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Abstract—Time-series classification has attracted considerable re-
search attention due to the various domains where time-series data
are observed, ranging from medicine to econometrics. Traditionally,
the focus of time-series classification has been on short time-series
data composed of a unique pattern with intra-class pattern distortions
and variations, while recently there have been attempts to focus on
longer, repetitive series composed of repeating local patterns. The
primary contribution of this study relies on presenting a novel method
which can detect local patterns in repetitive time-series via fitting local
polynomial functions of arbitrary degrees. We express the repetitiveness
degrees of time-series datasets via a novel measure. Furthermore, our
method approximates local polynomials in linear time and ensures an
overall linear running time complexity. The coefficients of the polynomial
functions are converted to symbolic words via equivolume discretizations
of the coefficients’ distributions. The symbolic polynomial words enable
the detection of similar local patterns by assigning the same words
to similar polynomials. Moreover, a histogram of the frequencies of
the words is constructed from each time-series’ bag of words. Each
row of the histogram enables a new representation for the series and
symbolizes the occurrence of local patterns and their frequencies. In an
experimental comparison against state of the art baselines on repetitive
datasets, our method exhibits significant improvements in terms of
prediction accuracy.

1 INTRODUCTION

Classification of time series is an important domain of
machine learning due to the widespread occurrence of
time-series data in real-life applications. Measurements
conducted in time are frequently encountered in diverse
domains ranging from medicine and econometrics up to
astronomy. Therefore, time series has attracted consider-
able research interest in the last decade and a myriad of
classification methods have been introduced.

Most of the existing literature on time-series classifica-
tion focuses on classifying short time series, that is series
which mainly incorporate a single long pattern. The
research problem within this family of time-series data
is the detection of pattern distortions and other types
of intra-class pattern variations. Among other successful
techniques in this category, the nearest neighbor classifier
equipped with a similarity metric called Dynamic Time

Warping (DTW) has been shown to perform well in a
large number of datasets [1].

Nevertheless, few studies [2], [3], [4] have been dedi-
cated towards the classification of time-series data which
is repetitive and composed of many repeating local
patterns. Repetitiveness has not been explicitly analyzed
in the context of classifying time series. The degree of
time-series repetitiveness in a dataset has been identified
by common sense and visual inspections. We propose a
novel repetitiveness measure that can objectively identify
the repetitiveness score of a dataset. Using such an objec-
tive repetitiveness measure, we can successfully switch
between recommending traditional methods for non-
repetitive datasets, and, on the other hand, recommend
our novel method for repetitive data.

Furthermore, this paper presents a novel method to
classify repetitive time series composed of local patterns
occurring in an unordered fashion and by varying fre-
quencies. In this paper we extract frequencies of repeat-
ing patterns as a new series representation. Figure 1
provides a toy clustering illustration, in order to demon-
strate the efficiency of the similarity using frequency
representation.

e

Fig. 1. Three non-repetitive patterns in A and three
repetitive series in B and C. A and B use the Euclidean
measure and C our proposed method.

For instance, series in sub-plot A are non-repetitive
and therefore similarity measures like Euclidan distance
are accurate and hard to beat. However, in the B & C
sub-plots, the series are repetitive and composed of three



normal heart bits (top) or two normal beats plus one PVC
(middle, bottom). Euclidean distance fails to detect sim-
ilar series, as shown in B, because (i) the position of the
PVC pattern varies and (ii) the number of beats varies.
On the other hand, we can define a new representation
as the frequencies of local patterns we can convert the
series into frequencies as {(3 0), (3 1), (3 1)}, where the
first index denotes the frequency of normal beats and
the second the frequency of PVC. An L2 distance over
the frequency representation yields the correct similarity
pairings in C.

As will be detailed in Section 5.2 we propose a fast
technique to fit sliding window content which has a lin-
ear run-time complexity. Our principle relies on detecting
local polynomial patterns which are extracted in a sliding
window approach, hence fitting one polynomial to each
sliding window segment. Once the polynomial coeffi-
cients of each sliding window content are computed,
we convert those coefficients into symbolic forms (i.e.
alphabet words). The motivation for calling the method
Symbolic Polynomial arises from that procedure. Such
discretization of polynomial coefficients, in the form
of words, allows the detection of similar patterns by
converting close coefficient values into the same literal
word. In addition, the words computed from the time
series allow the construction of a dictionary and a his-
togram of word frequencies, which enables an efficient
representation of local patterns.

We utilize an equivolume discretization of the distri-
butions of the polynomial coefficients to compute the
symbolic words, as will be explained in Section 5.3.
Threshold values are computed to separate the distri-
bution into equal volumes and each volume is assigned
one alphabet letter. Consequently, each polynomial co-
efficient is assigned to the region its value belongs to,
and is replaced by the region’s character. Ultimately, the
word of a polynomial is the concatenation of the char-
acters of each polynomial coefficient merged together.
The words of each time series are then stored in a sep-
arate ‘bag’. A dictionary is constructed with each word
appearing at least once in the dataset and a histogram
is initialized with each row representing a time series
and each column one of the words in the dictionary.
Finally, the respective frequencies of words are updated
for each time series and the rows of the histogram are
the new representation of the original time series. Such
a representation offers a powerful mean to reflect which
patterns (i.e. symbolic polynomial words) and how often
they occur in a series (i.e. the frequency value in each
histogram cell).

