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Abstract Time-series analysis is an important domain of machine learning and a
plethora of methods have been developed for the task. This paper proposes a new
representation of time series, which in contrast to existing approaches, decomposes
a time-series dataset into latent patterns and membership weights of local segments
to those patterns. The process is formalized as a constrained objective function and
a tailored stochastic coordinate descent optimization is applied. The time-series are
projected to a new feature representation consisting of the sums of the membership
weights, which captures frequencies of local patterns. Features from various sliding
window sizes are concatenated in order to encapsulate the interaction of patterns from
different sizes. The derived representation offers a set of features that boosts classifi-
cation accuracy. Finally, a large-scale experimental comparison against 11 baselines
over 43 real life datasets, indicates that the proposed method achieves state-of-the-art
prediction accuracy results.

Keywords Time-series classification · Time-series factorization · Data mining

1 Introduction

The analysis of time-series, including representation and learning, is a challenging
branch of machine learning and its existence spans over decades of research. Series
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data emerge in a myriad of application domains, from health-care and astronomy up
to economic and botanic. In comparison to other types of data, time series exhibit a
high degree of intra-class variability, where patterns occur shifted in time, distorted
and scaled. Therefore traditionally strong classifiers, such as support vector machines
(SVM), fail to excel in terms of prediction accuracy (Gudmundsson et al. 2008).

A series of algorithms have been proposed to address the intra-class variations of
time-series patterns. An early pioneer method called dynamic time warping (DTW),
[still considered competitive (Ding et al. 2008; Rakthanmanon et al. 2012)], computes
the similarity among series by re-aligning the time indexes. The algorithm explores
all the possible relative alignments of time indexes of two series and picks the one
yielding the minimum overall distance (Keogh et al. 2000).

The research of time-series classification can be approximately categorized into dis-
tance metrics, invariant classifiers, feature extraction and bag-of-patterns streams. Dis-
tance metrics focus on defining measurements on the similarity of two series instances
(Keogh et al. 2000; Chen and Ng 2004; Chen et al. 2007; Batista et al. 2014). Invari-
ant classifiers, on the other hand, aim at embedding similarities into classifiers. For
instance, the invariant kernel functions have been applied to measure instance similari-
ties in the projected space of a non-linear SVM (Zhang et al. 2010; Gudmundsson et al.
2008). Another paper proposes to generate all pattern variations as new instances and
inflate the training set (Grabocka et al. 2012b). The bag-of-patterns approach splits
the time-series into local segments and collects statistics over the segments. Those
local segments are converted into symbolic words and a histogram of the words’
occurrences is built (Lin et al. 2012; Lin and Li 2009). Another study constructs a
supervised codebook generated from local patterns, which is used to create features
for a random forest classifiers (Baydogan et al. 2013).

This paper introduces a new representation of time series, which can capture patterns
that are invariant to shifts and scales. We assume that time series are generated by
a set of latent (hidden) patterns which occur at different time stamps and different
frequencies across instances. In addition those patterns might be convoluted and/or
distorted to produce derived local patterns.

We would like to introduce the concept through the illustration of Fig. 1. A synthetic
dataset consists of two classes A (green) and B (black), each having two instances.
All the time series are composed of three segments of 20 points, while each segment
is a convolutional derivative of two latent patterns depicted in red and blue. In other
words, each segment is a weighted sum of a single-peaked and double-peaked pattern.
The shown coefficients of the convolution are degrees of membership that each local
segment has to one of those two latent patterns.

Both Euclidean and DTW based nearest neighbor classifiers have 100 % error on
a leave-one-out experiment on the dataset of Fig. 1. As can be observed, instance A1
is closer to B1 than A2, and the same applies for all other series. In fact the ratio-
nale behind this dataset is that A has a higher frequency of the red single-peaked
pattern, while B has a higher domination of the blue double-peaked pattern. The
method presented in this paper detects the latent patterns, measures the degrees of
membership and sums them up into a bag-of-pattern approach. Our approach con-
verts the series of Fig. 1 into a new representation F, concretely: FA1 = [1.9, 1.1],
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Fig. 1 Four series of two classes A={A1,A2} and B={B1,B2}, each generated as a convolution of latent
patterns

FA2 = [1.7, 1.3], FB1 = [1.3, 1.7], FB2 = [1.1, 1.9]. A nearest neighbor classifier
over the new representation F yields 0 % error.

In this paper, we will propose a method which detects a set of latent patterns for a
time series dataset together with a convolutional degree of membership weights. Such a
decomposition is a tailored dimensionality reduction for time-series. The product of the
membership weights with the patterns approximates the original segments. In contrast
to the aforementioned synthetic example, real datasets have segments occurring at
arbitrary locations and being of different sizes. Our method employs a sliding window
approach to split the series into overlapping local segments and utilizes a factorization
model to decompose the segments into latent patterns and weights. We formalize the
objective function of the factorization and propose a stochastic coordinate descent
technique in order to optimize the objective. The sum of the learned membership
degrees is used to project the time series into a new representation. Ultimately, in order
to resolve the scale invariance of the patterns, sums of memberships from different
sliding window sizes are concatenated.

Patterns in time-series often occur at different time indices, which is a behavior
known as “shifts”. The factorization method we propose in this paper, captures weights
of patterns in a sliding window segmentation and is invariant to the position of a pattern.
In addition, time-series patterns often appear in different scales/sizes. Our method
is invariant to the scale of the pattern because we factorize patterns corresponding
to various sliding window sizes. Therefore, we name the proposed factorization as
“invariant” to shifts and scale variations of patterns.

