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Abstract. Dimensionality reduction is a crucial ingredient of machine
learning and data mining, boosting classification accuracy through the
isolation of patterns via omission of noise. Nevertheless, recent studies
have shown that dimensionality reduction can benefit from label infor-
mation, via a joint estimation of predictors and target variables from
a low-rank representation. In the light of such inspiration, we propose
a novel dimensionality reduction which simultaneously reconstructs the
predictors using matrix factorization and estimates the target variable
via a dual-form maximum margin classifier from the latent space. Com-
pared to existing studies which conduct the decomposition via linearly
supervision of targets, our method reconstructs the labels using non-
linear functions. If the hyper-plane separating the class regions in the
original data space is non-linear, then a nonlinear dimensionality reduc-
tion helps improving the generalization over the test instances. The joint
optimization function is learned through a coordinate descent algorithm
via stochastic updates. Empirical results demonstrate the superiority of
the proposed method compared to both classification in the original space
(no reduction), classification after unsupervised reduction, and classifi-
cation using linearly supervised projection.

Keywords: Machine Learning; Dimensionality Reduction; Feature Ex-
traction; Matrix Factorization; Supervised Dimensionality Reduction

1 Introduction

Dimensionality reduction is an important ingredient of machine learning and
data mining. The benefits of projecting data to latent spaces constitute in (i)
converting large dimensionality datasets into feasible dimensions, but also (ii)
improving the classification accuracy of small and medium datasets [1]. The
scope of this work lies on improving prediction accuracy rather than ensur-
ing scalability. There exists a trade-off between accurate and scalable methods,
concretely a plain unsupervised dimensionality reduction is often advised for
scalability (fast classification) purposes [2]. Via carefully tuned dimensionality
reduction (aka feature extraction) we are able to retrieve the necessary patterns
from the datasets, by leaving out the noise. Traditional dimensionality reduc-
tion (described in Section 2.1) has been focused on extracting features prior to
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classification. Such a mentality has been recently found to perform non-optimal
[3, 4], since the features are not directly extracted/optimized for boosting classi-
fication. This discrepancy is created because the objective function (loss) of the
unsupervised decomposition process is different from the one used during the
evaluation of the prediction accuracy. Typically the L2 (Euclidean) error is used
in approximating the original predictor values from the low-rank data, while a
logistic, or hinge loss function, for the classification of targets. In order to solve
this challenge, there have been attempts to incorporate class supervision into
feature extraction, (mentioned in Section 2.3), such that the latent features are
guided to enforce the discernment/separation of instances belonging to opposite
classes in the reduced space.

Throughout this work we propose a principle, (details in Section 3.1), ac-
cording to which dimensionality reduction should optimize the latent features
through the same optimization function as the final classification method, thereby
ensuring that the classification accuracy in the latent space is optimized. Inspired
by the accuracy success of Support Vector Machines (SVM) which is largely cred-
ited to the kernel trick approach, we propose a novel supervised dimensionality
reduction that incorporates kernel-based classification in the reduced dimension
(Section 3). The novelty relies on defining a joint dimensionality reduction via
matrix factorization, in parallel to a dual-form kernel-based maximum margin
classification in the latent space. The reduced data is simultaneously updated in
a coordinate descent fashion in order to optimize both loss terms. Experimental
results (Section 4) demonstrate the superiority of the proposed method com-
pared to both unsupervised dimensionality reduction and classification in the
original space. The main contribution of this work are:

1. Defined a supervised dimensionality reduction with a kernel-based target
variable estimation

2. Reviewed and elaborated the state of the art in supervised dimensionality
reduction

3. Derived a coordinate descent algorithm which simultaneously learns the la-
tent factors for the reconstruction of predictors and the accuracy over target

4. Compared the paradigms of linearly versus non-linearly supervised dimen-
sionality reduction

5. Provided empirical results to demonstrate the superiority of the proposed
method

2 Related Work

2.1 Dimensionality Reduction

Dimensionality reduction is a field of computer science that focuses on extract-
ing lower dimensionality features from datasets [1]. Numerous techniques exist
for extracting features. Principal Component Analysis (PCA) is a famous ap-
proach involving orthogonal transformations and selecting the topmost principal
components, which preserve necessary variance [5]. Alternatively, Singular Value



Learning Through Non-linearly Supervised Dimensionality Reduction 3

Decomposition decomposes a dataset into latent unitary, nonnegative diagonal
and conjugate transpose unitary matrices [1].

Further elaborations of dimensionality reductions involve nonlinear decom-
position of data [6]. For instance kernel PCA replaces the linear operations of
PCA through nonlinear mappings in a Reproducing Kernel Hilbert Space [7].
The whole subfield of manifold learning elaborates, as well, on nonlinear pro-
jections. Specifically, Sammon’s mappings preserves the structure of instance
distances in the reduced space [8], while principal curves embed manifolds using
standard geometric projections [9]. More nonlinear dimensionality algorithms are
described in [10]. In addition, temporal dimensionality reduction have been pro-
posed in scenarios where the time difference of observations is not evenly spaced
[11]. The field of Gaussian Processes have been extended to dimensionality re-
duction through the Gaussian Processes Latent Variable Models (GPLVM) [12,
13]. In comparison to PCA, the GPLVM models define nonlinear approximative
functions for the predictor values [12].

2.2 Matrix Factorization

Matrix factorization refers to a family of decompositions which approximate a
dataset as a product of latent matrices of typically lower dimensions. A gen-
eralization and categorization of the various proposed factorization models is
elaborated in [14], where factorizations are seen as applications of the Bregman
Divergence paradigm. The learning of the decomposition is typically conducted
by defining a L2-norm and updating the latent matrices via a stochastic gradi-
ent descent algorithm [15]. Matrix factorization has been applied in a range of
domains, ranging from recommender systems where decomposition focuses on
collaborative filtering of sparse user-item ratings [16], up to time series dimen-
sionality reduction [17]. The Matrix Factorization approach is a special instance
of a probabilistic PCA, while it extends the functionality of a PCA by adding
bias terms [15]. In terms of similarities, a factorization can be also characterized
as a biased probabilistic SVD. In a broader sense, the linear approximation of
predictors can be also interpreted as an instance of the GPLVM models for a
linear (polynomial of degree one) kernel [12].