The technical novelty of our method, compared to
state-of-art approaches [3], [4] which utilize constant
functions to express local patterns of series, relies on
offering an expressive technique to represent patterns
as polynomials of arbitrary degrees. Furthermore, we
present a fitting algorithm which can compute the poly-
nomial coefficients for a sliding window segment in
linear time, therefore our method offers superior expres-

siveness without compromising run-time complexity.

Our experimental evaluation is composed on two parts
and detailed in Section 6.5. Initially we analyze a large
pool of 47 time-series datasets for identifying data having
highly repetitive characteristics. Then we conduct exper-
iments on prediction accuracy and run-time against state
of the art baselines in the repetitive datasets. Our method
outperforms the state of the art in all repetitive datasets
with a statistically significance margin the majority of
cases. We add experiments regarding the running time
of the method and we show that our linear running time
method is practically fast and feasible.

2 RELATED WORK
2.1 Time-Series Representations

In order to understand the regularities embedded in-
side time-series, a large number of researchers have
invested efforts into deriving and discovering time series
representations. The ultimate target of representation
methods is to encapsulate the regularities of time-series
patterns by omitting the intrinsic noise. Discrete Fourier
transforms have attempted to represent repeating series
structures as a sum of sinusoidal signals [5]. Similarly,
wavelet transformations approximate a time-series via
orthonormal representations in the form of wavelets [6].
However, such representations perform best under the
assumption that series contain frequently repeating reg-
ularities and little noise which is not strictly the case in
real-life applications. Singular Value Decomposition is a
dimensionality reduction technique which has also been
applied to extract latent dimensionality information of
a series [7], while supervised decomposition techniques
have aimed at incorporating class information into the
low-rank data learning [8].

In addition to those approaches, researchers have been
also focused on preserving the original form of the time
series without transforming them to different represen-
tations. Nevertheless, the large number of measurement
points negatively influence the run-time of algorithms.
Attempts to shorten time series by preserving their struc-
ture started by linearly averaging chunks of series points.
Those chunks are converted to a single mean value and
the concatenation of means create a short form known
as a Piecewise Constant Approximation [9]. A more
sophisticated technique operates by converting the mean
values into symbolic form into a method called Symbolic
Aggregate Approximation, denoted shortly as SAX [10],
[11]. SAX enables the conversion of time-series values
into a sequence of symbols and offers the possibility to
semantically interpret series segments. Further sophis-
tication of lower bounding techniques have advanced
the representation method towards efficient indexing and
searching [12], enabling large scale mining of time series
[13]. Nonlinear approximations of the series segments
have also been proposed. For instance least squares
approximation of time series via orthogonal polynomials



have been proposed for segmentation purposes in a hy-
brid sliding/growing window scenario [14]. Throughout
this paper we will propose a novel representation tech-
nique based on the utilization of polynomial functions of
an arbitrary degree to approximate sliding windows of a
time series. Our method brings novelty in converting the
coefficients into literal representations, while the ultimate
form is the frequency of the literal words constructed per
each sliding window.

2.2 Time-Series Similarity Metrics

The time-series community has invested considerable
efforts in understanding the notion of similarity among
series. Time series patterns exhibit high degrees of intra
and inter class variation, which is found in forms of noisy
distortions, phase delays, frequency differences and sig-
nal scalings. Therefore, accurate metrics to evaluate the
distance among two series play a crucial role in terms of
clustering and classification accuracy. Euclidean distance,
commonly known as the L, distance between vectors,
is a fast metric which compares the distance values of
every pair of points from two series, belonging to the
same time stamp index. Despite being a fast metric of
linear run-time complexity, the Euclidean distance is not
directly designed to detect pattern variations. A popular
metric called Dynamic Time Warping (DTW) overcomes
the deficiencies of the Euclidean distance by allowing the
detection of relative time indexes belonging to similar
series regions. DTW achieves highly competitive classi-
fication accuracies and is regarded as a strong baseline
[1]. Even though DTW is slow in the original formula-
tion having a quadratic run-time complexity, still recent
techniques involving early pruning and lower bounding
have utilized DTW for fast large scale search [15].

Other techniques have put emphasis on the need to
apply edit distance penalties for assessing the similarity
between time series [16], [17]. Such methods are inspired
by the edit distance principle of strings which counts the
number of atomic operations needed to convert a string
to the other. In the context of time series the analogy is
extended to the sum of necessary value changes needed
for an alignment. Other approaches have put emphasis
on detecting the longest common subsequence of series,
believing in the assumption that time series have a
fingerprint segment which is the most determinant with
respect to classification [18]. Detection of similarities in
a streaming time-series scenario motivated attempts to
handle scaling and shifting in the temporal and ampli-
tude aspects [19].

2.3 Time-Series Classification
Classifying Non-repetitive Time Series

Classification of non-repetitive (classical, or general) time
series has gathered considerable attraction in the litera-
ture. Among the initial pioneer methods and still one of

the best performing ones is the nearest neighbor classi-
fier accompanied by the DTW distance metrics, which
constitute a hard-to-beat baseline [1]. Other powerful
nonlinear classifiers like Support Vector Machines have
been tweaked to operate over time series, partially be-
cause originally the kernel functions are not designed for
invariant pattern detection and partially because DTW
is not a positive semi-definite kernel [20]. Therefore the
creation of positive semi-definite kernels like the Gaus-
sian elastic metric kernel arose [21]. Another approach
proposed to handle variations by inflating the training
set and creating new distorted instances from the original
ones [22].