A thorough experimental comparison is conducted on 43 datasets of the UCR
time-series collection against six state of the art baselines. Our method achieves state-
of-the-art results in terms of prediction accuracy.

2 Related work

Time-series representation and classification has been elaborated on a vast number of
occasions, therefore a complete survey of all the published papers is out of our scope.
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Instead, we will structure the related work into a set of categories and mention relevant
prominent studies.

2.1 Distance metrics and invariant classifiers

A significant portion of time-series research has centralized around the definition of
accurate similarity metrics. The most popular of those approaches is the DTW measure
(Keogh et al. 2000), which overcomes deficiencies of the L2 norm distance by aligning
the time indexes of two series instances. The similarity measure is typically plugged
into a nearest neighbor classifier. DTW produces competitive prediction accuracies
(Ding et al. 2008; Wang et al. 2013) and has been speed up using lower boundary
heuristics (Rakthanmanon et al. 2012).

Other similarity based distance metrics have extended the edit distance of strings
into the time-series domain (Chen and Ng 2004; Chen et al. 2007). Furthermore, the
longest common subsequence of time series has also been used as an indication of
similarity (Vlachos et al. 2002). Moreover, similarities of sequential data have been
measured using sparse spatial sample kernels (Kuksa and Pavlovic 2010). A state of
the art method called complexity-invariant distance metric (CID) introduces the total
variation regularization for time-series. CID significantly improves the accuracy of the
nearest neighbor classifier with Euclidean distance (ED) (Batista et al. 2011, 2014).

Efforts have been dedicated to incorporating time-series variations into popular
classifiers. For instance DTW has been used as a SVM kernel (Gudmundsson et al.
2008), even though the resulting kernel is not positive semi definite. Consecutively,
another study has proposed a Gaussian elastic kernel (Zhang et al. 2010). A method
which produces a semi-definite kernel is called global alignment kernels and builds
an average statistics from all possible warping paths of time indexes (Cuturi 2011).
In addition, another study has inflated the training set by adding new instances that
represent variations of original training data (Grabocka et al. 2012b).

2.2 Feature extraction and bag-of-patterns

Other researchers have emphasized the extraction of series features for boosting clas-
sification. Dimensionality reduction has been used to project the time series into a
low-rank data space (Keogh et al. 2001), while a recent method incorporates class
segregation into the projection (Grabocka et al. 2012a).

However, the most prominent state of the art technique for extracting time-series
features is called shapelets mining. Shapelets represent the most discriminative series
segment (or set of segments), which yields the maximal prediction accuracy (Rakthan-
manon and Keogh 2013; Mueen et al. 2011). A related study detects a set of shapelets
and transforms the series data into a new representation, defined by the distance to
those shapelets (Hills et al. 2013).

A recent direction of research has drawn attention on the need to segment the time
series into local patterns and measure the frequencies of patterns as classification
features. For instance frequencies of time-series motifs have been fed into standard
classifiers (Buza and Schmidt-Thieme 2010). Another attempt has focused on building
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histograms of local patterns represented as symbolic words (Lin and Li 2009). Those
symbolic words are produced by a piecewise constant approximation technique called
SAX (Lin et al. 2007), while the frequencies of the SAX words are used ultimately for
classification (Lin et al. 2012; Lin and Li 2009). One similar bag-of-words approach
has also been applied to long bio-medical data (Wang et al. 2013). Moreover, a bag-of-
patterns study proposes to extract series segments of various lengths and positions and
generate a supervised codebook of those patterns (Baydogan et al. 2013). A random
forest classifier has been trained over the extracted features. That study demonstrates
considerable improvements over baselines in terms of prediction accuracy (Baydogan
et al. 2013).

2.3 Factorization of time series

There have been a few attempts in generating invariant time-series features through
factorization. A shift-invariant sparse coding of signals has been proposed for recon-
structing noisy or missing series segments (Lewicki and Sejnowski 1999). In similar
domains, sparse coding factorization has been applied for deriving shift and 2D rota-
tion invariant features of hand writing data (Barthelemy et al. 2012), and also invariant
features of audio data (Huang et al. 2012). Moreover, a temporal decomposition of mul-
tivariate streams has been used to discover patterns in patients’ clinical events (Wang
et al. 2012).

Our method is fundamentally different from distance metrics. Instead of measuring
the similarity of series, we project the data into a new representation, where similar
instances are positioned close to each other. Furthermore, the proposed method is
different to from existing bag-of-patterns methods because we learn a latent decom-
position of patterns, instead of counting the occurrence of segments on the original
time-series. Finally, our contributions over the existing factorization methods rely on
(i) a novel approach in detecting both shift and scale invariant features for time series,
and (ii) building a bag-of-patterns representation of the learned invariant features for
a classification scenario.

3 Definitions and notations

1. Time-series A time-series is an ordered sequence of point values. In a dataset of
N series instances, where each series has Q points, we denote the series dataset
as T ∈ R

N×Q .
2. Sliding Window Segment A sliding window content of size L ∈ N, is a series

subsequence starting at a position j ∈ {1, . . . , Q − L} of a series i of dataset T,
and is denoted as Si, j ∈ R

L , Si, j :=
(
Ti, j , Ti, j+1, . . . , Ti, j+L−1

)
.

