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Abstract. Time-series classification has gained wide attention within
the Machine Learning community, due to its large range of applicability
varying from medical diagnosis, financial markets, up to shape and tra-
jectory classification. The current state-of-art methods applied in time-
series classification rely on detecting similar instances through neighbor-
ing algorithms. Dynamic Time Warping (DTW) is a similarity measure
that can identify the similarity of two time-series, through the computa-
tion of the optimal warping alignment of time point pairs, therefore DTW
is immune towards patterns shifted in time or distorted in size/shape.
Unfortunately the classification time complexity of computing the DTW
distance of two series is quadratic, subsequently DTW based nearest
neighbor classification deteriorates to quartic order of time complexity
per test set. The high time complexity order causes the classification of
long time series to be practically infeasible. In this study we propose a
fast linear classification complexity method. Our method projects the
original data to a reduced latent dimensionality using matrix factoriza-
tion, while the factorization is learned efficiently via stochastic gradient
descent with fast convergence rates and early stopping. The latent data
dimensionality is set to be as low as the cardinality of the label variable.
Finally, Support Vector Machines with polynomial kernels are applied
to classify the reduced dimensionality data. Experimentations over long
time series datasets from the UCR collection demonstrate the superiority
of our method, which is orders of magnitude faster than baselines while
being superior even in terms of classification accuracy.

Keywords: Machine Learning; Data Mining; Time Series Classification;
Dimensionality Reduction

1 Introduction

Time-series classification is one of the most appealing domains of machine learn-
ing due to the abundance of application domains ranging from medicine to fi-
nance. The nearest neighbor classifier empowered with a distance metric known
as Dynamic Time Warping holds the primate among accurate classifiers. How-
ever, the nearest neighbor suffers from a major drawback in terms of classification
time complexity which deteriorates to quartic time for the whole dataset. In order
to overcome the scalability problems associated with nearest neighbor we pro-
pose a fast matrix factorization in order to reduce the data dimensionality and
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then Support Vector Machines for classification. We show through experimen-
tal results that the both the accuracy and the classification time is significantly
improved, while the training time is competitive to a standard Support Vector
Machines training duration.

2 Related Work

2.1 Time-Series Classification

The recent decades have witnessed a plethora of methodologies addressed at the
classification of time series. The methodologies vary from Neural Networks [1],
Bayesian Networks [2] to SVMs [3].

Dynamic Time Warping Among the most successful methods proposed within
the scope of time-series classification are distance based similarity metrics. Var-
ious distance metrics have been proposed, however the most widely recognized
and accurate metric is the so-called Dynamic Time Warping (DTW) [4]. Dy-
namic Time Warping is able to detect distortions between series of the same
class via computing the minimum warping alignment path of the respective
time points. The minimum time points alignment is computed through a dy-
namic algorithm, which constructs a cost matrix where each cell represent the
cumulative distance for the partial alignment up to the indexes of its coordi-
nates [5, 6]. DTW is used in combination with the nearest neighbor classifier,
denoted DTW-NN. Recent studies have pointed out that DTW-NN is a hard-
to-beat baseline in terms of classification accuracy [7]. In order to speed up the
classification time of DTW, a warping window concept has been introduced in
order to reduce the number of computations of the cost matrix cells, by omitting
candidate warping paths having deviations from the matrix diagonal, i.e from
the euclidean alignment of time points [6]. In this study we are comparing our
method against the DTW-NN.

2.2 Matrix Factorization

Matrix factorization is a variant of dimensionality reduction that projects data
into a reduced/latent/hidden data space which usually consists of lower dimen-
sions than the original space [8, 9]. Different approaches have been unified under
a generalized Bregman divergence theory [10]. Matrix factorization has been ap-
plied in domains involving time-series data as in music transcription [11], up
to EEG processing [12] In comparison we are going to use very fast variations
of matrix factorization with very low dimensions, fast learning rate and early
stopping.