Classifying Repetitive Time Series

The classification of repetitive time series focuses on long
signals which are composed of one or more types of
patterns appearing in unpredicted order and frequencies.
Principally, the classification of those series has been
mainly conducted by detecting the inner patterns and
computing statistics over them. Few relevant studies
have worked on repetitive data implicitly, because the
notion of repetitiveness and its characteristics have not
been exploited so far. For instance, underlying series
patterns have been expressed as the motifs and the
difference between the motif frequencies has been uti-
lized [2]. Other approaches have explored the conversion
of each sliding window segment into a literal word
constructed by piecewise constant approximations and
the SAX method [3], [4]. The words belonging to each
time series are gathered in a ‘bag’ and a histogram of
the words is constructed. The histogram vectors are the
new representations of the time series. Such a technique
has been shown to be rotation-invariant, because the
occurrence of a pattern is not related to its position
[4]. In contrast to the existing work, our novel study
introduces an expressive histogram formulation based on
literal words build from local pattern detection via poly-
nomial approximations. Our model ensures scalability by
computing in linear run-time.

3 DEFINITIONS AND NOTATIONS

Alphabet

An alphabet is an ordered set of distinct symbols and is
denoted by ¥. The number of symbols in an alphabet is
called the size of the alphabet and denoted by a = |3|.
For illutration purposes we will utilize the Latin variant
for the English language composed of the set of character
symbols ¥ = (A4,B,C,...,Y, Z).

Word

A word w € ¥* from an alphabet is defined as a sequence
of symbols, therefore one sequence out of the set of
possible sequences of arbitrary length [, defined as the
Kleene star X* := U %', For instance CACB is a word
from the Latin alphabet having length four.



Polynomial

A polynomial of degree d having coefficients 8 € R*?,
is defined as a sum of terms known as monomials. Each
monomial is a multiplication of a coefficient times the
a power of the predictor value X € RY, as shown in
Equation 1. The polynomial can also be written as a
linear dot product in case we introduce a new predictor
variable Z € RV*(4+1) which is composed of all the
powers of the original predictor variable X.

d

Y= X7 = Zp 1)
j=0
where 7 = (X% X' X7 ... X%

Time Series

A time series of length N is an ordered sequence of
numerical values and denoted by S € R¥. The special
characteristics of time-series data compared to plain vec-
tor instances is the high degree of correlation that close-
by values have in the sequence. A time-series dataset
containing M instances is denoted as T € RM*¥V as-
suming time series of a dataset have the same length.

Sliding Window Segment

A sliding window segment is an uninterrupted subse-
quence of S having length n denoted by S, € R". The
time index ¢ represents the starting point of the series,
while the index n the length of the sliding window, i.e.
St = [St, St+1, St+2, ..., Stan—1].- The total number of
sliding window segments of size n for a series of length
N is N —n, in case we slide the window by incrementing
the start index ¢ by one index at a time.

4 MEASURING REPETITIVENESS

Repetitive time series are characterized by patterns
which periodically repeat. Therefore, if we cut the time
series into non-overlapping sliding window segments,
then each segment will be similar to many others. On
the other hand, non-repetitive time series don’t have
repeating patterns, which means an arbitrary segment
is likely different to the others. Subsequently, we define
the repetitiveness measure as the average elastic distance
among all pairs of non-overlapping segments in a series.
Equation 2 presents the repetitiveness measure for a
time-series dataset 7', given a sliding window size n. The
measure computes the average DTW similarity of each
pair of the 2-many segments, while the per-series scores
are aggregated into the dataset repetitiveness measure.

. _ 2n
The correction factor ¢ = NI (Z 1) N (M=n)’

enables the metric to be invariant to the number of time-
series, their length (number of segment pairs) and the
size of the sliding window. The optimal repetitiveness
measure, denoted D(T)* and Defined in Equation 3,
is the smallest distance of the varying sliding window

sizes. Further discussions on the relation of the measure
to real-life datasets are elaborated in the experimental
setup, Section 6.

i=1 j=1 k=j+1
D(T)" = min D(T n) ©)

Figure 2 shows time-series instances from three dif-
ferent datasets having various repetitiveness. As can be
observed, the most repetitive series has the lowest D
value. For the sake of illustration quality, only the first
1000 points of the RATBP instances are shown.

RATBP, D=0.094
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Fig. 2. Time-series having different repetitiveness

5 PROPOSED METHOD: FREQUENCIES OF
LOCAL POLYNOMIALS
5.1 Principle

The principle proposed in this study is to detect local
patterns in a repetitive time series via computing local
polynomials. The polynomials offer a superior mean to
detect local patterns compared to constant or linear mod-
els, because they can perceive information like the cur-
vature of a sub-series. Furthermore, in case of reasonably
sized sliding windows the polynomials can approximate
the underlying series segment without over-fitting. In
this paper, we demonstrate that the polynomial fitting for
the sliding window scenario can be computed in linear
run-time. Once the local polynomials are computed, we
propose a novel way to utilize the polynomial coeffi-
cients for computing the frequencies of the patterns. The
polynomial coefficients are converted to alphabet words
via an equivolume discretization approach. Such a con-
version from real valued coefficients to short symbolic
words allows for the translation of similar polynomials
to the same word, therefore similar patterns can be
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Fig. 3. Fitting a local polynomial of degree 8 to the sliding window region indicated by a green box. The plot on the
right shows a scaled up version of the polynomial fit with coefficients 8 = [8.4 x 107%, —5.7 x 10712,1.6 x 1079, —2.4 x
1077,2.15 x 107°,—0.0011, 0.034, —0.36, —2.8] sorted from the highest monomial degree to the lowest. The time series

on the left plot is a segment from the GAITPD dataset.

detected. We call such words symbolic polynomials. The
words belonging to the time series are collected in a large
‘bag’ of words, (implemented as a list), then a histogram
is created by summing up the frequency of occurrence
for each words. Each row of a histogram encapsulates the
word frequencies of time series, (i.e. frequencies of local
patterns). A histogram row is the new representation
of the time series and is used as a vector instance for
classification.