2.3 Supervised Dimensionality Reduction

In addition to the standard dimensionality reduction and Matrix Factorization,
there has been attempts to utilize the labels information, therefore dictating a
supervised projection. Fisher’s linear discriminant analysis is a popular super-
vised projection method [18]. The classification accuracy loss objective functions
occurring in literature vary from label least square regression [19], to generalized
linear models [20], linear logistic regression [3], up to hinge loss [4, 21]. Another
study aimed at describing the target variable as being conditionally dependent
on the features [22]. Other families of supervisions strive for preserving the neigh-
borhood structure of intra-class instances [23], or links in a semi supervised sce-
narios [24]. The GPLVM models have been, as well, adopted for discriminative
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classification [25]. A self-contained description of the state of the art in linearly
supervised dimensionality reduction is offered in Section 3.4. In comparison to
the aforementioned methods, we propose a supervised dimensionality reduction
with a kernel-based classifier that directly optimizes the dual formulation in the
projected space.

3 Proposed Method

3.1 Principle

The method proposed in this study relies on the principle that feature extraction,
analogously referred also as dimensionality reduction, should not be conducted
”ad-hoc” or via particular heuristics. Most of the classification tasks have a uni-
fying objective, which is to improve classification accuracy. In that context we are
referring as ”ad-hoc” to the family of feature extraction techniques that don’t
directly optimize their loss functions for classification accuracy. Unsupervised
projection is not optimized for the same loss function which is used during the
evaluation of the target variable. Techniques such as SVD or Matrix Factoriza-
tion focus solely on approximating the predictors of the original data. Unfortu-
nately, unsupervised decompositions pose the risk of losing the signal relevant to
the prediction accuracy. While such approaches approximate the original data,
they become vulnerable to the noise present in the observed predictors’ values.
Stated else-wise, we believe that instance labels should guide the feature extrac-
tion, such that the utilization of the extracted features improves accuracy. In
that perspective, we propose a feature extraction method which operates by op-
timizing a joint objective function composed of the feature extraction term and
also the classification accuracy term. In comparison with similar feature extrac-
tion ideas reviewed in Section 2.3, which use linear classifiers in the optimization,
we propose a novel method which learns a nonlinear SVM over the projected
space via jointly optimizing a dual form together with dimensionality reduction.
Further details will be covered throughout Section 3 which is organized progres-
sively. Initially the unsupervised dimensionality reduction is explained and then
the state of the art in linearly supervised decomposition. Finally the stage is
ready for introducing our novel method on non-linearly supervised dimensional-
ity reduction.

3.2 Introduction to Supervised Dimensionality Reduction

Unsupervised dimensionality reduction (e.g.: matrix factorization described in
Section 3.3), is guided only by the reconstruction loss. Such an approach does
not take into consideration the classification accuracy impact of the extracted
features, therefore the produced reduced dimensionality data is not optimized to
improve accuracy. In order to overcome such a drawback, the so called supervised
dimensionality reduction has been proposed by various authors (see Section 2.3).
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The key commonalities of those supervised dimensionality methods rely on defin-
ing a joint optimization function, consisting of the reconstruction loss terms and
the classification accuracy terms.

The typical classification accuracy loss term focuses on defining a classifier
in the latent space, i.e. U ∈ R(n+n′)×d, via a hyperplane defined by the weights
vector W ∈ Rd, such that the weights can correctly classify the training instances
of U in order to match observed label Y ∈ Rn. Equation 1 defines a cumulative
joint optimization function using a reconstruction term for the predictors, de-
noted FR(X,U, V ), and a classification accuracy term, denoted FCA(Y,U,W ).
The trick of such a joint optimization constitutes on updating the low-rank data
U simultaneously, in order to minimize both FR and FCA via gradient descent on
both loss terms. The hyper parameter β is a switch which balances the impact of
reconstruction vs classification accuracy. Throughout this paper we evaluate the
binary classification problem, even though the explained methods could be triv-
ially transferred to multi-nominal target variables by employing the one-vs-all
technique. Should that be needed, we would have to build as many classifiers as
there are categories in the target variable, while each classifier would treat one
category value as the positive class and all the remaining categories as the neg-
ative class. In addition to the reconstruction FR and the classification accuracy
FCa loss terms, the model has additive regularization terms parametrized by
coefficients λU , λV , λW . Such a regularization helps the model avoid overfitting
and enables a better generalization over the test instances.

F (X,Y, U, V,W ) = β FR(X,U, V ) + (1− β)FCA(Y, U,W ) (1)

3.3 Matrix Factorization as Dimensionality Reduction

Matrix factorization is a dimensionality reduction technique which decomposes a
dataset X ∈ R(n+n′)×m matrix of n training instances and n′ testing instances,
per m features, into two smaller matrices of dimensions U ∈ R(n+n′)×d and
V ∈ Rd×m [15]. The latent/reduced projection of the original data X is the
latent matrix U , where d is the dimensionality of the projected space. Typically
d is much smaller than m, meaning that the dimensionality is reduced. In case
d < m, then U is nominated as the low-rank representation of X. Otherwise,
if d > m a non-grata inflation phenomenon is achieved. Such decomposition is
expressed in a form of a regularized reconstruction loss, denoted FR(X,U, V ) and
depicted in Equation 2. The optimization of such a function aims at computing
latent matrices U, V such that their dot product approximates the original matrix
X via an Euclidean distance (L2 norm) loss. In addition to the L2 reconstruction
norm, we also add L2 regularization terms weighted by factors λU , λV in order
to avoid over-fitting.

argmin
U,V

FR(X,U, V ) = ||X − UV ||2 + λU ||U ||2 + λV ||V ||2 (2)

Bias terms, BU ∈ R(n+n′)×1, BV ∈ R1×m are added to the reconstruction
loss [15], such that each element of BU incorporates the prior belief value of
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the respective instance, while each element of BV the prior belief value of the
respective feature. More concretely the loss can be expanded as a reconstruction
of each cell Xi,j as depicted by Equation 3.

argmin
U,V,BU ,BV

FR(X,U, V ) =

n+n′∑
i=1

m∑
j=1

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi +BVj

))2

+ λU

n+n′∑
i=1

d∑
k=1

U2
i,k + λV

d∑
k=1

m∑
j=1

V 2
k,j (3)

In order to learn the Matrix Factorization defined in Equation 3 we need to
define the gradients to be used for updating our latent matrices. Stochastic Gra-
dient Descent is a fast optimization technique for factorizations [15] and operates
by reducing the approximation error of each cell (i, j) of X. Therefore, we can
represent the reconstruction loss FR as sum of smaller loss terms FRi,j , per each
cell (i, j) of the original dataset X. Such a decomposition will later enable the
stochastic gradient descent to optimize for each small loss term stochastically,
i.e. the indices (i, j) will be visited randomly.