2.3 Support Vector Machines (SVM) Classification

Support Vector Machines (SVM) are considered to be one of the best off-the-
shelf classifier for a wide application domains of machine learning. The success
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of support vector machines is based on their principle to find the maximum mar-
gin decision boundary hyperplane that accurately splits class regions [13]. The
training process of SVMs is done by optimizing the maximum margin objective,
usually in the dual representation of the objective function. In order to overcome
problems with non-linear separability of certain datasets, introduction of slack
variables has been applied to allow regularized disobedience from the decision
boundary. In addition kernel theory has been combined with the dual learning of
SVMs in order to offer various types of non-linear expressiveness to the decision
boundary [14]. We are applying SVMs for classifying the projected data in the
latent space.

3 Motivation

The time complexity of classifying long time series is obviously determined by
the runtime complexity of the method performing such classification, while the
complexities of those methods are functions of series lengths. In this section we
provide more insight into the diagnosis and the cure for time complexity issues
of lengthy series. However, before starting the analysis we need to provide a brief
description of DTW-NN.

3.1 Dynamic Time Warping and Nearest Neighbor

A warping path between two series A = (A1, ..., An) and B = (B1, ..., Bm),

denoted as πA,B is defined as an alignment τA,B = (τA,B1 , τA,B2 ) between the
elements of A and B. The alignment starts and ends with extreme points,

P = |τA,B |
1 = τA,B(1)1 ≤ ... ≤ τA,B(P )1 = n

1 = τA,B(1)2 ≤ ... ≤ τA,B(P )2 = m

while involving incremental alignment of adjacent pairs as:(
τA,B(i+ 1)1 − τA,B(i)1
τA,B(i+ 1)2 − τA,B(i)2

)
∈
{(

0
1

)
,

(
1
0

)
,

(
1
1

)}
The overall distance of the points aligned by a warping path is computed as

the sum of distances of each aligned pair. Such distance is called the Dynamic
Time Warping distance [6].

DTW(A,B) = argmin
τA,B

|τA,B |∑
p=1

(
AτA,B(p)1 −BτA,B(p)2

)2
Dynamic Time Warping distance is practically computed by a dynamic al-

gorithm, which is computed via a cost matrix, denoted W . Each cell of the cost
matrix is computed as follows:
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DTW(A,B) = Wlength(A),length(B)

W1,1 = (A1 −B1)2

Wi,j = (Ai −Bj)2 + min(Wi−1,j ,Wi,j−1,Wi−1,j−1) (1)

The nearest neighbor classifier based on DTW distance metric is described
in Algorithm 1 and basically predicts the label of a test instance as the label of
the closest train instance.

Algorithm 1 DTW-NN

Require: Training set D, Test instance I
Ensure: Predicted label of I

nearestNeighbor← argminI′∈D DTW(I, I ′)
return nearestNeighbor.label

3.2 The Curses of Dimensionality and Complexity

The computation of the DTW distance from Equation 1 between two series A
and B requires the computation in total of (length(A)× length(B)) cells which
make the distance metric an O(n2) operation. In order to classify a series instance
using the nearest neighbor classifier from Algorithm 1, we will have to compare
its distance against all training set instances which requires O(n) calls to DTW
computation. Therefore the overall classification time complexity of classifying
an instance is O(n3), while the classification of a whole test set becomes O(n4).
Cubic and/or quadric time complexities creates prohibitive possibilities for low
computational devices, or systems where the response time is critical. Please
note that especially in long time series the DTW computation tend to become
expensive, therefore we can metaphorically call this behavior as the curse of
complexity.