3. All Dataset Segments The starting position of each sliding window segment is
incremented by an offset δ = {1, . . . , L}, therefore the maximum number of
segments per series is defined as M := Q−L

δ
. All the segments of a time-series

datasets are denoted as S ∈ R
N×M×L.
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4. Latent Patterns Our method mines for K -many latent patterns, each having the
same size as one segment, i.e L . So, the latent patterns are denoted as P ∈ R

K×L.
5. Degrees of Membership Each instance of a dataset will be approximated via the

product of latent patterns and the set of membership degrees to those patterns.
Each segment of a series will have one membership weight to each of the K latent
patterns. Consequently, the degrees of membership of all time-series are defined
as D ∈ R

N×M×K.

4 Invariant factorization of time series

The method presented in this paper is a new feature representation for time series data.
The representation reduces the dimensionality of the original series by factorizing the
series data into a set of patterns and weights of segments to those patterns. The sum of
weights over all the sliding window segments of a time-series is the new feature vector
that our paper constructs. The factorization process is fully unsupervised and doesn’t
take into account the label information. However, the derived representation provides
a set of features that boost the classification accuracy of standard classifiers, because
the new representation is invariant to shifts and scales of patterns. This section will
walk the reader through the details of our method, including the learning algorithms.

4.1 Segmentation of time series

As a first step, the series of the dataset are segmented in a sliding window approach
having size L and increment δ. The segmentation of each series is described in Algo-
rithm 1. Once derived, the segments are normalized to mean 0 and deviation 1.

Algorithm 1 SegmentSeries

Require: T ∈ R
N×Q , L ∈ N, δ ∈ N

Ensure: S ∈ R
N×M×L

1: M ← Q−L
δ

2: for i = 1, . . . , N , j = 1, . . . , M do
3: for l = 1, . . . , L do
4: Si, j,l ← Ti, δ( j−1)+l
5: end for
6: Si, j ← normalize(Si, j )

7: end for
8: return S

4.2 From the problem definition to an objective function

The definition of our problem is to learn degrees of memberships D ∈ R
N×M×K and

the patterns P ∈ R
K×L that reconstruct/approximate the segments S ∈ R

N×M×L. A
linear convolution D P is used as the model that reconstructs the segments. The loss
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of reconstruction is measured using the squared-error (L2) error, while two different
types of regularization are applied on D and P .

Therefore, the objective function is defined as a regularized loss and is described
in Eq. 1. The solution of the objective function returns the optimal D, P matrices that
cause the loss achieve its minimal value.

argmin
D,P

N∑

i=1

M∑

j=1

L∑

l=1

(

Si, j,l −
K∑

k=1

Di, j,k Pk,l

)2

+ λP

K∑

k=1

L∑

l=1

P2
k,l (1)

Subject To:

K∑

k=1

Di, j,k = 1, Di, j,k ≥ 0, ∀i, j, k

The objective function is composed of two loss terms and one constraint. Firstly,
the latent patterns P and the memberships D should approximate the normalized
segments of the series dataset. Therefore, minimizing the L2 norm of the reconstruction
error achieves the goal. In addition, a second regularization loss term is added in
order to prohibit the patterns P from over-fitting. A hyper-parameter λP controls the
degree of regularization. Finally, we impose equality and positivity constraints on the
membership degrees. The membership degrees of every segment Di, j sum-up to one,
because each segment needs to have the same impact factor. Otherwise, in a bag-of-
patterns representation of series, different segments would have different scales of
memberships. The positivity constraint, on the other hand, prohibits non-interpretable
negative memberships.

We would like to illustrate the invariant factorization objective with a concrete
illustration, shown in Fig. 2. A learned decomposition, as in Eq. 1, is depicted for the
Gun Point dataset. On the left top, a series instance is presented, while the dataset’s
latent patterns and the membership degrees of the instance are found below. The
product of the patterns and memberships yield the series approximation shown in the
right top chart. The series is split into eight overlapping segments of size 45, each
starting at an offset of 13 points. For instance, the 7-th segment starts at 79 and has a
high membership value to the 6-th pattern, which matches the descending structure.
However, please note that other patterns also contribute with smaller membership
degrees (patterns 4 and 5) in order to fit exactly the original segment content.

4.3 Learning the patterns and memberships

In order to learn the latent patterns and the memberships we are going to optimize
the objective function of Eq. 1 via stochastic coordinate descent, which operates by
updating each cell of D, P in the direction of the first derivative of the objective.
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Fig. 2 A factorized instance of the gun point dataset with parameters K = 6, L = 45, δ = 13, λP = 1

4.3.1 Update rules for latent patterns

In order to compute the update rules for the patterns, we first define in Eq. 2 the error
in approximating a point l of the segment j , in time-series i , as ξi, j,l . A stochastic
coordinate descent optimization fixes the error of approximating single points Si jl and
is different to gradient approaches that consider the full error.

Let ξi, j,l := Si, j,l −
K∑

k=1

Di, j,k Pk,l (2)

The optimization technique learns the optimal values of the patterns and member-
ship weights, which eliminate the error of each point ξi, j,l . In the case of a pattern point
Pk,l , the optimal value can be found by isolating the residual that the point contributes
from the error. Such an optimization technique is named as “Coordinate Descent”
and is popular for the factorization community (Yu et al. 2012). In our context, we
try to isolate the residual error of Pk,l by introducing a placeholder variable z as is
shown in Eq. 3. The optimal value of z that minimizes the error ξi, j,l , subject to the
regularization, is denoted as P∗k,l

P∗k,l := argmin
z

⎛

⎝λP z2 +
∑

i, j

(
ξi, j,l + Pk,l Di, j,k − zDi, j,k

)2

⎞

⎠ (3)
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Subsequently the optimal value of every point l of a latent pattern k (denoted as
P∗k,l ) is found by solving the first derivative as presented in Eq. 4.