FR(X,U, V ) =

n+n′∑
i=1

m∑
j=1

FR(X,U, V )i,j (4)

FR(X,U, V )i,j = β

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi
+BVj

))2

+

λU
1

m

d∑
k=1

U2
i,k + λV

1

n+ n′

d∑
k=1

V 2
k,j (5)

The gradients of the latent data U, V with respect to the reconstruction loss
are computed as the first derivative of the loss. The error in approximating a
cell Xi,j is defined as ei,j and can be pre-computed for scalability. As can be
observed from the gradients of Equations 6-9, the pre-computed error term ei,j
is used in all gradients.

ei,j = Xi,j −
d∑
k=1

Ui,kVk,j −BUi −BVj (6)

∂FR(X,U, V )i,j
∂Ui,k

= −2β ei,j Vk,j + 2λU
1

m
Ui,k (7)

∂FR(X,U, V )i,j
∂Vk,j

= −2β ei,j Ui,k + 2λV
1

n+ n′
Vk,j (8)

∂FR(X,U, V )i,j
∂BUi

=
∂FR(X,U, V )i,j

∂BVj

= −2β ei,j (9)
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3.4 Linearly Supervised Dimensionality Reduction

The linear supervision of the dimensionality reduction refers to the inclusion of
a linear classification loss term to the objective function, expressed as FCA in
Equation 1. The addition of the linear classification loss term enforces the in-
stances of different classes to be linearly separable in the low-rank space. Various
loss terms have been proposed depending on the utilized linear classifier. Before
explaining the different losses, we introduce the predicted value of instance i as
Ŷi and defined in Equation 10. The predicted value is the dot product of the
instance values Ui,: ∈ Rd and linear weights W ∈ Rd. In addition, the bias term
for the instance BUi

∈ R and the bias of the classification weight vector W0 ∈ R
are summed up.

Ŷi = BUi
+W0 +

d∑
k=1

Ui,kWk, ∀i ∈ Nni (10)

Loss terms quantify the degree of violation that a classifier exhibits from the
desired (perfect) prediction accuracy. Concretely the least square loss measures
the L2 distance between the true targets Y and predicted vales Ŷ . In the context
of linearly supervised reduction [19], the least-squares loss term can be defined
as shown in Equation 11. Similar to the regression case, least squares is adopted
for classification by treating the target values as Y ∈ {−1, 1}n, while predicted
positive values Ŷ indicate a positive class and vice versa.

FCA(Y, U,W )LS =

n∑
i=1

(
Yi − Ŷi

)2
+Reg(U,W ), ∀i ∈ Nni (11)

The logistic loss has been applied to guide the decomposition by minimizing
the target prediction error along a sigmoid curve [3]. Equation 12 presents the
loss, while the target values are expected to be in the range Y ∈ {0, 1}n. Please
note that the sigmoid function is defined as: sigmoid(Ŷ ) = 1

1+e−Ŷ
.

FCA(Y,U,W )LO =

n∑
i=1

−Yi log(sigmoid(Ŷi))− (1− Yi)× (12)

log
(

1− sigmoid(Ŷi)
)

+Reg(U,W ) (13)

Another strong linear classifier is the hinge loss, which represents the un-
derlying foundation of the Support Vector Machines is depicted in Equation 14.
The hinge loss has been also applied to supervised reduction [4]. The hinge loss
is also called a maximum margin loss because it tries to find a margin of unit
size between the hyperplane W and the region of each class.

FCA(Y, U,W )HI =

n∑
i=1

max(0, 1− YiŶi) +Reg(U,W ), ∀i ∈ Nni (14)
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Unfortunately the hinge loss is not differentiable at Y Ŷ = 1, therefore a
smoothed variant of the hinge loss [21] is preferred in cases where a gradient
based optimization is needed (Equation 15).

FCA(Y,U,W )SH =

n∑
i=1




1− YiŶi YiŶi < 0

1
2

(
1− YiŶi

)2
0 ≤ YiŶi < 1

0 YiŶi ≥ 1

+Reg(U,W ) (15)

The regularization term is a L2 norm and defined in Equation 16. The reg-
ularization parameters λU , λW control the complexity of the model and avoid
over-fitting.

Reg(U,W ) =

n+n′∑
i=1

d∑
k=1

Ui,k
2 +

d∑
k=1

Wk
2 (16)

.
The Advantage of Supervised Decomposition relies on using the label
information to guide the projection. In that way, any noise which is present in
the observed data can be eliminated in the low-rank representation.

In order to show the advantage of the supervised decomposition, we present
the experiment of Figure 1. A 2-dimensional synthetic dataset of ten instances,
belonging to two classes (red, blue) is depicted in sub-figure a). Please note that
the original data are linearly separable by a hyperplane. Then, we added a
random variableX3 (shown in b) ) of uniform random values between [−1, 1]. The
experiment aims at reducing the 3-dimensional noisy data back to 2-dimensions
using both unsupervised and supervised dimensionality reductions. As can be
observed, the unsupervised projection is affected by the added noise and the
resulting 2-dimensional data in c) is not anymore linearly separable. In contrast,
the linearly supervised decomposition can benefit from a linear classification
accuracy loss term to separate instances by label. A smooth hinge loss supervised
decomposition was applied to the decomposition of d). Please note that the
resulting 2-dimensional projection depicted in d) is linearly separable as the
original data. The experiment demonstrates that a supervised decomposition
has stronger immunity towards the presence of noise in the data. For the sake of
reproducibility, the parameters used during the experiment are provided in the
caption note.