SVMs are much faster in terms of classification speed, however a learning
phase step is required first, because a maximum margin decision boundary has
to be created. In contrast, the nearest neighbor classifier requires no training
step at all. Even worse the classification and learning phases of SVMs can be
time consuming in case the number of features (here series length) is large. Such
phenomenon is known as curse of dimensionality. The purpose of this study is
to make the classification time of SVMs faster through first projection the data
into a latent space having much less features with even better accuracy. This
speedup comes with the additive learning time cost of the projection method,
therefore we will propose a very fast projection technique. The overall learning
and classification time of our method is shown to be much faster than DTW-NN.
In the end of Section 4.3 we explain that our method has an O(n) classification
time complexity.
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4 Proposed Method
Throughout this study we propose e method that aims at solving the problem
of time-series classification as formalized in section 4.1. Our method applies a
Fast Matrix Factorization, described in section 4.2, in order to project the data
to a lower dimensionality. Finally SVMs classifier, section 4.3, is applied to the
projected data for classification.

4.1 Problem Description

Given a training time series dataset Xtrain ∈ RN×M consisting of N time series
each of M points length and observed target variables Ytrain ∈ N, then the task
is to predict the labels Ytest of a given test set of series Xtest ∈ RN ′×N .

4.2 Fast Matrix Factorization

Matrix Factorization is a technique to decompose a matrix as the dot product
of other matrices having typically lower dimensionality. In our study, the time-
series dataset X ∈ R(N+N ′)×M will be approximated by the dot product of
the projected latent data Φ ∈ R(N+N ′)×K and the matrix Ψ ∈ RK×M as in
Equation 2. The value of K determine the dimensionality of the projected space.

X ≈ Φ · Ψ (2)

Such an approximation is converted to an objective function that can be
written in terms of a minimization objective function, denoted L, as in Equation
3. The loss terms are euclidean distances and can be expanded as in Equation 4.
The loss terms on the right preceded by λ coefficients are regularization terms
which prevent the over-fitting of Φ and Ψ .

argmin
Φ,Ψ

L(X,Φ, Ψ) = ||X − Φ · Ψ ||2 + λΨ ||Ψ ||2 + λΦ||Φ||2 (3)

argmin
Φ,Ψ

L(X,Φ, Ψ) =

N+N ′∑
i=1

M∑
j=1

(
Xi,j −

K∑
k=1

Φi,kΨk,j

)2

+ λΦ

N+N ′∑
i=1

K∑
k=1

Φ2
i,k + λΨ

K∑
k=1

M∑
j=1

Ψ2
k,j (4)

The solution of the objective function is carried through stochastic gradi-
ent descent where we randomly correct the loss created by each cell Xi,j . The
corresponding partial derivatives can be derived as follows:

Let: ei,j = Xi,j −
K∑
k=1

Φi,kΨk,j (5)

∂LXi,j

∂Φi,k
= −2ei,jΦi,k + 2λΦΦi,k (6)

∂LXi,j

∂Ψk,j
= −2ei,jΨk,j + 2λΨΨk,j (7)
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In order to obtain final versions of the latent matrices Φ, Ψ we learn them
through a stochastic gradient descent learning as shown in Algorithm 2. The
algorithm iterates through every cell Xi,j and updates the cells of the latent
matrices until the loss is minimized. In the end of the learning the latent matrix
Φ is fed to the classifier.

Algorithm 2 Stochastic Gradient Descent Learning

Input: Time-series dataset X, Learning rate η, Maximum Iterations MaxIterations
Output: Φ, Ψ
1: Initialize Φ, Ψ randomly
2: previousLoss←MaxV alue
3: currentLoss← L(X,Φ, Ψ)
4: numIterations← 0
5: while currentLoss < previousLoss ∧ numIterations ≤ MaxIterations do
6: for i = 1 to N +N ′ do
7: for j = 1 to M do
8: for k = 1 to K do
9: Φi,k ← Φi,k − η ·

∂LXi,j

∂Φk,j

10: Ψk,j ← Ψk,j − η ·
∂LXi,j

∂Ψk,j

11: end for
12: end for
13: end for
14: previousLoss← currentLoss
15: currentLoss← L(X,Φ, Ψ)
16: numIterations← numIterations+ 1
17: end while
18: return Φ, Ψ

In order to speed up the factorization there are three main steps that can be
taken. The latent dimensionality, parameter K specifying latent dimensionality
of matrices Φ, Ψ , is selected to be as low as K = c × cardinality(Y ), meaning
a small multiple c of the number of labels. In addition the learning rate η is
set to be large, which forces the optimization to quickly converge towards the
global minimum of the quadratic objective function in Equation 4. The final
element that speeds the convergence relies on stopping the iterations via a limited
maximum iterations count.