5.2 Local Polynomial Fitting

Our method operates by sliding a window throughout a
time-series and computing the polynomial coefficients in
that sliding window segment. The segment of time series
inside the sliding window is normalized before being
approximated to a mean 0 and deviation of 1. The incre-
mental step for sliding a window is one, so that every
subsequence is scanned. Computing the coefficients of a
polynomial regression is conducted by minimizing the
least squares error between the polynomial estimate and
the true values of the sub-series. The objective function
is denoted by L and is shown in Equation 4. The task is
to fit a polynomial to approximate the real values Y of
the time series window of length n, previously denoted
as S¢n.

L(Y,Y) = HY—ZﬂH2 @)
Y = [St, St+1, St+2, e St-i—n—l]
Initially, the predictors are the time indexes

X =1[0,1,...,n—1] and they are converted to the
linear regression form by introducing a variable
Z € R™*(4+1) ag shown below in Equation 5.

09 0! 0
10 1! 14

The solution of the least square system is conducted by
solving the first derivative with respect the polynomial
coefficients § as presented in Equation 6.

OL(Y,Y)
ap

A typical solution of a polynomial fitting is provided
in Figure 3. On the left plot we see an instantiation of a
sliding window fitting. The sliding window of size 120
is shown in the left plot, while the fitting of the segment
inside the sliding window segment is scaled up on the
right plot. Please note that inside the sliding window the
time is set relative to the sliding window frame from 0 to
119. The series of Figure 3 is a segment from the GAITPD
dataset.

Since the relative time inside each sliding window is
between 0 and n — 1, the predictors Z are the same for
all the sliding windows of all time series. Consequently,
we can pre-compute the term P = (ZTZ)f1 ZT in the
beginning of the program and use the projection matrix
P to compute the polynomial coefficients 3 of the local
segment Y as § = PY. Algorithm 1 describes the steps
needed to compute all the polynomial coefficients of
the sliding windows (starting at ¢) of every time series
(indexed by i) in the dataset. For every time series we
collect all the polynomial coefficients in a bag, denoted
as ®(). The outcome of the fitting process are the bags
of all time series ®. Please note that the complexity of
fitting a polynomial to a sliding window is linear and
the overall algorithm has a complexity of O(M -d-n-N),
which considering d << N,d << M and n << N, means
linear run-time complexity in terms of NV and M, that is
O(M - N).

=0 leadsto B=(272)"'Z"Y (6)

5.3 Converting Coefficients To Symbolic Words

The next step of our study is to convert the computed
polynomial coefficients ® from Algorithm 1 into words.
The principle of conversion is to transform each of the
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Fig. 4. Equivolume Discretization of Polynomial Coefficients. The illustration depicts the histogram distributions of a
third degree polynomial fit over the sliding windows of the RATBP dataset. Each plot shows the values of a polynomial
coefficient versus the frequencies. The alphabet size is four corresponding to the set { A, B, C, D}. The quantile threshold

points are shown by dashed yellow lines.

Algorithm 1 Polynomial Fitting of a Time-Series Dataset

Require: Dataset 7' € RM*¥  Sliding window size n,
Polynomial degree d
Ensure: ® ¢ RMx(N-—n)x(d+1)
1 P (272)7 27
2. for ie{l1...M} do
3 000

4 forte{l...N—n} do

5. Y 59,59 .88
6: 8+ PY

7: ) — o)y {8}

8: end for

9: end for

10: return (‘I)(i))izl,...,M

d+1 coefficient of every 3 of ® to one symbol. Therefore,
the extracted words have lengths of d + 1 symbols.
For each of the § values of the polynomial coefficients
we construct the histogram distribution and divide it
into regions of equal volume as shown in Figure 4.
In the image we have divided the histogram into as
many regions as the alphabet size (« = 4) we would
like to utilize. Such a process is called an equivolume
discretization. The thresholds between the regions are
named quantile points and are defined in the figure
as yellow lines. Dividing the histogram into o many
regions is equivalent to sorting the coefficient values and
choosing the threshold values corresponding to indexes
multiple of 1. For instance, dividing the histogram into
4 regions for an alphabet of size 4 requires thresholds
values corresponding to indexes at 1, 2,3 of the total
number of values, which means that the each region has
25% of the values. Formally, let us define a sorted list
of the j-th coefficient values regarding all window seg-
ments as B’ « sort ({8; |B€®?,i=1,...,M}) and

let the size of this sorted list be s/ < |B/|. Then
the (a — 1) many threshold values are defined as
w, < B, ,Vk € {l,...a—1} and pJ, + .