Learning the Linearly Supervised Decomposition is carried on through
optimizing the latent weights U and W by taking a step in the first derivative of
the classification accuracy term FCA. In comparison to full gradient approaches,
stochastic techniques operate by eliminating the error of a random single instance
i, i.e. optimizing for FCAi. Since the gradient computations for each instance are
much simpler than for the full dataset, the stochastic gradient descent computes
faster than the full gradient learning.
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Fig. 1: Supervised reduction: a) original data with two classes (blue and red);
b) random noise variable (X3) added; c) unsupervised dimensionality reduction
through matrix factorization (from b) to c) ); d) linearly supervised maximum
margin dimensionality reduction (from b) to d) ). Parameters: ηR = ηCA =
0.001, λU = λV = 0.0001, λV = and β = 0.4.

More specifically, the gradients of the least-squares loss term are shown in
Equations 17-19 and are the result of the first derivative with respect to each
cell of U,W and the biases BUi

,W0.

∂FCA(Y,U,W )LSi
∂Ui,k

= −2
(
Yi − Ŷi

)
Wk + 2

λU
m
Ui,k (17)

∂FCA(Y,U,W )LSi
∂Wk

= −2
(
Yi − Ŷi

)
Ui,k + 2

λW
n
Wk (18)

∂FCA(Y,U,W )LSi
∂BUi

=
∂FCA(Y,U,W )LSi

∂W0
= −2

(
Yi − Ŷi

)
(19)

The logistic loss has derivatives similar to the least square loss with the
difference being the inclusion of the sigmoid of the predicted target value Ŷ .
The detailed gradients for the latent weights, with respect to the logistic loss
term FCA(Y,U,W )LO are presented in Equations 20-22.
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∂FCA(Y,U,W )LOi
∂Ui,k

= −2
(
Yi − sigmoid(Ŷi)

)
Wk + 2

λU
m
Ui,k (20)

∂FCA(Y,U,W )LOi
∂Wk

= −2
(
Yi − sigmoid(Ŷi)

)
Ui,k + 2

λW
n
Wk (21)

∂FCA(Y,U,W )LOi
∂BUi

=
∂FCA(Y,U,W )LSi

∂W0
= −2

(
Yi − sigmoid(Ŷi)

)
(22)

The optimization of the smooth hinge loss requires the optimization of the
three conditional steps present in the loss function, for the regions Y Ŷ < 0,
0 ≤ Y Ŷ < 1 and Y Ŷ < 1. The computation of the gradients follows a similar
practice as the other aforementioned loss types. First derivatives of the smooth
hinge loss term FSHCA are computed per each latent weight U,W,BU ,W0. The
derived gradients are shown in Equations 23-25.

∂FCA(Y,U,W )SHi
∂Ui,k

=



−YiŶiWk YiŶi < 0

−
(

1− YiŶi
)
Wk 0 ≤ YiŶi < 1

0 YiŶi ≥ 1

+ 2
λU
m
Ui,k (23)

∂FCA(Y,U,W )SHi
∂Wk

=



−YiŶiUi,k YiŶi < 0

−
(

1− YiŶi
)
Ui,k 0 ≤ YiŶi < 1

0 YiŶi ≥ 1

+ 2
λW
n
Wk (24)

∂FCA(Y,U,W )SHi
∂BUi

=
∂FCA(Y,U,W )SHi

∂W0
=


−YiŶi YiŶi < 0

−
(

1− YiŶi
)

0 ≤ YiŶi < 1

0 YiŶi ≥ 1

(25)

A Final Learning Algorithm is constructed by applying the defined gradients
in a stochastic gradient descent approach over the reconstruction and accuracy
loss terms. Algorithm 1 concatenates all the pieces of the learning process. The
learning process is separated into two main sections, namely (i) the updates
with respect to the reconstruction loss and (ii) the updates with respect to
the classification accuracy loss terms. The first loop iterates over all cells of X
indexed by row-column pairs (i, j), and also updates all the cells of U according
to the error present in approximating Xi,j . Similarly, the second loop iterates
over the train targets Yi and corrects the classification errors. The name of the
loss term (LT ) is a generic placeholder and aforementioned gradients of each
loss (least-squares, logistic and hinge) can be directly plugged in.

Updates are applied to all the cells of U, V,W and the biases BU , BV ,W0 in a
stochastic gradient fashion, i.e. visited randomly. The random updates speed up
the learning process because the continuous update of columns from a single row
is avoided. An update relies on decrementing the value of a cell in the direction of
the aforementioned gradients. The magnitude of the decrement step is controlled
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Algorithm 1 Learning Algorithm: Linearly Supervised Dim. Red.

Input: Dataset matrix X ∈ R(n+n′)×m, Labels vector Y ∈ Rn, Parameters:
{Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA, Regulariza-
tions λU , λV , λW }

Output: U, V,BU , BV ,W,W0

Initialize randomly U ∈ R(n+n′)×d, V ∈ Rd×m, W ∈ Rd, BU ∈ R(n+n′)×1, BV ∈
R1×m, W0 ∈ R
while FR + FCA not reached an optimum do

for ∀(i, j, k) ∈ ({1...(n+ n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR ∂FR(X,U,V )i,j
∂Ui,k

Vk,j ← Vk,j − ηR ∂FR(X,U,V )i,j
∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V )i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V )i,j

∂BVj

end for
LT ← {LS,LO, SH} {LT stands for ’Loss Type’}
for ∀(i, k) ∈ ({1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA ∂FCA(Y,U,W )LT
i

∂Ui,k

Wk ←Wk − ηCA ∂FCA(Y,U,W )LT
i

∂Wk

BUi ← BUi − ηCA
∂FCA(Y,U,W )LT

i
∂BUi

W0 ←W0 − ηCA ∂FCA(Y,U,W )LT
i

∂W0

end for
end while
return U, V,BU , BV ,W,W0

using a learning rate parameters. Technically, there are two learning rates for
each relation ηR and ηCA, which can also have equal values. The second cycle
iterates over all the low-rank instances Ui,: and the classification weights vector
Wk.