2λP P∗k,l − 2
∑

i, j

(
ξi, j,l + Di, j,k(Pk,l − P∗k,l)

)
Di, j,k = 0 (4)

Therefore the optimal value P∗k,l is defined in Eq. 5 as a derivation of Eq. 4. Please
note that our learning algorithm will iterate through the error of all the segment points
ξi, j,l and then update all Pk,l cells to the optimal value with respect to the ξi, j,l .

P∗k,l :=
∑

i, j

(
ξi, j,l + Di, j,k Pk,l

)
Di, j,k

λP +∑
i, j D2

i, j,k

(5)

Please note that the error values don’t have to be recomputed for each point over all
latent patterns, instead we can incrementally update the error terms (Yu et al. 2012).
Equation 6 refreshes the error terms after the change of the pattern value.

ξi, j,l ← ξi, j,l − (P∗k,l − Pk,l)Di, j,k (6)

4.3.2 Update rules for membership degrees

The update rules for the membership degrees needs to preserve an equality constraint,
which enforce the memberships of a segment to sum to one. Therefore any direct update
of a membership Di, j,k will violate the constraint. In order to avoid this bottleneck,
we propose to update the memberships in pairs, inspired by a similar strategy known
as the Sequential Minimal Optimization algorithm (Platt 1999). The idea is to draw
two random membership weights Di, j,k, Di, j,w and update them such that their sum,
denoted Q = Di, j,k + Di, j,w, remains equal before and after the updates. In that way,
if we increase one membership, then the other would have to decrease and vice versa,
while the aim is to find the combination which yield the smallest approximation error.

Since the value of Di, j,k depends on the other value of the pair Di, j,w, then we can
no longer find the minimum value of the points separately. The optimization should
find the combination of pair values that both minimize the residual error ξi, j,l of
approximating a segment point Si, j,l . Therefore, the optimal value of Di, j,k , will be
denoted by D∗i, j,k and can be solved by isolating the residual error of both values by
introducing a variable z and creating an optimization sub-problem (Yu et al. 2012).
Since the sum of the pair of membership values is bound to Q, then we can replace the
optimal value of Di, j,w as Q − z. The resulting optimal value is expressed in Eq. 7.

D∗i, j,k = argmin
z

∑

l

(
ξi, j,l + Di, j,k Pk,l + Di, j,w Pw,l − Q Pw,l + z(Pw,l − Pk,l)

)2

(7)

The solution of Eq. 7 can be algebraically derived as the solution of the first deriv-
ative and is presented in Eq. 8. Our forthcoming learning algorithm will update pairs
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of membership weights for all the points of series segments, in a series of iterations.

D∗i, j,k =
−∑

l

(
ξi, j,l − Di, j,k

(
Pw,l − Pk,l

)) (
Pw,l − Pk,l

)

∑
l

(
Pw,l − Pk,l

)2 (8)

Once the optimal value D∗i, j,k is defined then we have to ensure the constraints.
Equation 9 crops the optimal value to be nonnegative and not exceed the sum Q of
the membership pairs. As mentioned during the description of the objective function,
we constraint the membership values to be non-negative and sum to one.

After updating the pair of membership weights we can also update the reconstruc-
tion error term ξi, j,l . The error terms are refreshed in order to avoid recomputing the
error of Eq. 2 before every update. Therefore the computation of the error terms can
be reduced from O(K ) to O(1). Equations 10 and 11 define the steps of updating the
errors as a result of changing Di, j,k, Di, j,w.

As a last step we can commit the optimal values, by preserving their sum before
the updates. As Eq. 12 represents, the best value of Di, j,w can be deduced from the
optimal value of Di, j,k .

• Crop value of Di, j,k , keep it between [0, Q]:

D∗i, j,k ← max(0, min(Q, D∗i, j,k)) (9)

• Update error ξi, j,l pursuant to changing Di, j,k :

ξi, j,l ← ξi, j,l − (D∗i, j,k − Di, j,k)Pk,l (10)

• Update error ξi, j,l pursuant to changing Di, j,w:

ξi, j,l ← ξi, j,l − (Q − D∗i, j,k − Di, j,w)Pw,l (11)

• Set Di, j,k, Di, j,2 to their optimal values:

Di, j,k ← D∗i, j,k, Di, j,w ← Q − D∗i, j,k (12)

4.4 Efficient initialization

Since the objective function of Eq. 1 is nonlinear in terms of P and D together, then
a coordinate descent optimization is not guaranteed to avoid local optima. Therefore,
good initial values of the patterns and the memberships are crucial for the learning
process. The intuition leads into assigning some of the segments as initial patterns,
however it is not obvious which of them provide the best initialization.

The answer is addressed via a technique utilized to find the initial centroids in a
clustering setup (Arthur and Vassilvitskii 2007). The patterns (analogy to centroids)
are initialized to segments with a probability proportional to the distance to all the other
segments (Arthur and Vassilvitskii 2007). Therefore, we are assured to pick centroid
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segments which are evenly distributed across the space of all series segments. The
initialization steps are detailed in Algorithm 2. Please note that the first pattern has
to be drawn randomly in a uniform distribution, while the other patterns are chosen
randomly from the dataset segments based on the probability of their distance to the
existing patterns. The function C measures the distance of a segment to the closest
existing pattern.