(%)

Algorithm 2 Convert Polynomial Coefficients to Words

Require: Polynomial Coefficients ®, Alphabet Size «
Ensure: W € RM*(N—n)x(d+1)

1: {Compute the thresholds}

2. for j € {0...d} do

3 Bl sort({B;|pedVi=1,... M}

4: 8j4<— ‘B]|

5:  pl oo

6: forke{l...aa—1} do
7: /Li — B]LSjEJ

8: end for

9: end for

10: {Convert the coefficients to words}
11: ¥+ {A,B,...,Y, Z}

12: for 1€ {1...M} do

13 WO 0§

14:  for B € @ do

15: w (Z)

16: for j€{0...d} do A
17: k< argmaxye oy By < iy
18: W 4— W o Xy,

19: end for

20: WO « WOy {w}

21:  end for

22: end for

23: return (W®),_;

Algorithm 2 describes the conversion of polynomial
coefficients to symbolic form, i.e. words. The first phase
computes the threshold values y, to discretize the dis-
tribution of each coefficient in an equivolume fashion.
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Fig. 5. Polynomial Words Collection and Histogram Pop-
ulation. In the first step all the words of a series are stored
in one 'bag’ per each time series. Then a histogram is
initialized with a column of zeros for each word that occurs
in any bag at least once. During the second step the word
frequencies in the histogram are incremented upon each
word found in a bag.

The second phase processes all the coefficients 3 of time
series sliding windows and converts each individual
coefficient to a character ¢, depending on the position
of the 8 values with respect to the threshold values.
The concatenation operator is denoted by the symbol o.
The characters are concatenated into words w and stored
in bags of words W. The complexity of this algorithm
is also linear in terms of N and M. In case a linear
search is used for finding the symbol index k, then the
complexity is O(M - N - «), while a binary search reduces
the complexity to O(M-N-log(«)). Yet, please note that in
practice « << N and a << M, therefore the complexity
is translated to O(M - N).

5.4 Populating the Histogram

Once we have converted our polynomial coefficients and
converted them to words, the next step is to convert the
words into a histogram of word frequencies, as depicted
in Figure 5. The steps of the histogram population are
clarified by Algorithm 3. The first step is to build a dic-
tionary D, which is a set of each word that appears in any
time series at least once. Then we create a histogram H
with as many rows as time-series and as many columns
as there are words in the dictionary. The initial values
of the histogram cells are 0. Each cell indicate a positive
integer which semantically represent how many times
does a word (column index) appear in a time series (row
index). The algorithm iterates over all the words of a
series and increases the frequency of occurrence of that
word in the histogram.

Once the histogram is populated, then each row of the
histogram denotes a vector containing the frequencies
of the dictionary words for the respective time series.
Practically the row represent what local patterns (i.e.
words) exist in a series and how often they appear. For
instance Figure 6 presents instances from the GAITPD
dataset belonging to two types of patients in a binary
classification task, healthy patients (blue) and Parkin-
son’s Disease patients (red). In the left plot we show the

Algorithm 3 Populate the Histogram

Require: Word bags W
Ensure: Histogram H
1: {Build the dictionary}
: Ordered set dictionary D « 0
cfor we WO Vic{1...M} do
if w ¢ D then
D+ DuU{w}
end if
end for
: {Build the histogram}
i H < {0}i=1,... .M j=1,..|D|

10: for we W vie {1...M} do
11:  Find j with D; = w

12: H; ;< H;; +1

13: end for

14: return H

original time series while on the right plot the histogram
rows containing the polynomial words versus their fre-
quencies. The parameters leading to the histogram for
the GAITPD dataset are n = 100, = 4,d = 7. As can
be inspected the original time-series offer little direct
opportunity to distinguish one class from the other and
the series look alike. Moreover the Euclidean distance
of adjacent series in the figure show that the Euclidean
classifier would mistakenly classify the third instance of
the blue class. In contrast the histograms are much more
informative and it is possible to observe frequencies of
local patterns which allow the discrimination of one class
from the other. A complete distance matrix between blue
B and red R instances is shown in Table 1. As can be seen
our histogram representations result in perfect accuracy
in terms of nearest neighbor classification (bold), while
the original series result in 2 errors.

TABLE 1

Distances: Time-series (left), Histogram (right)

B1 By Bs R Ry Rs [ B1 By Bs R Ry R3
B - 1.6 1.28 14 129 14 Bi | - 1.7 23 2.9 2.6 25
By 16 - 14 1.5 14 131 By 1.7 - 1.9 2.6 23 23
Ba 1.28 1.4 - 14 1.27 14 Ba 23 1.9 - 3.0 2.6 2.8
Ry 14 15 14 - 1.22 14 R \ 29 2.6 3.0 - 1.6 14
Ro 129 14 127 1.22 - 126 Ry | 26 23 26 1.6 - 1.8
R3 14 131 14 14 1.26 - R3 \ 25 23 2.8 14 18 -

5.5 On the Importance of Linear Running Times

Repetitive time series are usually long, as is shown
Section 6, therefore linear running times of algorithms
are a must for computational feasibility. Our method
ensures linearity in terms of running time by having an
algorithmic complexity of O(M - N), which practically
means that only a single pass over the data is needed.
In order to give an illustration on the tyranny of non-
linear running times, our method computes in 18.7 mins
on the GAITPD dataset, while the full window DTWNN
(quadratic complexity) requires 5166.6 mins or 3.9 days.
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Fig. 6. GAITPD Dataset: Time series describing the gait in a few, randomly selected, control patients (blue) and
Parkinson’s disease patients (red). The original time series (x-axis is time and y-axis the normalized value) are displayed
on the left column, while the respective histogram of each time series is shown on the right. The x-axis of the right plot
represent 8026 words of the dictionary while the y-axis is the frequency of each word. The distances on the right
show that histograms among a class have lower Euclidean distances, while the distance between the two histograms
belonging to different classes is much higher, at a value of 3.01.