Ŷ LS,SHt = sign(W0 +BUt +

d∑
k=1

Ut,kWk), t ∈ Nn
′

n+1 (26)

Ŷ LOt = sigmoid(W0 +BUt
+

d∑
k=1

Ut,kWk) >
1

2
? 1 : 0, t ∈ Nn

′

n+1 (27)

Once the weights are learned, then the prediction of the test instances can
be produced as shown in Equations 26-27. For the least squares and the smooth
hinge loss the sign function defines the prediction, i.e.: the positive class for
positive predictive values, otherwise the negative class. On the other side, the
logistic loss is defined in Equation 27 as one of {0, 1} based on the value threshold
of 0.5.
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3.5 Nonlinearly Supervised Dimensionality Reduction

In comparison to previous approaches that propose linear models, in this study
we propose a kernel-based binary classifier approach in the latent space U . Let
us initially define the classification accuracy loss term, denoted FCA(Y,U,W ),
in Equation 28, in form of a maximum margin soft SVMs with hinge loss [26].
Such form of the SVMs is called the primal form. The parameter C scales the
penalization of the instances violating the distances from the maximum margin.
Please note that W0 is the intercept bias term of the hyperplane weights vector
W .

argmin
U,W

FCA(Y, U,W ) =
1

2
||W ||2 + C

n∑
i=1

ξi (28)

s.t: Yi(〈W,Ui〉+BUi +W0) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

Unfortunately the primal form doesn’t support kernels, therefore we have
to convert the optimization functions into the dual form equation 29. In order
to get rid of of the inequality constraint we apply Lagrange multipliers to in-
clude the inequalities by introducing dual variables αi per instance and adding
αi (yi(〈W,Ui〉+W0)) to the optimization function for all instance i. Then we
solve the objective function for W and W0 by equating the first derivative to
zero. Putting the derived expressions of W and W0 to the objective function, we
obtain the so-called dual representation optimization:

argmin
U,α

FCA(Y,U, α) =
1

2

n∑
i=1

n∑
l=1

αiαlYiYl〈[Ui,∗, BUi ], [Ut,∗, BUl
]〉 −

n∑
i=1

αi(29)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n; and

n∑
i=1

αiYi = 0

Once the optimization model is build any new test instance Ut can be clas-
sified in terms of learned α as shown in Equation 30.

Ŷt = sign

(
n∑
i=1

αiYi〈[Ui,∗, BUi
], [Ut,∗, BUl

]〉+W0

)
(30)

The dot product, found in the dual formulation, between the instance vectors
appears both in the optimization function 29 and the classification function 30.
Such a dot product can be replaced by the so called kernel functions [26]. Various
kernel representations exists, however in this study, for the sake of clarity and
generality, we are going to prove the concept of the method using polynomial
kernels, defined in Equation 31, which are known to be successful off-the-shelf
kernels [26].

K([Ui,∗, BUi
], [Ut,∗, BUl

]) =

(
BUi

BUl
+

d∑
k=1

Ui,kUl,k + 1

)p
(31)
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The ultimate objective function that defines nonlinear supervised dimension-
ality reduction is presented in Equation 32. This model, in cooperation with the
forthcoming learning algorithm, are the main contributions of our paper.

argmin
U,V,α,BU ,BV

F (X,Y, U, V, α) = β

n+n′∑
i=1

m∑
j=1

(
Xi,j −

(
d∑
k=1

Ui,kVk,j +BUi
+BVj

))2

+ (1− β)

(
1

2

n∑
i=1

n∑
l=1

αiαlYiYl K([Ui,∗, BUi ], [Ut,∗, BUl
])−

n∑
i=1

αi

)

+ λU

n+n′∑
i=1

d∑
k=1

U2
i,k + λV

d∑
k=1

m∑
j=1

V 2
k,j (32)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑
i=1

αiYi = 0

Meanwhile the classification of a test instance Ut using kernels and the
learned U,α, resulting from the solution of the dual joint optimization is shown
in Equation 33.

Yt = sign

(
n∑
i=1

αiYiK([Ui,∗, BUi ], [Ut,∗, BUl
]) +W0

)
(33)

The Benefit of Non-linear Supervision is the ability to preserve both the
reconstruction and the classification accuracy. This dual objective is achieved
best if there is no sacrifice in terms of reconstruction. More concretely, let us
assume the original data is non-linearly separable. Then, a linearly supervised
decomposition cannot easily minimize both FR and FCA. The handicap is created
due to trying to classify the low-rank data linearly, even though the original data
is non-linear. As a consequence, the structure of the data cannot be accurately
preserved and the reconstruction is poor, i.e. high FR error. Unable to preserve
the structure of the data, a linearly supervised decomposition struggles to achieve
a competitive generalization of prediction accuracy over the test instances.

Figure 2 illustrates the benefit of the non-linear supervision with a concrete
experiment. A 2-dimensional synthetic non-linearly separable dataset is created
in sub-figure a). For experimental purposes we added noise through a new vari-
able X3 that contains random values between [-1,1]. The key aspect of the ex-
periment is to project the noisy 3-dimensional data back to 2-dimensions using
both linearly (c)) and non-linearly (d)) supervised reductions. The projection
parameters are found in the caption comment. As can be seen from sub-figure
c), the linear supervision cannot linearly separate all instances in the low-rank
space under reasonable β values. On the contrary, a non-linear decomposition
can achieve a 0% training error, because a non-linear arrangement of the data
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Fig. 2: Nonlinearly supervised reduction: a) original data with two classes (blue
and red); b) random noise variable (X3) added; c) linearly supervised dimen-
sionality reduction (from b) to c) ); d) non-linearly supervised dimensionality
reduction (from b) to d) ). Parameters: ηR = ηCA = 0.001, λU = λV = 0.01,
λW = 2, C = 0.5, p = 3 and β = 0.7 and 300 iterations.

is easily achieved in the low-rank space. Please note that reasonable switch pa-
rameter values are β > 0. In the absurd case of β = 0 no reconstruction loss
updates will be applied and the classification loss term will create a low-rank
arrangement of the training instances without preserving at all the structure of
the original data. Such a classifier is destined to under-perform over the test
data.

3.6 Algorithm for Learning the Non-linearly Supervised
Dimensionality Reduction

The objective function of Equation 32 is a non-convex function in terms of U, V
and W , which makes it challenging for optimization. However stochastic gradient
descent is shown to perform efficiently in minimizing such non-convex functions
[15]. The benefits of stochastic gradient descent rely on better convergence, be-
cause cells of X are randomly picked for optimization, thus updating different
rows of U , instead of iterating through the all the features of the same instance.
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On the other side, the classification accuracy terms of Equation 29 can be
solved, in terms of α, by any standard SVMs dual solver method in case we
consider U to be fixed. Thus, in an alternating fashion we solve the α-s by
keeping U fixed. Then in the next step we update U using the learned α-s and
V matrix, by taking a step in the negative direction of the overall loss w.r.t U .
The update of V is performed as last step. Those three steps can be repeated
until convergence as shown in the Algorithm 3.