Algorithm 2 Initialize
Require: S ∈ R

N×M×L , L ∈ N, K ∈ N

Ensure: D ∈ R
N×M×K , P ∈ R

K×L

1: P1 ← Si ′, j ′ , drawn i ′, j ′ ∼ U(N , M)

2: for k = 2, . . . , K do

3: Pk ← Si ′, j ′ , with probability weights
C

(
Si ′, j ′

)2

∑

i, j
C(

Si, j
)2

4: end for
5: for i = 1, . . . , N ; j = 1, . . . , M do
6: k′ = argmin

k∈{1,...,K }
||Si, j − Pk ||2

7: Di, j,k ←
{

1 k = k′
0 k 	= k′ , k = 1, . . . , K

8: end for
9: return D, P

The initialization of the membership degrees is more trivial than patterns. The
degree index k′ denotes that pattern Pk′ is the closest to segment Si, j and its membership
Di, j,k′ is set to 1, while all the other membership degrees are initialized to zero.

4.5 Learning algorithm

Algorithm 3 finally combines all the steps of the factorization process. In the begin-
ning, the memberships and the patterns are initialized using Algorithm 2. Next the
errors are initialized, then the coordinate descent technique updates all the parameters
in a number of iterations, denoted as a hyper-parameter I. Subsequently, the degrees
of membership and the patterns are learned by setting the aforementioned optimal
values. The membership and pattern indexes are visited in random order to speed up
the convergence.

For the sake of clarity, we are going to describe the steps of the algorithm in a line
by line fashion. In line 1 the segmentation of series using Algorithm 1 is run, while in
line 2 we initialize the membership weights D and the patterns P via Algorithm 2. The
lines 4–6 initialize the errors ξ with the initial reconstruction error between segments S
and their convolutional reconstruction D P . Once the initializations are completed, the
invariant factorization learns the matrices D, P in a series of iterations that are located
in lines 8–37. For all the series i of the dataset and the sliding window segments j ,
our method learns all the K -many pairs ofdegrees of memberships and patterns. The
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Algorithm 3 InvariantFactorization
Require: T ∈ R

N×Q , L ∈ N, δ ∈ N, K ∈ N, λP ∈ R, I ∈ N

Ensure: D ∈ R
N×M×K , P ∈ R

K×L

1: S← SegmentSeries(T, L , δ)

2: (D, P)← Initialize(S, L , K )

3: {Initialize the errors}
4: for ∀i ∈ N

N
1 , ∀ j ∈ N

M
1 , ∀l ∈ N

L
1 do

5: ξi, j,l := Si, j,l −
K∑

k=1
Di, j,k Pk,l

6: end for
7: {Update the patterns & memberships iteratively}
8: for iteration = 1, . . . ,I do
9: {Update all degrees of membership}
10: for ∀i ∈ N

N
1 ,∀ j ∈ N

M
1 randomly do

11: for 1, . . . , K , {Draw K-many pairs} do
12: k, w ∼ U(K , K ), s.t. Di, j,k + Di, j,w 	= 0
13: Q ← Di, j,k + Di, j,w
14: {Solve and crop the optimal memberships}

15: D∗i, j,k =
−∑

l

(
ξi, j,l−Di, j,k

(
Pw,l−Pk,l

))(
Pw,l−Pk,l

)

∑

l

(
Pw,l−Pk,l

)2

16: D∗i, j,k ← max
(

0, min(Q, D∗i, j,k )
)

17: {Update the error terms}
18: for l = 1, . . . , L do
19: ξi, j,l ← ξi, j,l − (D∗i, j,k − Di, j,k )Pk,l

20: ξi, j,l ← ξi, j,l − (Q − D∗i, j,k − Di, j,w)Pw,l
21: end for
22: {Commit the values of the pair}
23: Di, j,k ← D∗i, j,k
24: Di, j,w ← Q − D∗i, j,k
25: end for
26: end for
27: {Update all patterns}
28: for ∀k ∈ N

K
1 ; ∀l ∈ N

L
1 , randomly do

29: P∗k,l =
∑

i, j

(
ξi, j,l+Di, j,k Pk,l

)
Di, j,k

λP+
∑

i, j
D2

i, j,k

30: {Update the error terms}
31: for i = 1, . . . , N ; j = 1, . . . , M do
32: ξi, j,l ← ξi, j,l − (P∗k,l − Pk,l )Di, j,k
33: end for
34: {Commit the pattern’s point value}
35: Pk,l ← P∗k,l
36: end for
37: end for
38: return D, P

learning of membership degrees and the refreshing of errors as a result of the update
of degrees, located in lines 8–26, is a direct mirroring of Eqs. 7–12. The update of the
latent patterns is conducted through lines 28–37 of the algorithm and uses the defined
update rules of Eqs. 5 and 6.
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4.6 A new invariant representation

The final representation will sum the membership degrees in a bag-of-patterns strategy.
It enables a quantification of which local patterns appear in a series and how often. The
shift invariance is achieved by segmenting the series in a sliding window approach and
the scale invariance is addressed using different sliding window sizes. Algorithm 4
describes the algorithmic steps. The algorithm iterates over � many different scales of
an initial sliding windows size L and solves an invariant factorization from Algorithm 3
per each size. The frequencies of the learned memberships are summed up for all K
patterns and the procedure is repeated for every sliding window size. Finally each
time series contains K� many features, which denote the frequencies of patterns at
different sizes and positions.

