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Abstract. Dimensionality reduction is a crucial ingredient of machine
learning and data mining, boosting classification accuracy through the
isolation of patterns via omission of noise. Nevertheless, recent studies
have shown that dimensionality reduction can benefit from label infor-
mation, via a joint estimation of predictors and target variables from
a low-rank representation. In the light of such inspiration, we propose
a novel dimensionality reduction which simultaneously reconstructs the
predictors using matrix factorization and estimates the target variable
via a dual-form maximum margin classifier from the latent space. The
joint optimization function is learned through a coordinate descent al-
gorithm via stochastic updates. Finally empirical results demonstrate
the superiority of the proposed method compared to both classification
in the original space (no reduction), or classification after unsupervised
reduction.

Keywords: Machine Learning; Dimensionality Reduction; Feature Ex-
traction; Matrix Factorization; Supervised Dimensionality Reduction

1 Introduction

Dimensionality reduction is an important ingredient of machine learning and
data mining. The benefits of projecting data to latent spaces constitute in (i)
converting large dimensionality datasets into feasible dimensions, but also (ii)
improving the classification accuracy of small and medium datasets [1]. Via
carefully tuned dimensionality reduction (aka feature extraction) we are able
to retrieve the necessary patterns from the datasets, by leaving out the noise.
Traditional dimensionality reduction, (as described in Section 2.1), has been fo-
cused on extracting features prior to classification. Such a mentality has been
recently found to perform non-optimal [2, 3], since the features are not directly
extracted/optimized for boosting classification. As a result there have been at-
tempts to incorporate class supervision into feature extraction, (mentioned in
Section 2.3), such that the latent features are guided to enforce the discern-
ment/separation of instances belonging to opposite classes in the reduced space.
Throughout this work we propose a principle, (details in Section 3.1), according
to which dimensionality reduction should optimize the latent features through
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the same optimization function as the final classification method, thereby en-
suring that the classification accuracy in the latent space is optimized. Inspired
by the accuracy success of SVMs, that is significantly inherent to the kernel
trick approach, we propose a novel supervised dimensionality reduction that in-
corporates kernel-based classification in the reduced dimension (Section 3). The
novelty relies on defining a joint dimensionality reduction via matrix factoriza-
tion, in parallel to a dual-form kernel-based maximum margin classification in
the latent space. The reduced data is simultaneously updated in a coordinate
descent fashion in order to optimize both loss terms. Experimental results, (Sec-
tion 5), demonstrate the superiority of the proposed method compared to both
unsupervised dimensionality reduction and classification in the original space.
The main contribution of this work are:

1. Define a supervised dimensionality reduction with a kernel-based target vari-
able estimation, in addition to the matrix reconstruction loss term

2. Derive a coordinate descent algorithm which simultaneously learns the latent
factors for both loss terms

3. Provide empirical results to demonstrate the superiority of the method

2 Related Work

2.1 Dimensionality Reduction

Dimensionality reduction is a field of computer science that focuses on extract-
ing lower dimensionality features from datasets [1]. Numerous techniques exist
for extracting features. Principal Component Analysis (PCA) is a famous ap-
proach involving orthogonal transformations and selecting the topmost principal
components, which preserve necessary variance [4]. Alternatively, Singular Value
Decomposition decomposes a dataset into latent unitary, nonnegative diagonal
and conjugate transpose unitary matrices [1].

Further elaborations of dimensionality reductions involve nonlinear decom-
position of data [5]. For instance kernel PCA replaces the linear operations of
PCA through nonlinear mapping in a reproducing kernel Hilbert space [6]. The
whole subfield of manifold learning elaborates, as well, on nonlinear projections.
Specifically, Sammon’s mappings preserves the structure of instance distances in
the reduced space [7], while principal curves embed manifolds using standard ge-
ometric projections [8]. More nonlinear dimensionality algorithms are described
in [9]. In addition, temporal dimensionality reduction have been proposed in
scenarios where the time difference of observations is not evenly spaced [10].