5.6 Classifier Selection

Our method produces a new time-series representation
and is not bound against a specific classifier. However,
the classifier that we are going to use for experimentation
is the nearest neighbor method, which is a both a strong
classifier in time-series classification [1] and is also used
by state-of-art methods [4]. After converting the original
time series into pattern frequency representations, in the
form of rows of a histogram matrix, then each row will
be treated as a vector instance. The nearest neighbor will
utilize the Euclidean distance to compute the difference
between histogram rows.

6 EXPERIMENTAL SETUP
6.1 Selecting Repetitive Datasets

The UCR! collection of time-series datasets is a pop-
ular source for the time-series community. However
the UCR collection is known to have ”atomic” (single

1. www.cs.ucr.edu/~eamonn/time_series_data

non-repetitive pattern) [23] time series datasets and not
repetitive ones. In pursue of additional datasets ex-
hibiting repetitiveness, we searched the Physionet [24]
repository of medical signals and found seven labeled
datasets (ECG2, RATBP, NESFDB, GAITPD, BIDMC,
UMW, MVT). Another datasets (PAMAP) on time-series
are utilized in a recent study [23]. Table 2 represents
the repetitiveness scores of all the datasets (the smaller
the more repetitive). The scores are computed using the
repetitiveness measure of Section 4 and shown under
the D column. We tried different sliding window sizes
(n € {5%,10%,15%,20%} of N) and selected the size
which resulted in the best repetitiveness, i.e. smaller D.
The time series of each dataset were normalized before
computing the repetitiveness score. None of the UCR
collection datasets have high repetitiveness according
to our objective measure. Such a finding is in accor-
dance to previous beliefs, given that the UCR collection
contains “atomic” patterns [23], and further indications
that those series are “short” [4]. Moreover, two of the
added datasets PAMAP and NESFDB resulted to be even



TABLE 2
Repetitiveness Scores of 51 Time-Series Datasets

[ D [ Dataset [ Length [[ D | Dataset [ Length [[ D [ Dataset | Length [[ D [ Dataset | Length |
2.12 TwoLeadECG 82 1.95 ECGE 136 1.56 Cricket_X 300 1.08 OSULeaf 427
2.09 Trace 275 1.92 Lighting?7 319 1.56 Cricket_Z 300 1.02 FaceAll 131
2.09 StarL. 1024 1.82 Lighting2 637 1.53 Cricket_Y 300 0.98 FaceFour 350
2.08 Gun. 150 1.79 yoga 426 1.53 Haptics 1092 0.93 PAMAP 2000
2.08 Medical. 99 1.77 Symbols 398 1.52 CBF 128 0.92 MALLAT 1024
2.07 uWaveY 315 1.77 Adiac 176 141 OliveOil 570 0.91 FacesUCR 131
2.06 Inline. 1882 1.72 CinC. 1639 141 NESFDB 1800 0.77 MVT 1021
2.06 uWaveZ 315 1.71 Words. 270 1.38 Beef 470 0.56 ECG2 2048
2.03 | wafer 152 1.71 | Fish 463 1.37 | synthetic 60 0.54 | UMW 1200
2.01 uWaveX 315 1.66 Diatom. 345 1.32 Two_P. 128 0.19 BIDMC 15000
2.00 TtalyP. 24 1.64 Sony 70 1.26 Coffee 286 0.15 ratbp 2000
1.99 ECG200 96 1.60 50words 270 1.24 Chlorine. 166 0.11 gaitpd 4000
1.96 Mote. 84 1.58 Swedish. 128 1.22 Sonyll 65

less repetitive than some datasets of the UCR collection.
Therefore, we are finally left with six highly repetitive
datasets for analysis, namely ECG2, GAITPD, RATBP,
BIDMC, UMW and MVT. Therefore, those datasets will
be the testbed of our further experiments. Please note
that repetitiveness is not directly related to the length
of the time series, but rather to the amount of repetitive
patterns inside them.

6.2 Descriptions of Highly Repetitive Datasets

TABLE 3
Statistics of Highly Repetitive Datasets

[ Dataset | Instances | Length [ Classes |
ECG2 250 2048 5
GAITPD 1552 4000 2
RATBP 180 2000 2
BIDMC 300 15000 15
UMW 60 1200 6
MVT 268 1021 3

All the experiments are based on the highly repeti-
tive datasets retrieved from our objective repetitiveness
ranking. Three of them are retrieved from Physionet,
a repository of complex physiological signals primarily
from the health care domain [24]. ECG2, BIDMC and
MVT represents ECG recordings. GAITPD and UMV
relate to the analysis gait cycles. The last dataset, named
RATBP, represent the blood pressure recordings of mice.

The statistics of each dataset in terms of the number of
instances, the length of each time series and the number
of classes is summarized in Table 3. Please note that all
the instances within one dataset have the same length,
for a couple of reasons: (i) respecting the source formats
(ECG2, BIDMC, MVT, all UCR collection), (ii) practicality
in pre-processing (RATBP, GAITPD, NESFDB, UMW),
and (iii) various traditional baselines like Euclidean-
based nearest neighbor cannot trivially operate on vari-
able series lengths. However, our histogram representa-
tion is very easily extensible to time-series of different
sizes by normalizing/dividing the pattern frequencies of
a particular series by its length.

6.3 Baselines

For notational sake, let us name our method as SymPol,
meaning Symbolic Polynomials, and refer to our method
with the abbreviation form in the remaining sections.
In order to evaluate the performance of SymPol, we
compare against the following three baselines.