More concretely, in line 3 we apply a factorization with an initial sliding window
size L ′ and receive in return the factorized membership weights D from Algorithm 3.
Then a set of K features, denoted F , can be constructed as the sum of the K -many
dimensions of D by summing up the weights of every sliding window of a series. The
summation step is located in line 6. Then the sliding window size L ′ is incremented in
line 8 and the algorithm continues with a bigger sliding window size. In each iteration
we extract K factorization features that are appended to F .

The new representation will be used for classification, instead of the original time
series. We deployed a polynomial kernel SVM, because we need to capture the inter-
action among features, i.e. the interaction among patterns of various sizes.

Algorithm 4 InvariantRepresentation

Require: T ∈ R
N×Q , L ∈ N, δ ∈ N, K ∈ N, λP ∈ R, I ∈ N, � ∈ N

Ensure: F ∈ R
N×(K�)

1: L ′ ← L
2: for s = 1, . . . , � do
3: D← InvariantFactorization(T, L ′, δ, K , λP , I )
4: for i = 1, . . . , N ; k = 1, . . . , K do

5: M ← Q−L ′
δ

6: Fi,k+(s−1)K ←
M∑

j=1
Di, j,k

7: end for
8: L ′ ← L ′ + L
9: end for
10: return F

We would like to explain the resulting representation (F) that is produced by the
proposed method, with the aid of Fig. 3. Eight time series from the Trace dataset
(shown in the left side) are factorized into a set of weights (D) and a set of eight
patterns (P) (shown on the right side). We assign an ordinal number to the patterns
from 1 to 8 in a top-down order. The new representation (middle plots) is the sum over
all the sliding window weights of each pattern (line 6 in Algorithm 4). The reduced
dimensionality not only is more compact, but also can help understand the differences
among classes. For instance, classes B and C have a very subtle difference that is
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Fig. 3 Illustration of the original time series (left) and the factorized representation F (center) of eight
series from the trace dataset. The series belong to four different classes (A,B,C,D) shown in colors. On
the right, the patterns of the factorization are displayed. Parameters: K = 8, L = 110, � = 1, δ = 1,
λP = 0.01, I = 15

reflected as a perturbation around point 200. In our latent representation, the B class
instances have higher weights of patterns 1 and 2 that reflect the subtle perturbation,
while the C class instances have lower weights for the patterns 1 and 2. It is possible to
realize with mere human inspection that the factorized representation could detect the
difference between classes by inspecting the derived representation F , which is the
sum of D membership degrees. In fact, a SVM applied over the derived representation
F achieves 0 % error on the Trace dataset.

4.7 Algorithmic complexity

The run-time complexity of the method is dominated by the updates of memberships
and has an order O(N M K LI). Concretely our method needs 48.4 h to compute on
the StarLightCurves (the largest) dataset, while for instance DTW needs 87 h. The
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Fig. 4 Error rate comparison of
the transductive INFA against
the inductive ‘Fold In’ variant of
INFA
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space complexity of our method depends on the storage of the segments S and the
memberships D, which is O(N M max(K , L)).

4.8 Inductive and transductive factorizations

Our factorization method is a fully unsupervised dimensionality reduction that projects
all the time series of a dataset to a new, reduced representation. As Algorithm 3
explained, the learning process needs to have access to a batch of time-series instances,
in order to jointly minimize the reconstruction error of Eq. 1. However, the method
proposed in this paper can operate in two modes: Inductive and Transductive. The
transductive case factorizes all the instances jointly, using both the training and the
testing predictors (not labels). On the other hand, the inductive mode factorizes the
training instances first and then folds in the testing predictors one at a time to the latent
representation, without modifying the patterns.

It is worth clarifying that in contrast to modern semi-supervised methods that use
the test predictors to directly alter the decision boundary of their classifiers during
the learning of the discriminative model, our transductive dimensionality reduction is
unsupervised. Once the data is factorized to a reduced representation, then we classify
the reduced instances using a standard SVM that does not utilize the predictors of the
test instances.

The strategy of enabling an inductive operation of our method relies on a so-called
‘Fold In’ factorization. The ‘Fold In’ learns a factorization from a batch of available
training time-series data and stores the D, P representation. Then, the ‘folding in’
refers to the process of converting a test time series Tt ∈ R

Q to Dt ∈ R
M×L by

learning only one instance Dt from Eq. 1, keeping all the other D, P constant. For
triviality, the update rule of learning Dt is avoided because it is the same as lines
10–25 of Algorithm 3. In Fig. 4 the inductive ‘Fold In’ (denoted as INFA ‘Fold In’)
mode is compared to the transductive factorization (denoted as INFA) in terms of error
rates. Results show that the accuracy of the inductive ‘Fold In’ mode is inferior to the
transductive INFA, which is due to the fact that folding in does not fully minimize
the reconstruction objective of Eq. 1, but simply the weights D of one test instance
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at a time. As a result, the total reconstruction error will be higher, meaning that the
factorized data will not be anymore a close representation of the original data, leading
to a deteriorated prediction accuracy in case the inductive representation is fed to a
SVM.

5 Experimental results

We will keep refering to our Invariant Factorization via acronyms, INFA for the trans-
ductive case and shortly INFAI for the inductive case, throughout the remaining parts
of this document. This paper proposes a new representation of time series that is com-
puted using an invariant factorization, not at all a classification method. Nevertheless,
we apply a standard SVM upon the reduced dimensionality representation, in order
to classify time series. For making the narration smoother, we are often going to refer
to INFA as a joint method that includes a factorized representation plus an SVM over
the factorized instances.