2.2 Matrix Factorization

Matrix factorization refers to a family of decompositions which approximates a
dataset as a product of latent matrices of typically lower dimensions. A gen-
eralization and categorization of the various proposed factorization models as
applications of Bregman divergences was elaborated in [11]. The learning of the
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decomposition is typically conducted by defining a l2-norm and updating the
latent matrices via a stochastic gradient descent [12]. Matrix factorization has
been applied in a range of domains, ranging from recommender systems where
decomposition focuses on collaborative filtering of sparse user-item ratings [13],
up to time series dimensionality reduction [14].

2.3 Supervised Dimensionality Reduction

In addition to the standard dimensionality reduction and matrix factorization,
there has been attempts to utilize the labels information, therefore dictating a
supervised projection. Fisher’s linear discriminant analysis is a popular super-
vised projection method [15]. The classification accuracy loss objective functions
occurring in literature vary from label least square regression [16], to general-
ized linear models [17], linear logistic regression [2], up to hinge loss [3]. Another
study aimed at describing the target variable as being conditionally dependent
on the features [18]. Other families of supervisions aim at preserving the neigh-
borhood structure of intra-class instances [19], or links in a semi supervised
scenarios [20]. In comparison to the aforementioned, we propose a supervised
dimensionality reduction with a kernel-based classifier, by directly optimizing
the dual formulation in the projected space.

3 Proposed Method

3.1 Principle

The method proposed in this study relies on the principle that feature extraction,
analogously referred also as dimensionality reduction, should not be conducted
”ad-hoc” or via particular heuristics. Most of the classification tasks have a uni-
fying objective, which is to improve classification accuracy. In that context we
are referring as ”ad-hoc” to the family of feature extraction techniques that don’t
directly optimize their loss functions for classification accuracy. Stated else-wise,
we believe that instance labels should guide the feature extraction, such that
the utilization of the extracted features improves accuracy. In that perspective,
we propose a feature extraction method which operates by optimizing a joint
objective function composed of the feature extraction term and also the clas-
sification accuracy term. Further details will be covered in the coming Section
3. In comparison with similar feature extraction ideas reviewed in Section 2.3,
which use linear classifiers in the optimization, we propose a novel method which
learns a nonlinear SVMs over the projected space via jointly optimizing a dual
form together with dimensionality reduction.

3.2 Matrix Factorization as Dimensionality Reduction

Matrix factorization is a dimensionality reduction technique which decomposes a
dataset X ∈ R(n+n′)×m matrix of n training instances and n′ testing instances,
per m features, into two smaller matrices of dimensions U ∈ R(n+n′)×d and
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V ∈ Rd×m [12]. The latent/reduced projection of the original data X is the
latent matrix U , where d is the dimensionality of the projected space. Typically
d is much smaller than m, meaning that the dimensionality is reduced. Such
decomposition is expressed in form of a reconstruction loss, denoted FR(X,U, V )
and depicted in Equation 1. The optimization aims at computing latent matrices
U, V such that their dot product approximates the original matrix X via an
Euclidean distance (l2 norm) loss. In addition to the l2 reconstruction norm, we
also add l2 regularization terms weighted by factors λU , λV in order to avoid
over-fitting.

argmin
U,V

FR(X,U, V ) = ||X − UV ||2 + λU ||U ||2 + λV ||V ||2 (1)

Bias terms, BU ∈ R(n+n′)×1, BV ∈ R1×m are added to the reconstruction
loss [12], such that each element of BU incorporates the prior belief value of
the respective instance, while each element of BV the prior belief value of the
respective feature. More concretely the loss can be expanded as a reconstruction
of each cell Xi,j as depicted by Equation 2.

argmin
U,V,BU ,BV

FR(X,U, V ) =

n+n′∑
i=1

m∑
j=1

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi
+BVj

))2

+ λU

n+n′∑
i=1

d∑
k=1

U2
i,k + λV

d∑
k=1

m∑
j=1

V 2
k,j (2)

3.3 Kernel-based Supervision of Dimensionality Reduction

Matrix factorization, as described in Section 3.2, is guided only by the recon-
struction loss. Such approach doesn’t take into consideration the classification
accuracy impact of the extracted features, therefore the produced reduced di-
mensionality data is not optimized to improve accuracy. In order to overcome
such a drawback, the so called supervised dimensionality reduction has been
proposed by various authors [2]. The key commonalities of those supervised di-
mensionality methods rely on defining a joint optimization function, consisting
of the reconstruction loss terms and the classification accuracy terms.