1) BSAX refers to the method of constructing bags
of SAX words from time series through a sliding
window approach. The words occurring in the
bags are used to populate a histogram of frequen-
cies [4]. A nearest neighbor method is applied to
classify the histogram instances by treating the
histogram rows as the new time-series represen-
tation. Comparing against this classifier will give
chance to understand the benefit of polynomial
approximation compared to constant models and
will provide evidences on the state-of-art quality
of the results.

2) ENN is the classical nearest neighbor classifier
with the Euclidean L, loss as the distance metric.
It operates over the whole time series, without
segmenting the series for local patterns. The com-
parison against the plain nearest neighbor will
show whether the detection of local patterns has
more advantage than comparing the whole long
series.

3) DTWNN differs from the Euclidean nearest neigh-
bor classifier in defining a new distance metric for
the comparison of two time series and performs
well in time-series classification [1]. Dynamic Time
Warping (DTW) operates by creating a matrix with
all the possible warping paths, (i.e. alignment of
pairs of indexes from two series), and selects the
warping alignment with the smallest overall possi-
ble distance. DTW compares a full series without
segmentations similarly to the Euclidean version
of the nearest neighbor. Such comparison will both
identify the benefits of the segmentation and also
the benefits of local polynomials against global
warping alignments.



TABLE 4
Error Rate Results
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Dataset | SymPol | BSAX | ENN | DTWNN
| p(mean) | o (stdev) | p(mean) [ o (stdev.) | u (mean) [ o (stdev) | u (mean) [ o (stdev)
ECG2 0.0000 0.0000 0.0080 0.0098 0.5480 0.0240 02120 0.0160
GAITPD 0.0238 0.0083 0.0548 0.0120 0.3924 0.0211 0.2468 0.0206
RATBP 0.1333 0.0272 0.1889 0.0111 0.4389 0.0272 0.3333 0.0994
BIDMC 0.0000 0.0000 0.0000 0.0000 0.6467 0.0356 02433 0.0226
UMW 0.3167 0.0372 0.4500 0.0745 07167 0.1247 0.6333 0.0667
MVT 04628 0.0535 0.4850 0.0169 02724 0.0303 0.1982 0.0513
TABLE 6
Run Time Results (seconds)
[ SymPol BSAX | ENN | DTWNN ]
Dataset y
|  w(mean) [ o (stdev) | w (mean) [ o (stdev) | u (mean) [ o (stdev) | u (mean) [ o (stdev) |
ECG2 11 01 33 38 20 02 16515 529
GAITPD 11240 8074 535.0 1982 917 09 337K 20K
RATEP 2732 367 18 08 07 0.0 1241 172
BIDMC 544 25 1738 08 95 04 218K T4K
UMW 4 03 09 09 0.07 0.00 532 17
MVT 32 11 50 38 0.06 0.00 7221 152
- TABLE 5 h Resul A grid search mechanism was selected for searching
yperparameter Search Results the hyperparameter values. Our method SymPol requires
the tuning of three parameters, the size of the sliding
Dataset | SymPol BSAX window n, the size of the alphabet o and the degree of
[ n [ o [ d ] n [ Tw] T o . . . s .
) o - = o0 < T the polynomials d. The size of the sliding window was
CATTPD 100 15 73 100 67 68 selected among the range of n € {50,100, 200, 300,400},
RATBP 100 46 [ 4567 100 467 | 468 while the size of the alphabet was picked from « €
BIDMC 100 4 2 100 4 3 4 Lastly the degree of the polynomial was picked
UMW 100,200 | 468 25 100,200,300 | 3456 | 468 { ’s 8- ;’ dy ¢ degree of the polyno S picke
MVT 50,100,300 | 468 | 234 | 200300 | 346 | 68 to be one of d € {1,2,3,4,5,6,7,8}.

6.4 Reproducibility

The authors are devoted to promote full reproducibility,
therefore the source code and all the datasets used in this
paper are publicly available unconditionally 2.

Two different types of experiments were conducted in
our study. The first empirical evidence focuses on the
accuracy of our method with respect to classification
of time series. The second experiment will analyze the
computational run time of the methods. All the experi-
ments were computed in a five folds cross-validation
experimental setup. The time-series instances of each
dataset were divided into 5 sets. In a circular fashion
(repeated five times) each different set was once selected
as the testing set, while the remaining four were used for
training. Among the four sets used for training, one of
them was selected as a validation set and the remaining
three left as training. As a summary, all the combination
of parameters were evaluated on the validation set and
learned on the three training set, while the parameter
values giving the smallest errors on the validation were
selected. Those parameter values were finally evaluated
over the testing set (learning from the three training sets)
to report the final error rate.

2. http://fs.ismll.de/publicspace/SymbolicPolynomials/

Similarly, the baseline named BSAX also requires
the fitting of three hyperparameters. The length of
a SAX word, denoted |w|, was selected from the
range of {2,3,4,5,6,7,8,9}, while the size of the al-
phabet was selected among the values {4,6,8}. The
size of the sliding window is selected from a range
of {50,100,200, 300,400}, however those values were
rounded to fit the length of a SAX word. For instance if
the length of a SAX word is 3, then the size of the sliding
window was rounded from 100 to 102 in order for the
sliding window to be equally divisible into three chunks.
The hyperparameter values found in our experiments are
shown in Table 5, with ranges of multiple values due to
different parameter searches per each different validation
set. The datasets are normalized before usage, which is
recommended in the realm of time series [15].

6.5 Results

The classification accuracy results of our experiments are
presented in Table 4. For our method SymPol and all the
baselines we show the mean and the standard deviation
of the five fold cross-validation experiments as described
in the setup section. The smallest error rate is highlighted
in bold.