Similarly, we can split up the classification accuracy loss term, FCA, into
smaller loss terms FCAi,l, defined per each instance pair (i, l).

FCA(Y,U, α) =

n∑
i=1

n∑
l=1

FCA(Y, U, α)i,l (34)

FCA(Y,U, α)i,l = (1− β)

(
αiαl

2
YiYl K([Ui,∗, BUi

], [Ul,∗, BUl
])− αi + αl

n2

)
(35)

Gradients:

∂FCA(Y, U, α)i,l
∂Ui,k

=
β − 1

2
αiαlYiYl p

(
BUi

BUl
+

d∑
k=1

Ui,kUl,k + 1

)p−1
Ul,k(36)

∂FCA(Y,U, α)i,l
∂Ul,k

=
β − 1

2
αiαlYiYl p

(
BUi

BUl
+

d∑
k=1

Ui,kUl,k + 1

)p−1
Ui,k(37)

∂FCA(Y,U, α)i,l
∂BUi

=
β − 1

2
αiαlYiYl p

(
BUi

BUl
+

d∑
k=1

Ui,kUl,k + 1

)p−1
BUl

(38)

∂FCA(Y,U, α)i,l
∂BUl

=
β − 1

2
αiαlYiYl p

(
BUi

BUl
+

d∑
k=1

Ui,kUl,k + 1

)p−1
BUi

(39)

The updates of α-s is carried through an algorithm which is a reduced version
of the Sequential Minimal Optimization (SMO) [27]. Since the dual form opti-
mization function contains the constraint

∑n
i=1 αiYi = 0, then any update of an

αi will violate the constraint. Therefore SMO updates the α-s in pair, offering
three heuristics which defines which subset of the pairs should be updates first,
in order to speed up the algorithm.

In difference to the original algorithm, we have ignored the selection heuristic
for the α pairs to update. The reason for omitting the heuristics is due to the
fact that U instances are continuously updated/modified. For instance, let us
consider an imaginary instance Ui far away from the decision boundary, which
means αi = 0. However in the next iteration, the instance Ui might be updated
and move close to the boundary, meaning that αi becomes a candidate for being
updated (0 < αi ≤ C), opposite to the functioning of SMO heuristic that would
have avoided updating the instance, alluding that αi is still 0.

The alpha updates rely on solving the function analytically for a pair of α-s at
a step, until no αi,∀i, violates the KKT [27] conditions described in Equation 40.
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Algorithm 2 UpdateAlphaPair

Input: First alpha index i, Second alpha index j
Output: Updated α and W0

(αoldi , αoldj )← (αi, αj)
Let s← YiYj
(L,H)←

(
max(0, αoldj + sαoldi − s+1

2
C),min(C,αoldj + sαoldi − s−1

2
C)
)

Ek ←
(∑n

l=0 YlαlK(Ul,∗, Uk,∗) +W0

)
− Yk, ∀k ∈ {i, j}

αnewj ← αoldj −
Yj(Ei−Ej)

2K(Ui,∗,Uj,∗)−K(Ui,∗,Ui,∗)−K(Uj,∗,Uj,∗)
1

αnew,clippedj =


L , if αnewj < L

αnewj , if L < αnewj < H

H, if αnewj > H

αnewi ← αoldi + s(αnew,clippedj − αoldj )

bi ← Ei + yi(α
new
i − αoldi )K(Ui,∗, Ui,∗) + Y2(αnew,clippedj − αoldj )K(Ui,∗, Uj,∗) +W0

bj ← Ej + yi(α
new
i −αoldi )K(Ui,∗, Ui,∗) + Y2(αnew,clippedj −αoldj )K(Ui,∗, Uj,∗) +W0

W0 ←
bi+bj

2
, (αj, αi)←

(
αnew,clipped
j , αnew

i

)
return α,W0

Let Ŷi = sign

 n∑
j=1

αjYj K([Ui,∗, BUi
], [Ut,∗, BUl

]) +W0


αi = 0→ YiŶi ≥ 1

0 < αi < C → YiŶi = 1

αi = C → YiŶi ≤ 1 (40)

Therefore the learning algorithm will update all the pairs of α-s in each iter-
ation. The SMO-like update of each pair of alphas is shown in the Algorithm 2,
with more details in [27]. Please note that the algorithm also updates the hy-
perplane intercept W0, which is used for classification of latent instances.

Having defined the gradients for updating latent matrices U, V with respect
to the optimization loss and also the update rules for α-s, we can derive a final
learning algorithm based on coordinate gradient descent. Algorithm 3 shows
the learning algorithm in full terms. The updates of each cell of U, V,BU , BV ,
as response to the reconstruction loss FR and the classification accuracy loss
FCA, are conducted in the negative direction of the gradients scaled by hyper-
parameter learning rates ηR, ηCA. The convergence is guaranteed by selecting
small values for the learning rates. The stopping criteria is when the final loss
from Equation 32 reaches an optimum, meaning it doesn’t get further minimized.

The Convergence of Learning is guaranteed because both steps (i) the learn-
ing of the latent data U, V for the reconstruction loss, (ii) updates of U for the
classification loss and the Lagrangian multipliers, are both steps of the Expec-
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Algorithm 3 Learning Algorithm: Nonlinearly Supervised Dim. Red.

Input: Dataset matrix X ∈ R(n+n′)×m, Labels vector Y ∈ Rn, Parameters: { Box
constraint C, Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA,
Regularizations λU , λV , Kernel degree p }

Output: U, V,BU , BV , α,W0

Initialize U ∈ R(n+n′)×d, V ∈ Rd×m, BU ∈ R(n+n′)×1, BV ∈ R1×m randomly
Initialize α← {0}n, W0 ← 0
while F not reached an optimum do

for ∀(i, j, k) ∈ ({1...(n+ n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR ∂FR(X,U,V )i,j
∂Ui,k

Vk,j ← Vk,j − ηR ∂FR(X,U,V )i,j
∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V )i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V )i,j

∂BVj

end for
for ∀(i, l, k) ∈ ({1...n}, {1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA
∂FCA(Y,U,α)i,l

∂Ui,k

Ul,k ← Ul,k − ηCA
∂FCA(Y,U,α)i,l

∂Ul,k

BUi ← BUi − ηCA
∂FCA(Y,U,α)i,l

∂BUi

BUl ← BUl − ηCA
∂FCA(Y,U,α)i,l

∂BUl

end for
for ∀i ∈ {1 . . . n} do

if αi violates KKT of Equation 40 then
for ∀j ∈ {1 . . . n} in random order do

(α,W0)← UpdateAlphaPair(i, j), from Algorithm 2
end for

end if
end for

end while
return U, V,BU , BV , α,W0

tation Maximization algorithm. Figure 3 specifically illustrate the convergence
of our algorithm for the Ionosphere dataset.