The typical classification accuracy loss term focuses on defining a classifier
in the latent space, i.e. U , via a hyperplane defined by the weights vector W ,
such that the weights can correctly classify the training instances of U in order to
match observed label Y . Equation 3 defines a cumulative joint optimization func-
tion using an introduced classification accuracy term, denoted FCA(Y,U,W ).
The trick of such a joint optimization constitutes on updating U simultaneously,
in order to minimize both FR and FCA via gradient descent on both loss terms.
The hyper parameter β is a switch which balances the impact of reconstruction
vs classification accuracy.

F (X,Y, U, V,W ) = β FR(X,U, V ) + (1− β)FCA(Y,U,W ) (3)
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In comparison to previous approaches that propose linear models, in this
study we propose a kernel-based binary classifier approach in the latent space U .
Let us initially define the classification accuracy loss term, denoted FCA(Y,U,W ),
in Equation 4, in form of a maximum margin soft SVMs with hinge loss [21].
Such form of the SVMs is called the primal form. The parameter C scales the
penalization of the instances violating the distances from the maximum margin.
Please note that W0 is the intercept bias term of the hyperplane weights vector
W .

argmin
U,W

FCA(Y,U,W ) =
1

2
||W ||2 + C

n∑
i=1

ξi (4)

s.t: Yi(〈W,Ui〉+W0) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

Unfortunately the primal form doesn’t support kernels, therefore we have
to convert the optimization functions into the dual form equation 5. In order
to get rid of of the inequality constraint we apply Lagrange multipliers to in-
clude the inequalities by introducing dual variables αi per instance and adding
αi (yi(〈W,Ui〉+W0)) to the optimization function for all instance i. Then we
solve the objective function for W and W0 by equating the first derivative to
zero. Putting the derived expressions of W and W0 to the objective function, we
obtain the so-called dual representation optimization:

argmin
U,α

FCA(Y,U, α) =
1

2

n∑
i=1

n∑
l=1

αiαlYiYl〈Ui,∗, Ul,∗〉 −
n∑
i=1

αi (5)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑
i=1

αiYi = 0

Once the optimization model is build any new test instance Xt can be clas-
sified in terms of learned α as shown in Equation 6.

Yt = sgn

(
n∑
i=1

αiYi〈Ui,∗, Ut,∗〉+W0

)
(6)

The dot product, found in the dual formulation, between the instance vectors
appears both in the optimization function 5 and the classification function 6.
Such a dot product can be replaced by the so called kernel functions [21]. Various
kernel representations exists, however in this study, for the sake of clarity and
generality, we are going to prove the concept of the method using polynomial
kernels, defined in Equation 7, which are known to be successful off-the-shelf
kernels [21].

K(Ui,∗, Ul,∗) =

(
d∑
k=1

Ui,kUl,k + 1

)p
(7)
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The ultimate objective function that defines nonlinear supervised dimension-
ality reduction is presented in Equation 8. This model, in cooperation with the
forthcoming learning algorithm, are the main contributions of our paper.

argmin
U,V,α,BU ,BV

F (X,Y, U, V, α) = β

n+n′∑
i=1

m∑
j=1

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi
+BVj

))2

(8)

+ (1− β)

(
1

2

n∑
i=1

n∑
l=1

αiαlYiYl K(Ui,∗, Ul,∗)−
n∑
i=1

αi

)

+ λU

n+n′∑
i=1

d∑
k=1

U2
i,k + λV

d∑
k=1

m∑
j=1

V 2
k,j

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑
i=1

αiYi = 0

Meanwhile the classification of a test instance Ut using kernels and the
learned U,α, resulting from the solution of the dual joint optimization is shown
in Equation 9.

Yt = sgn

(
n∑
i=1

αiYiK(Ui,∗, Ut,∗) +W0

)
(9)

4 Learning Algorithm via Coordinate Descent

The objective function of Equation 8 is a non-convex function in terms of U, V
and W , which makes it challenging for optimization. However stochastic gradient
descent is shown to perform efficiently in minimizing such non-convex functions
[12]. The benefits of stochastic gradient descent relies on better convergence,
because cells of X are randomly picked for optimization, thus updating different
rows of U , instead of iterating through the all the features of the same instance,
thus resulting in subsequent updates of the same latent row of U .