4.3 Support Vector Machines

The Support Vector Machines, hereafter denoted as SVMs, are a classifier that
aims at finding the maximum margin separating decision boundary among class
regions [15]. The decision boundary lies in the form of a hyperplane, denoted
w. For binary classification the target variable y is binary y ∈ {−1,+1}. The
classification of a test instance is computed the sign of the dot product between
the hyperplane and the instance vector, as in Equation 8.

ŷtest = sign(〈w, xtest〉+ w0) (8)
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The maximum margin hyperplane is computed by solving the optimization
function in Equation 9. Such formulation is known as the soft-margin primal
form [13].

minimize
1

2
||w||2 + C

n∑
i=1

ξi

subject to:

yi(〈w, xi〉+ w0) ≥ 1− ξi, and ξi ≥ 0, i = 1, ..., n

The so called slack variables, defined in Equation 9 represent the violation
of each series instance from the boundary with the objective aim of minimizing
the violations.

ξi = max(0, 1− yi(〈w, xi〉+ w0)) (9)

The primal form objective function is manipulated by expressing the inequal-
ity conditions via Lagrange multipliers denoted αi, one per instance. Then the
objective function is solved for w and w0 and the dual form is yield as shown in
Equation 10.

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)

subject to: 0 ≤ αi ≤ C, i = 1, ..., n
n∑
i=1

αiyi = 0 (10)

In order to classify datasets exhibiting non-linear separation, the dot product
present in the dual objective function, 〈xi, xj〉, is substituted by the so called
kernel trick which is shown as K(xi, xj) [14]. A typical kernel, the inhomoge-
neous polynomial one, is presented in Equation 11, where d is the degree of the
polynomial and c a constant.

〈xi, xj〉 → K(xi, xj) = (〈xi, xj〉+ c)d (11)

The purpose of the kernel trick approach is to express the feature space in
terms of a higher dimensionality space, such that a linear decision boundary in
the high dimensional space would represent a non-linear boundary in the original
one. The solution of the dual problem is carried through dedicated optimization
algorithms. The ultimate decision boundary can be formed as a function of the
solved Lagrange multipliers as depicted by Equation 12. Please note that the
non-zero αj coefficients correspond to the so-called support vector instances
(xj , yj).

yi = sign(

n∑
j=1

αjyjK(xj , xi)) (12)

Once the decision boundary is learn then a new instance can be classified
as a summation iteration over the support vectors, which make the operation
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of magnitude O(a × b), where a is the number of support vectors and b the
complexity of the dot product of two instance’s features. Please note that a is a
fraction of the number of instances, so still O(n) at worst-case, while b is linearly
proportional to the number of features. So SVM classification time deteriorates
to O(n2) in worst case scenario. In our method we will project the data into a
very low dimensionality, so b will be quasi O(1) and aggregatively our method
will have a worst-case classification time complexity of O(n).

5 Experimental Setup

The analysis and the experiments served to analyze the proposed methods are
tested on the longest five datasets of the UCR time-series data collection 3. The
statistics of the selected datasets are found in Table 1.

Table 1. Statistics of Datasets

Dataset Number of Instances Series Length Number of Labels

CinC ECG Torso 1420 1639 4

Haptics 462 1092 5

InlineSkate 650 1882 7

Mallat 2400 1024 8

StarLightCurves 9236 1024 3

In order to test our method, which we denote as Fast Matrix Factorization
and SVM, hereafter denoted as FMF-SVM, we run experiments against the
following implemented baselines:

– DTW-NN: The nearest neighbor with Dynamic Time Warping is a hard
to beat classifier in the time-series domain.