The reconstruction loss (FR) and the classification accuracy loss (FCA) con-
verge smoothly as depicted in the left plot of Figure 3. The learning algorithm
updates the latent data with respect to the objective function of Equation 1,
therefore the decrease of the values of loss terms (shown in sub-figure a)) is an
indication that our algorithm converge as expected. On the right, sub-figure b)
demonstrates the consequence that a minimization of the classification loss has
towards decreasing the error rate on both training and testing data. There is
no significant gap between the train and test errors, which indicates that the
hyper-plane (α) learned over training instances generalizes accurately on the
unobserved test data.
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Fig. 3: Convergence of the loss terms and errors belonging to the Ionosphere
dataset; Parameters β = 0.7, C = 1, p = 1, λU = λV = 10−5, ηR = 0.001, ηCA =
0.0001 and d = 25.

The Algorithmic Complexity of our method both in terms of run-time and
space depends on the size of the data. Concretely, the storage requirements are
upper bounded to the size of the predictors, since for d < m the storage of Y ,
U , V and α are all less than X. Therefore the space complexity of the method
is O((n + n′) × m). The running time depends on the number of iterations of
Algorithm 3. If we denote the iterations as I, then the number of updates is
proportional to O(I × (n+ n′)×m× d), since for every cell Xi,j we update all
the k-many row cells Ui,k and column cells Vj,k. The updates of the classification
accuracy loss term α-s are inferior in number ( O(I × (n + n′) ×m) ) and do
not influence the upper bounding algorithmic complexity with respect to the
reconstruction loss. Note that l, the number of target categories, is a small
constant equals to two for binary problems. It is not possible to forecast exactly
the number of iterations that a dataset will require until convergence, since it
depends on the slope of the loss function’s surface (FR +FCA) and the learning
rate parameter. Large learning rates converge faster but increase both the risk of
divergence and missing narrow local optima. On the other hand, small learning
rates require more iterations to minimize the loss.

4 Experimental Results

4.1 Experimental Setup

In order to compare the classification accuracy of our method Nonlinearly Su-
pervised Dimensionality Reduction (NSDR), we implemented and compared
against three baselines:

– PCA-SVMs: Matching against the standard PCA dimensionality reduction
and then SVMs classification will demonstrate the advantage of supervised
decomposition against unsupervised decomposition (PCA).
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Table 1: Hyper-parameter Search Results
DATASET LSDR NSDR PCA-SVMs SVMs

breast canc.
λU = 10−4;λV = 10−5; λU = 10−2;λV = 1; var = 1; C = 10

ηR = 10−3; ηCA = 10−4; d = 6; ηR = 10−3; ηCA = 10−4; d = 9; C = 10; p = 2 p = 2
β = 0.1, λW = 1 β = 0.9;C = 10; p = 2

ionosphere
λU = 10−6;λV = 10−5; λU = 10−6;λV = 10−6; var = 1; C = 0.1

ηR = 10−3; ηCA = 10−4; d = 25; ηR = 10−3; ηCA = 10−4; d = 9; C = 1; p = 3 p = 2
β = 0.9, λW = 1 β = 0.9;C = 10; p = 2

pi-diabetes
λU = 10−6;λV = 10−3; λU = 10−4;λV = 1; var = 1 C = 10

ηR = 10−3; ηCA = 10−4; d = 6; ηR = 10−3; ηCA = 10−4; d = 6; C = 1; p = 3 p = 3
β = 0.9, λW = 0.1 β = 0.1;C = 0.1; p = 3

sonar
λU = 10−6;λV = 1; λU = 10−2;λV = 1; var = 0.7 C = 0.1

ηR = 10−3; ηCA = 10−4; d = 45; ηR = 10−3; ηCA = 10−4; d = 60; C = 10; p = 2 p = 3
β = 0.5, λW = 10 β = 0.1;C = 0.1; p = 2

spect
λU = 10−2;λV = 1; λU = 10−2;λV = 10−5; var = 1 C = 0.1

ηR = 10−3; ηCA = 10−4; d = 16; ηR = 10−3; ηCA = 10−4; d = 22; C = 1; p = 3 p = 2
β = 0.5, λW = 0.1 β = 0.5;C = 0.1; p = 3

– SVMs: Comparison against the default SVMs will provide insights on the
advantages of dimensionality reduction.

– LSDR: The linearly supervised dimensionality reduction represents the state
of the art in data projection. A comparison against this baseline clarifies the
superiority position of our method [3, 4]. The smooth hinge loss is used due
to its competitiveness and high prediction accuracy demonstrated together
with SVMs.

The experiments were conducted using five folds cross validation, where the
data was divided into five splits and each split was, in turn, the test and the
other four the training data.

The hyper parameters of our method and the baselines was selected using
a validation data split from the training data. The best grid-search combina-
tions of hyper parameters that yielded the best accuracy was selected for be-
ing applied to the test split. The ranges of search for the LSDR and NSDR
methods were λU ∈ {10−6, 10−5, . . . , 100, 101}, λV ∈ {10−6, 10−5, . . . , 100, 101},
ηR ∈ {10−4, 10−3}, ηCA ∈ {10−4, 10−3}, d ∈ {25%, 50%, 75%, 100%} of m,
β ∈ {0.1, 0.5, 0.9}, C ∈ {0.1, 1, 10}, p ∈ {1, 2, 3, 4}. For PCA-SVMs there is a
variance parameter var ∈ {0.5, 0.7, 1.0} × 100%. The other SVMs parameters
C, p for both PCA-SVMs and SVMs were searched in the same ranges as the
ones reported for NSDR previously.