On the other side, the classification accuracy terms of Equation 5 can be
solved, in terms of α, by any standard SVMs dual solver method in case we
consider U to be fixed. Thus, in an alternating fashion we solve the α-s by
keeping U fixed. Then in the next step we update U using the learned α-s and
V matrix, by taking a step in the negative direction of the overall loss w.r.t U .
The update of V is performed as last step. Those three steps can be repeated
until convergence as shown in the Algorithm 2.

Before starting the description of the algorithm let us define the gradients to
be used for updating our latent matrices. We can represent the reconstruction
loss FR as sum of smaller loss terms FRi,j , per each cell (i, j) of the original
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dataset X. Such decomposition will later enable stochastic gradient descent to
optimize for each small loss term stochastically/randomly.

FR(X,U, V ) =

n+n′∑
i=1

m∑
j=1

FR(X,U, V )i,j (10)

FR(X,U, V )i,j = β

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi +BVj

))2

+

λU
1

m

d∑
k=1

U2
i,k + λV

1

n+ n′

d∑
k=1

V 2
k,j (11)

Gradients:

ei,j = Xi,j −
d∑
k=1

Ui,kVk,j −BUi −BVj

∂FR(X,U, V )i,j
∂Ui,k

= −2β ei,j Vk,j + 2λU
1

m
Ui,k (12)

∂FR(X,U, V )i,j
∂Vk,j

= −2β ei,j Ui,k + 2λV
1

n+ n′
Vk,j (13)

∂FR(X,U, V )i,j
∂BUi

= −2β ei,j (14)

∂FR(X,U, V )i,j
∂BVj

= −2β ei,j (15)

Similarly, we can split up the classification accuracy loss term, FCA, into
smaller loss terms FCAi,l, defined per each instance pair (i, l).

FCA(Y,U, α) =

n∑
i=1

n∑
l=1

FCA(Y, U, α)i,l (16)

FCA(Y,U, α)i,l = (1− β)

(
1

2
αiαlYiYl K(Ui,∗, Ul,∗)−

1

n2

n∑
i=1

αi

)
(17)

Gradients:

∂FCA(Y, U, α)i,l
∂Ui,k

= (1− β)
1

2
αiαlYiYl p

(
d∑
k=1

Ui,kUl,k + 1

)p−1
Ul,k (18)

∂FCA(Y, U, α)i,l
∂Ul,k

= (1− β)
1

2
αiαlYiYl p

(
d∑
k=1

Ui,kUl,k + 1

)p−1
Ui,k (19)

The updates of α-s is carried through an algorithm which is a reduced version
of the Sequential Minimal Optimization (SMO) [22]. Since the dual form opti-
mization function contains the constraint

∑n
i=1 αiYi = 0, then any update of an

αi will violate the constraint. Therefore SMO updates the α-s in pair, offering
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Algorithm 1 UpdateAlphaPair

Input: First alpha index i, Second alpha index j
Output: Updated α and W0

(αoldi , αoldj )← (αi, αj)
Let s← YiYj
(L,H)←

(
max(0, αoldj + sαoldi − s+1

2
C),min(C,αoldj + sαoldi − s−1

2
C)
)

Ek ←
(∑n

l=0 YlαlK(Ul,∗, Uk,∗) +W0

)
− Yk, ∀k ∈ {i, j}

αnewj ← αoldj −
Yj(Ei−Ej)

2K(Ui,∗,Uj,∗)−K(Ui,∗,Ui,∗)−K(Uj,∗,Uj,∗)
1

αnew,clippedj =


L , if αnewj < L

αnewj , if L < αnewj < H

H, if αnewj > H

αnewi ← αoldi + s(αnew,clippedj − αoldj )

bi ← Ei + yi(α
new
i − αoldi )K(Ui,∗, Ui,∗) + Y2(αnew,clippedj − αoldj )K(Ui,∗, Uj,∗) +W0

bj ← Ej + yi(α
new
i −αoldi )K(Ui,∗, Ui,∗) + Y2(αnew,clippedj −αoldj )K(Ui,∗, Uj,∗) +W0

W0 ←
bi+bj

2
, (αj, αi)←

(
αnew,clipped
j , αnew

i

)
return α,W0

three heuristics which defines which subset of the pairs should be updates first,
in order to speed up the algorithm.