As can be clearly seen our method demonstrates a
superiority in the majority of the datasets. SymPol wins
in four datasets, namely ECG2, GAITPD, RATBP, UMW
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Hyperparameter Search Sensitivity
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Fig. 7. Hyperparameter Search Sensitivity. Parameter search for one fold of the RATBP dataset resulting in the optimal
values n = 100, = 6,d = 4. In the two dimensional illustration the third parameter (z-axis is invisible) is fixed to the

optimal value.

TABLE 7
Statistical Significance - T-Test (p values)

Dataset SymPol - BSAX | SymPol - ENN | SymPol - DTWNN
ECG2 0.1411 5.8403 -10~ 11 44212 1077
GAITPD 0.0054 24784 10~ 5.8147 -10~°
RATBP 0.0028 8.7033 -10~ 17 3.9227 .10~ %
BIDMC - 3.6036 -10~ 10 22838 -10~°
UMW 0.0072 2.6034 -10~ % 2.8225 -10~°
MVT 0.4015 1.4826 -10— % 6.6441 -10~°

while co-sharing a win in BIDMC and loosing to DTW
once in MVT. Our method performs perfectly in the
ECG2 dataset by having 100% classification accuracy.
In addition, SymPol reduces the error on the GAITPD
dataset by 57% with respect the closest baseline, while on
the RATBP dataset the error is reduced by 29%. BIDMC is
a trivial dataset where both BSAX and SymPol have 100%
accuracies. In addition we ran a statistical significance
test in order to validate the results. Table 7 presents the p-
values of a two tails T-Test, where results are statistically
significant with a confidence of 95% for p < 0.05. Each
cell measures the p-value of SymPol against a baseline.
The p-value for BIDMC, comparing SymPol vs BSAX,
is not defined because of division by zero, since both
methods have zero means and zero standard deviations.
Our method is statistically significant in 13 out of 18
cases, concretely 3/6 against BSAX, 5/6 against ENN,
5/6 against DTWNN. Please note that ECG2 and BIDMC
are trivial datasets, where the baseline (BSAX) has a
quasi-perfect score. In a trivial dataset, a method cannot
outperform the baseline and the best it can do is to have 0
% error as well, which is what SymPol achieved. Finally
we would like to explain the only dataset (MVT) where
our method is loosing to DTWNN. As Figure 8 illustrates
the MVT series are locally repetitive, but still have a
global structure where DTW is hard to beat.

The second type of results represent the running times

[EIN

200 400 600 800 1000

[ERN

| | | | |
200 400 600 800 1000

Fig. 8. Series of MR type (same class) in the MVT dataset

of the algorithms and is shown in Table 6. As can
be clearly seen the Euclidean distance on the original
dataset is the fastest method, which is a natural behavior
because no processing is done over series to extract
histograms. The BSAX method is the next in terms of
speed due to the computational advantage of the con-
stant model which requires only one pass over the data.
SymPol is positively positioned in terms of run time.
As already analyzed before, the algorithmic complexity
is comparable to the BSAX except for an additional
constant, which is the polynomial degree. In datasets like
ECG2 and GAITPD the execution times are bigger by
a small constant factor of two. The runtime constant in
the RATBP dataset is higher because the hyperparameter
search resulted to require a degree of 7. As a summary,
we can clearly see that the method is practically very
fast in terms of run time and is close even to techniques
that use a constant model to fit local patterns. SymPol
approximates polynomials of arbitrary degrees, instead
of simple averages as BSAX, yet it does it in a competitive
linear running time.

6.6 Sensitivity of Parameters

As presented in Section 6.4 our hyperparameter search
technique is the grid search, where we scan for all the
possible combination of one parameter’s values to all



the possible values of other parameters. Figure 7 shows
the sensitivity of SymPol’s prediction accuracies against
changes in the parameters. As can be easily deduced the
error rate is nonlinear with respect to the parameter val-
ues of the method. Therefore, a grid search mechanism
is practically suitable, because gradient based methods
would have resulted in local optima while nonlinear
optimization techniques would require much more com-
putations than the grid. As can be seen in the plot, the
grid search could successfully detect the global optimum
in the region denoted by a mark.

7 CONCLUSION

In this study we presented a novel method to classify
repetitive time series, which are composed of repeat-
ing local patterns. Local polynomial approximations are
computed in a sliding window approach for each nor-
malized segment under the sliding window. The com-
puted polynomial coefficients are converted to symbolic
forms (i.e. literal words) via an equivolume discretiza-
tion procedure. Thresholds for the distribution of the
values of each coefficient are determined to split the
coefficient’s histogram into equal regions and each region
is assigned an alphabet symbol. In a second step all the
polynomial coefficients are transformed into characters
by locating them within the threshold values of the his-
togram and assigning the region symbol. The final literal
representation of a polynomial is a word composed of
the concatenation of each coefficient’s character, in the
order of the coefficient’s monomial degrees. Once the
bags of words are computed, a histogram is populated
with the frequencies of each word in a time series.
We presented a linear time technique to compute the
polynomial approximation of a sliding window segment,
while the overall method has a run time complexity
which is linear in terms of the series points.

The classification accuracy of the nearest neighbor
method utilizing the histogram rows that our method
computed was compared against the performance of
three baselines. Our method was the winning method
in all the experiments, while achieving a statistically sig-
nificant margin in the majority. Furthermore, empirical
results demonstrate that our method has a practically
feasible running time performance, comparable even to
the fastest methods which require a single scan over the
time series.
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