5.1 Baselines

We compared the prediction accuracy of our method, denoted INFA for the transduc-
tive mode and INFAI for the inductive mode, against the following seven state of the
art baselines:

– TSBF The bag-of-features framework for time series (TSBF) uses a supervised
codebook to extract features for a random forest classifier (Baydogan et al. 2013).

– SSSK Sparse spatial similarity kernel (SSSK) measures sequence similarity through
sampling sequence features at different resolutions (Kuksa and Pavlovic 2010).

– BOW The Bag of words (BOW) method decomposes the series into local SAX
words and uses a histogram representation of words as the new feature representation
(Lin et al. 2012; Lin and Li 2009).

– ENN The nearest neighbor classifier with ED based similarity of series is a classical,
yet competitive, approach in the time-series domain.

– DTW Dynamic time warping computes the best alignment of time indexes resulting
in the mininal distance (Keogh et al. 2000; Rakthanmanon et al. 2012).

– CID The complexity invariant distance (CID) adds a L2-based total variation reg-
ularization term into the ED (Batista et al. 2014).

– FSH Fast shapelet (FSH) extracts the most discriminative segment of the series
dataset, such that the distance from the dataset instances to the optimal shapelet can
be used as a feature for classification (Rakthanmanon and Keogh 2013).

5.2 Setup and reproducibility

We conducted a large-scale experimentation in 43 time-series dataset from the UCR
collection.1 Our protocol complied to the default train/test split of the data, which is

1 www.cs.ucr.edu/~eamonn/time_series_data.
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Table 1 Error rates–comparison of prediction accuracies on the UCR collection of datasets

Dataset Cls. Train Test Len. INFA INFAI TSBF SSSK BOW ENN DTW CID FSH

50words 50 450 455 270 0.220 0.301 0.209 0.488 0.316 0.369 0.310 0.336 0.557

Adiac 37 390 391 176 0.322 0.435 0.245 0.575 0.325 0.389 0.396 0.373 0.514

Beef 5 30 30 470 0.233 0.333 0.287 0.633 0.267 0.333 0.500 0.367 0.447

CBF 3 30 900 128 0.001 0.001 0.009 0.090 0.048 0.148 0.003 0.016 0.053

Chlorine 3 467 3840 166 0.464 0.526 0.336 0.428 0.405 0.350 0.352 0.351 0.417

CinCECG 4 40 1380 1639 0.138 0.291 0.262 0.438 0.164 0.103 0.349 0.084 0.174

Coffee 2 28 28 286 0.000 0.000 0.004 0.071 0.036 0.000 0.179 0.000 0.068

CricketX 12 390 390 300 0.205 0.264 0.278 0.585 0.305 0.423 0.223 0.372 0.527

CricketY 12 390 390 300 0.197 0.354 0.259 0.654 0.313 0.433 0.208 0.421 0.505

CricketZ 12 390 390 300 0.192 0.274 0.263 0.574 0.295 0.413 0.208 0.405 0.547

Diatom 4 16 306 345 0.003 0.046 0.126 0.173 0.111 0.065 0.033 0.065 0.117

ECG200 2 100 100 96 0.130 0.090 0.145 0.220 0.110 0.120 0.230 0.110 0.227

ECGF. 2 23 861 136 0.001 0.001 0.183 0.360 0.164 0.203 0.232 0.218 0.004

FaceAll 14 560 1690 131 0.238 0.380 0.234 0.369 0.238 0.286 0.192 0.269 0.411

FaceFour 4 24 88 350 0.000 0.011 0.051 0.102 0.102 0.216 0.170 0.193 0.090

FacesUCR 14 200 2050 131 0.083 0.207 0.090 0.356 0.137 0.231 0.095 0.235 0.328

Fish 7 175 175 463 0.023 0.051 0.080 0.177 0.029 0.217 0.167 0.217 0.197

GunPoint 2 50 150 150 0.007 0.007 0.011 0.133 0.407 0.087 0.093 0.073 0.061

Haptics 5 155 308 1092 0.516 0.539 0.488 0.591 0.630 0.630 0.623 0.584 0.616

InlineSkate 7 100 550 1882 0.636 0.640 0.603 0.729 0.629 0.658 0.616 0.629 0.741

ItalyPower 2 67 1029 24 0.036 0.036 0.096 0.101 0.044 0.045 0.050 0.044 0.095

Lighting2 2 60 61 637 0.180 0.213 0.257 0.393 0.328 0.246 0.131 0.246 0.295

Lighting7 7 70 73 319 0.233 0.260 0.262 0.438 0.370 0.425 0.274 0.397 0.403

MALLAT 8 55 2345 1024 0.047 0.095 0.037 0.153 0.098 0.086 0.066 0.075 0.033

Medical. 10 381 760 99 0.299 0.102 0.269 0.463 0.401 0.316 0.263 0.309 0.433

MoteStrain 2 20 1252 84 0.066 0.102 0.135 0.166 0.177 0.121 0.165 0.212 0.217

OliveOil 4 30 30 570 0.067 0.133 0.090 0.300 0.233 0.133 0.133 0.133 0.213

OSULeaf 6 200 242 427 0.095 0.190 0.329 0.326 0.153 0.479 0.409 0.438 0.359

Sony 2 20 601 70 0.101 0.256 0.175 0.376 0.409 0.304 0.275 0.185 0.315

SonyII 2 27 953 65 0.054 0.105 0.196 0.339 0.154 0.141 0.169 0.123 0.215

StarLight. 3 1000 8236 1024 0.021 0.031 0.022 0.135 0.021 0.151 0.093 0.057 0.063