In difference to the original algorithm, we have ignored the selection heuristic
for the alpha pairs to update. The reason for omitting the heuristics is due to
the fact that U instances are continuously updated/modified. For instance, let us
consider an imaginary instance Ui far away from the decision boundary, which
means αi = 0. However in the next iteration, the instance Ui might be updated
and move close to the boundary, meaning that αi becomes a candidate for being
updated (0 < αi ≤ C), opposite to the functioning of SMO heuristic that would
have avoided updating the instance, alluding that αi is still 0.

The alpha updates rely on solving the function analytically for a pair of α-s at
a step, until no αi,∀i, violates the KKT [22] conditions described in Equation 20.

Let Ŷi = sgn

 n∑
j=1

αjYj K(Uj,∗, Ui,∗) +W0


αi = 0→ YiŶi ≥ 1

0 < αi < C → YiŶi = 1

αi = C → YiŶi ≤ 1 (20)

Therefore the learning algorithm will update all the pairs of α-s in each iter-
ation. The SMO-like update of each pair of alphas is shown in the Algorithm 4,
with more details in [22]. Please note that the algorithm also updates the hy-
perplane intercept W0, which is used for classification of latent instances.

Having defined the gradients for updating latent matrices U, V with respect
to the optimization loss and also the update rules for α-s, we can derive a final
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learning algorithm based on coordinate gradient descent. Algorithm 2 shows
the learning algorithm in full terms. The updates of each cell of U, V,BU , BV ,
as response to the reconstruction loss FR and the classification accuracy loss
FCA, are conducted in the negative direction of the gradients scaled by hyper-
parameter learning rates ηR, ηCA. The convergence is guaranteed by selecting
small values for the learning rates. The stopping criteria is when the final loss
from Equation 8 reaches an optimum, meaning it doesn’t get further minimized.

[!t]

Algorithm 2 Learning Algorithm

Input: Dataset matrix X ∈ R(n+n′)×m, Labels vector Y ∈ Rn, Parameters: { Box
constraint C, Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA,
Regularizations λU , λV , Kernel degree p }

Output: U, V,BU , BV , α,W0

Initialize U ∈ R(n+n′)×d, V ∈ Rd×m, BU ∈ R(n+n′)×1, BV ∈ R1×m randomly
Initialize α← {0}n, W0 ← 0
while F not reached an optimum do

for ∀(i, j, k) ∈ ({1...(n+ n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR ∂FR(X,U,V )i,j
∂Ui,k

Vk,j ← Vk,j − ηR ∂FR(X,U,V )i,j
∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V )i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V )i,j

∂BVj

end for
for ∀(i, l, k) ∈ ({1...n}, {1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA
∂FCA(Y,U,α)i,l

∂Ui,k

Ul,k ← Ul,k − ηCA
∂FCA(Y,U,α)i,l

∂Ul,k

end for
for ∀i ∈ {1 . . . n} do

if αi violates KKT of Equation 20 then
for ∀j ∈ {1 . . . n} in random order do

(α,W0)← UpdateAlphaPair(i, j), from Algorithm 4
end for

end if
end for

end while
return U, V,BU , BV , α,W0

5 Experimental Results

In order to compare the classification accuracy of our method Nonlinearly Su-
pervised Dimensionality Reduction (NSDR), we implemented and compared
against two baselines:
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– PCA-SVMs: Matching against the standard PCA dimensionality reduction
and then SVMs classification will demonstrate the advantage of supervised
decomposition against unsupervised decomposition (PCA).

– SVMs: Comparison against the default SVMs will provide insights on the
advantages of dimensionality reduction.

The experiments were conducted using five folds cross validation, where the
data was divided into five splits and each split was, in turn, the test and the
other four the training data.

The hyper parameters of our method and the baselines was selected using a
validation data split from the training data. The best grid-search combinations
of hyper parameters that yielded the best accuracy was selected for being ap-
plied to the test split. The ranges of search for the NSDR method were λU ∈
{10−6, 10−5, . . . , 100, 101}, λV ∈ {10−6, 10−5, . . . , 100, 101}, ηR ∈ {10−4, 10−3}, ηCA ∈
{10−4, 10−3}, d ∈ {25%, 50%, 75%, 100%} ofm,β ∈ {0.1, 0.5, 0.9}, C ∈ {0.1, 1, 10}, p ∈
{1, 2, 3, 4}. For PCA-SVMs there is a variance parameter var ∈ {0.5, 0.7, 1.0} ×
100%. The other SVMs parameters C, p for both PCA-SVMs and SVMs were
searched in the same ranges as the ones reported for NSDR previously.