4.2 Results

In order to validate the proposed method we selected five popular binary datasets
from the UCI repository, which cover a range of applications such as medicine
(Breast Cancer, Pi-Diabetes and Spect), radar (Ionosphere) and undersea ex-
plorations (Sonar). The hyper-parameters of the models were fit in a 5-folds
cross-validation fashion among the aforementioned ranges. In order to promote
experimental reproducibility, we present the exact values of parameters in Ta-
ble 1 for our method and all the baselines.
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Fig. 4: Parameter Sensitivity Analysis on SPECT dataset; Parameters β = 0.9,
C = 0.1, p = 2, λU = 10−6, λV = 10−5, ηR = 0.001, ηCA = 0.0001 and d = 11.

The Sensitivity of Parameters depends on the impact that a perturbation of
the value of a parameter has over the error rate. The most sensitive parameters in
a learning method are usually the regularization weights of the model complexity.
In the case of NSDR, the learning rate, the number of iterations and the latent
dimensions are less critical with respect to accuracy. The learning rate should be
set small enough to avoid divergence and the iterations large enough to ensure
convergence. In order to avoid under-fitting, the number of dimensions has to be
set at a large value, e.g. 75% of m. Therefore, the most sensitive parameters are
λU , λV for the reconstruction loss and C, p for the classification accuracy loss.
Figure 4 illustrate the sensitivity relation among the complexity regularization
parameters on the SPECT dataset. The left plot demonstrate the error rate
heatmap (the smaller the less error) as a result of perturbing the values of λU
versus λV . All the other parameters are kept constant at their optimal value
(yielding smallest error) and are displayed in the figure caption. The ranges of
the plot axis are displayed as the logarithm of the parameters values in order to
have equidistant ticks. The plot on the right presents the sensitivity of the error
rate with respect to the changes of the accuracy parameters C and p. As can be
seen from both plots, the error fluctuates significantly in the case of C, p, which
indicates that a practitioner should search for those parameters in a narrow grid
of values. On the contrary, the search for λU , λV are less critical because there
exists a large region of optimal values, which is expressed as a blue plateau.

We would like to point out that our non-linearly supervised dimensionality re-
duction (NSDR) is a generalization of the linearly supervised projection (LSDR).
The linear case can be instantiated as a polynomial kernel of degree one. Since
our method NSDR includes the functionality of LSDR, then every competitive
result of LSDR is easily achieved by NSDR (with parameter p = 1). On the
contrary, as our experiments show, a linear decomposition does not recover the
inexpressive nature of its linear hyper-plane.
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The accuracy results in terms of error ratios is presented in Table 2 with
respect to five real-life datasets. The winning method per each dataset is shown
in bold. As we can observe our proposed method outperforms the baselines in
all the datasets.

Table 2: Error Ratios on Real-Life Datasets
DATASET NSDR LSDR PCA-SVMs SVMs

breast cancer w 0.070 ± 0.018 0.122 ± 0.013 0.082 ± 0.019 0.073 ± 0.021

ionosphere 0.066 ± 0.008 0.097 ± 0.016 0.091 ± 0.010 0.140 ± 0.018

pi-diabetes 0.264 ± 0.023 0.279 ± 0.016 0.280 ± 0.006 0.274 ± 0.030

sonar 0.106 ± 0.041 0.188 ± 0.042 0.226 ± 0.129 0.226 ± 0.056

spect 0.138 ± 0.051 0.142 ± 0.056 0.243 ± 0.103 0.206 ± 0.002

NSDR improves the classification on the ionosphere and sonar datasets with
significant differences, while on the other datasets the gap to the second best
is smaller. As can be deduced from the results, the linearly supervised decom-
position is superior to the unsupervised decomposition (PCA-SVMs) in 3 out
of 5 datasets. Furthermore the nonlinear supervision (NSDR) outperforms the
linear method (LSDR) in all the datasets. The outcomes of the experiments val-
idate the expectations of our paper and demonstrate the usefulness of non-linear
supervision with respect to real-life data.

4.3 Run-time Disadvantage

While our proposed method (NSDR) achieves a better classification accuracy
than the baseline, still it has a costly optimization procedure. Compared to faster
classifiers like SVMs, our method has a joint factorization and classification loss
term. The joint optimization requires significant time to compute, in particular
because of the slower learning rates that are required to ensure a convergence.
For instance, it takes only 0.415 seconds for the SVMs and 158.065 for NSDR
to compute. Clearly, the run-time is a negative aspect of the paper with respect
to SVMs. As a rule of thumb, we advice practitioners to use NSDR only if
classification accuracy, not run-time, is the primary objective.

5 Conclusions

Throughout this study we presented a non-linearly supervised dimensionality
reduction technique, which jointly combined a joint optimization on reconstruc-
tion and classification accuracy. Such an approach distances from traditional
data mining that considered dimensionality reduction and classification as two
disjoint, sequential processes. The supervised decomposition benefits from the
knowledge on the target values of training instances, in order to both eliminate
the noise present in the predictor values and also preserve the class segregation.
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In our presented method, the reconstruction loss term is expressed as matrix
factorization decomposition of latent matrices, while the classification accuracy
as a dual form kernel maximum margin classifier. Consequently, the reduced
dataset is learned via a coordinate descent algorithm which updates the reduced
dimensionality dataset w.r.t to both loss terms simultaneously.

Existing state of the art methods in supervised decomposition incorporate
linear classification terms in the objective function. In contrast, our method
introduces a novel non-linear supervision of the dimensionality reduction pro-
cess. We adopt a kernel based classification loss, which guides the low-rank data
into being separated via a non-linear hyper-plane. A non-linear decomposition
improves accuracy in cases where the original data is not linearly separable, be-
cause preserving the non-linear arrangement of instances does not deteriorate
the reconstruction loss of predictor values. Since the linear supervision is a spe-
cial instance of our methods for a polynomial kernel of degree, then our method
offers a super-set of expressiveness.

Empirical results over five real-life datasets show that the proposed method
outperforms the selected baselines in the majority of the datasets. Significant
improvement is present against unsupervised techniques, which indicates the
benefit of incorporating target value information into dimensionality reduction.
In addition, experimental results validated the superiority of non-linearly guided
supervision against the linearly supervised state of the art decomposition.
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