easy and challenging datasets, with the aim of demonstrating the run time
feasibility of our method compared to DTW-NN. The run-time minutes shown
on the last column are measured over the same random dataset fold.

Table 2. Classification Run Times of Typical Dataset

Dataset # labels # instances length
ISVM

Time(min)

Coffee 2 56 286 0.01

ECG200 2 200 96 0.04

wafer 2 7174 152 5.48

FacesUCR 14 2250 131 8.73

50words 50 905 270 14.17

Cricket X 12 780 300 24.00

6 Conclusion

This study we introduced a novel instance transformation method, which is
used to boost the performance of SVM via transforming the support vectors.
The proposed method utilizes the distribution of warping variances, yield from
warping alignment maps, in order to define transformation fields, which represent
variances at a predefined set of local regions of a particular class. Therefore
the virtual support vectors which are generated by applying the transformation
fields, represent the necessary intraclass variation and redefines the maximum
margin decision boundary. The superiority of our method is demonstrated by
extensive experimentations on 35 datasets of the UCR collection. In a group of
easy datasets, the presented method is on a par competitive to the baselines,
while being clearly superior on a set of challenging datasets.

As a planned future work, we will focus on analyzing the joint operation of
our method with possible inclusion of efficient similarity based metric into the
SVM kernel. In parallel, other state-of-art invariant classifiers will be explored,
in particular Convolutional Neural Networks.

7 Acknowledgment

This study was partially co-funded by the Seventh Framework Programme (FP7)
of the European Commission, through project REDUCTION5 (#288254).

References

1. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications With R
Examples. Springer (2011) ISBN 978-1-4419-7864-6.

5 www.reduction-project.eu

16 Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme

2. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining
applications. In: KDD. (2000) 285–289

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1(2) (2008) 1542–1552

4. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and
dynamic time warping for time series. In: IJCNN, IEEE (2008) 2772–2776

5. Schlkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector
learning machines, Springer (1996) 47–52

6. DeCoste, D., Schölkopf, B.: Training invariant support vector machines. Machine
Learning 46(1-3) (2002) 161–190

7. Schaefer, S., McPhail, T., Warren, J.D.: Image deformation using moving least
squares. ACM Trans. Graph. 25(3) (2006) 533–540

8. Kehagias, A., Petridis, V.: Predictive modular neural networks for time series
classification. Neural Networks 10(1) (1997) 31–49

9. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-
series data. International Journal of Computer Research 10 (2001) 49–61

10. Pavlovic, V., Frey, B.J., Huang, T.S.: Time-series classification using mixed-state
dynamic bayesian networks. In: CVPR, IEEE Computer Society (1999) 2609–

11. Rodŕıguez, J.J., Alonso, C.J.: Interval and dynamic time warping-based decision
trees. In: ACM symposium on Applied computing. SAC, New York, NY, USA,
ACM (2004) 548–552

12. Rodr’iguez, J.J., Alonso, C.J.: Learning first order logic time series classifiers:
Rules and boosting. In: Proceedings of the 4th European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD00, Springer (2000) 260–275

13. Kim, S., Smyth, P., Luther, S.: Modeling waveform shapes with random effects
segmental hidden markov models. In: Proceedings of the 20th conference on Un-
certainty in Artificial Intelligence. UAI (2004) 309–316

14. Mizuhara, Y., Hayashi, A., Suematsu, N.: Embedding of time series data by using
dynamic time warping distances. Syst. Comput. Japan 37(3) (March 2006) 1–9

15. Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanamahatana, C.A.: Fast time
series classification using numerosity reduction. In: ICML. (2006)

16. Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3) (2005) 358–386

17. Niyogi, P., Girosi, F., Poggio, T.: Incorporating prior information in machine
learning by creating virtual examples. In: Proceedings of the IEEE. (1998)

18. Loosli, G., Canu, S., Vishwanathan, S.V.N., Smola, A.J.: Invariances in classifica-
tion : an efficient svm implementation. In: Proceedings of the 11th International
Symposium on Applied Stochastic Models and Data Analysis. (2005)

19. Loosli, G., Canu, S., Bottou, L.: Training invariant support vector machines using
selective sampling. In: Large Scale Kernel Machines. MIT Press (2007) 301–320

20. Shimodaira, H., ichi Noma, K., Nakai, M., Sagayama, S.: Support vector machine
with dynamic time-alignment kernel for speech recognition. In: INTERSPEECH,
ISCA (2001) 1841–1844

21. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with
support vector machines - a kernel approach. In: In Proc. of the 8th IWFHR. (2002)
49–54

22. Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using support
vector machine with gaussian elastic metric kernel. In: ICPR, IEEE (2010) 29–32

23. Rahimi, A., Recht, B., Darrell, T.: Learning to transform time series with a few
examples. IEEE Trans. Pattern Anal. Mach. Intell. 29(10) (2007) 1759–1775