– E-NN: The nearest neighbor with Euclidean Distance is a fast version clas-
sifier compared to DTW-NN.

– SVM: Support Vector Machines are a strong off-the-shelf classifier.

The hyper-parameters of our method are searched via grid search using only
the validation set in a 5-cross validation fashion. The values of the learning
rate η are searched from a range of {10−1, 10−2, 10−3}, the latent dimensional-
ity among {1, 2, 3, 4} × cardinality(Y ), parameter C of SVMs is selected from
{10−1, 1, 101}, the maximum iterations from {100, 200, 300}, and finally the de-
gree of the polynomial kernel is chosen one of {2, 3, 4}. The combination yielding
the minimum error on the validation split, is tested over the test split.

6 Results

Our proposed method FMF-SVM exhibits excellent classification accuracy by
producing the smallest misclassification rates compared to the baselines in all
the datasets, as demonstrated in Table 2.

3 www.cs.ucr.edu/~eamonn/time_series_data
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Table 2. Misclassification Rate Results Table (5-fold cross validation)

Dataset
FMF-SVM DTW-NN E-NN SVM
mean st.dev. mean st.dev. mean st.dev. mean st.dev.

CinC ECG Torso 0.0007 0.0016 0.0007 0.0001 0.0014 0.0020 0.0007 0.0035

Haptics 0.4903 0.0118 0.5484 0.0025 0.5745 0.0750 0.5162 0.0405

InlineSkate 0.5098 0.0151 0.5131 0.0018 0.5603 0.0297 0.5197 0.0638

Mallat 0.0150 0.0027 0.0162 0.0001 0.0163 0.0063 0.0196 0.0084

StarLightCurves 0.0633 0.0074 0.0652 0.0001 0.1139 0.0044 0.0933 0.0449

The proposed method requires an additional matrix factorization step which
elongates the overall training time of building the model. Nevertheless the learn-
ing time is not prohibitive, and it is practically feasible as Table 3 shows.

Table 3. Learning Times (seconds)

Dataset
FMF-SVM SVM
mean st.dev. mean st.dev.

CinC ECG Torso 2.44 0.17 10.74 1.14

Haptics 223.55 3.86 2.80 0.11

InlineSkate 214.74 5.17 10.85 0.85

Mallat 840.81 30.42 10.69 0.32

StarLightCurves 2354.30 568.88 1033.51 656.81

Finally, in addition to being superior in classification, our method is also
extremely faster in terms of classification time. As Table 4 proves, FMF-SVM is
by far superior in terms of classification time regarding new test instances. The
presented results support our theoretic complexity analysis of Section 3.2 and
Section 4.3. (Note that M = 106).

7 Conclusion

Throughout this study we presented a new approach addressing the problem
of classifying long time series. In comparison to state-of-art similarity based
nearest neighbor classifiers, which deteriorate up to cubic orders of classification

Table 4. Classification Times Results (milliseconds)

Dataset
FMF-SVM DTW-NN E-NN SVM
mean st.dev. mean st.dev. mean st.dev. mean st.dev.

CinC ECG Torso 0.21 0.01 182900.92 3403.49 72.22 1.36 11.49 2.45

Haptics 0.68 0.03 24985.02 116.01 16.64 0.48 3.48 0.08

InlineSkate 0.73 0.04 98908.95 354.88 34.92 0.41 11.09 0.27

Mallat 0.64 0.02 115535.66 572.01 75.61 1.52 9.05 0.31

StarLightCurves 0.57 0.05 256.87M 4.54M 286.76 9.09 15.99 4.76
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time complexity, we propose a fast data projection to low dimensions and then
a SVMs classification on the latent space. Overall, our method’s classification
time complexity is only O(n) at worst-case scenario. Experiments over long time-
series datasets demonstrate that our method is clearly, both the fastest, and the
most accurate compared to selected state-of-art baselines.
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