5.1 Results and Interpretation

For the sake of empirical verification we randomly selected five popular binary
datasets from the UCI repository. The results of the hyper parameter search over
the selected datasets are shown in Table 1.

Table 1: Hyper-parameter Search Results
DATASET NSDR PCA-SVMs SVMs

breast cancer λU = 10−5;λU = 10−1; ηR = 10−3; var = 1; C = 10
wisconsin ηCA = 10−4; d = 9;β = 0.9;C = 10; p = 2 C = 10; p = 2 p = 2

ionosphere
λU = 10−6;λU = 10−6; ηR = 10−3; var = 1; C = 0.1

ηCA = 10−3; d = 17;β = 0.5;C = 1; p = 2 C = 1; p = 3 p = 2

pi-diabetes
λU = 10−2;λU = 10−6; ηR = 10−3; var = 1 C = 10

ηCA = 10−4; d = 8;β = 0.5; C = 0.1; p = 3 C = 1; p = 3 p = 3

sonar
λU = 10−2;λU = 10−4; ηR = 10−3; var = 0.7 C = 0.1

ηCA = 10−4; d = 30;β = 0.1; C = 1; p = 3 C = 10; p = 2 p = 3

spect
λU = 10−2;λU = 100; ηR = 10−3; var = 1 C = 0.1

ηCA = 10−3; d = 11;β = 0.1;C = 1; p = 3 C = 1; p = 3 p = 2

There is a strong message we can derive from the hyper parameters results of
Table 1. In no case the winning kernel degree was found to be p = 1, pointing to
the conclusion that in all the listed datasets, non-linear dimensionality reduction
(i.e. kernel degree p > 1) is superior.

The accuracy results in terms of error ratios is presented in Table 2. The
winning method is shown in bold. As we can observe our proposed method
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outperforms the baselines in the majority of the datasets as shown in the wins
row.

Table 2: Classification Accuracy - Error Ratios
DATASET NSDR PCA-SVMs SVMs

breast cancer wisconsin 0.070 ± 0.018 0.082 ± 0.019 0.073 ± 0.021

ionosphere *0.066 ± 0.008 0.091 ± 0.010 0.140 ± 0.018

pi-diabetes 0.287 ± 0.023 0.280 ± 0.006 0.274 ± 0.030

sonar 0.202 ± 0.053 0.226 ± 0.129 0.226 ± 0.056

spect 0.206 ± 0.002 0.243 ± 0.103 0.206 ± 0.002

Wins (sig/n.sig) 3.5 (1/2.5) 0 1.5 (1/0.5)

NSDR improves the classification on the ionosphere dataset with a significant
difference, denoted by ∗, while on the other datasets the gap to the second best is
smaller. It is interesting to observe that in the cases of breast cancer wisconsin,
pi-diabetes and spect the performance of SVMs is better than PCA-SVMs. This
observation leads to a reasoning that those datasets are hardly compressible,
therefore unsupervised dimensionality reduction PCA is outperformed. How-
ever, due to the added advantage of nonlinear supervision, NSDR recovers the
disadvantage of PCA-SVMs and wins on breast cancer wisconsin and co-wins on
spect, while loosing only in the pi-diabetes dataset.

6 Conclusions and Future Work

Throughout this study we presented a nonlinearly supervised dimensionality re-
duction technique, which jointly combined a joint optimization on reconstruction
and classification accuracy. The reconstruction terms were expressed as matrix
factorization decomposition of latent matrices, while the classification accuracy
as a dual form kernel maximum margin classifier. The reduced dataset is learned
via a coordinate descent algorithm which updates the reduced dimensionality
dataset w.r.t to both loss terms simultaneously. Empirical results over binary
datasets shows that the proposed method outperforms the selected baselines in
the majority of the datasets. Having proven the concept on binary classification,
we plan to extend the model for multi-class data as future work.
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