Swedish. 15 500 625 128 0.074 0.278 0.075 0.339 0.125 0.211 0.210 0.123 0.269

Symbols 6 25 995 398 0.026 0.034 0.034 0.184 0.088 0.101 0.050 0.084 0.068

synthetic. 6 300 300 60 0.013 0.033 0.008 0.067 0.017 0.120 0.007 0.050 0.081

Trace 4 100 100 275 0.000 0.000 0.020 0.300 0.000 0.240 0.000 0.140 0.002

TwoPatt. 4 1000 4000 128 0.003 0.016 0.001 0.087 0.010 0.093 0.000 0.121 0.114

TwoL. 2 23 1139 82 0.002 0.018 0.046 0.257 0.248 0.253 0.096 0.232 0.090

uWaveX 8 896 3582 315 0.176 0.192 0.164 0.358 0.242 0.261 0.273 0.238 0.293

uWaveY 8 896 3582 315 0.237 0.303 0.249 0.493 0.352 0.338 0.366 0.290 0.392

uWaveZ 8 896 3582 315 0.233 0.254 0.217 0.439 0.325 0.350 0.342 0.291 0.364
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Table 1 continued

Dataset Cls. Train Test Len. INFA INFAI TSBF SSSK BOW ENN DTW CID FSH

Wafer 2 1000 6174 152 0.002 0.003 0.004 0.029 0.010 0.005 0.020 0.006 0.004

WordsS. 25 267 638 270 0.307 0.386 0.302 0.553 0.371 0.382 0.351 0.357 0.594

yoga 2 300 3000 426 0.119 0.185 0.149 0.172 0.145 0.170 0.164 0.164 0.269

Absolute total wins 25.16 8.00 0.00 1.33 1.33 5.33 0.83 1.00

INFAI one-to-one wins 18 40 25 31 24 29 39

INFAI one-to-one draws 0 0 1 3 1 2 0

INFAI one-to-one losses 25 3 17 9 18 12 4

INFA one-to-one wins 30 42 38 39 35 38 41

INFA one-to-one draws 0 0 1 1 1 1 0

INFA one-to-one losses 13 1 4 3 7 4 2

Wilcoxon signed rank (p values) 0.004 0.000 0.000 0.000 0.000 0.000 0.000

an established benchmark split and is used by the baselines. The metric of comparison
is the error rate, i.e. the misclassification rate. Table 1 shows the datasets used for
experimentation together with the number of classes, the number of training instances,
the number of testing instances and the length of the series.

Our method has a relatively high number of hyper-parameters, however they can
be elegantly tuned via a grid hyper-parameter search. First of all, the set of eligible
regularization parameters is λP ∈ {0.001, 1}. The sliding window size was searched
from L = {0.15, 0.2}×Q, and the number of latent dimensions from K ∈ {0.25, 0.5}×
Q. The sliding window scale was picked from � = {3, 4}, while the sliding window
offset was searched from δ = {0.00, 0.005} × L . The maximum number of iterations
was set to I = 15 in all cases. The applied classifier was a polynomial kernel SVM
with a polynomial degree being 3 and the complexity parameter searched among C ∈
{0.1, 1, 10}. Out parameter tuning runs the invariant factorization and the subsequent
SVM using all the combinations of parameters and selects that parameter combination
which achieve the smallest leave-one-out (LOO) error on the training set. We define
the parameters that result in the smallest LOO error as the optimal values. The error
rate values to be detailed in this paper refer to the test set results when run with
the optimal parameter combination. Since the algorithm is based on a probabilistic
initialization, it might be possible that it converges to different closeby optima in each
execution. However, in our experiments, those optima were very close and the final
prediction accuracy results have insignificant differences. The authors are devoted to
promote full reproducibility, therefore the source code, the data and instructions
are publicly available.2

Most methods increment the sliding window by an offset of a single point at a time.
While such an approach is practical and avoids the need to fit the offset parameter,
it doesn’t provide the optimal accuracy. Figure 5 illustrate the sensitivity of the LOO
training error as a result of changing the δ parameter in a ceteris-paribus principle (all

2 http://fs.ismll.de/publicspace/InvariantFactorization/.
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Fig. 5 Effect of alternating the sliding window threshold δ on the LOO train miss-classification error. Other
parameters: K = 0.5× Q, L = 0.2× Q,� = 4, C = 1.0, I = 15

other parameters kept constant). The scale of δ is the percentage of the sliding window
length L . As can be observed the optimal offset is a value that is small enough, but not
the smallest, i.e. not one. Our method selects the optimal sliding window increment
by finding the parameter δ that minimizes the leave-one-out cross validation search,
in a grid search.

5.3 Results

The error rate results of the six state of the art baselines and our method INFA are
presented in Table 1. The best performing method for each dataset (row) is emphasized
in bold. In order to compare multiple classifiers across a large number of datasets we
follow the established benchmarks of counting wins and Wilcoxon’s signed-rank test
for statistical significance (Demšar 2006). To be fair with the baselines, we retrieved
the results from the baselines’ publications (Baydogan et al. 2013; Batista et al. 2014;
Rakthanmanon and Keogh 2013) over the same data splits as INFA. In addition, we
verified the published results of the baselines with our own experimental checkups.

Three comparative figures are conducted, the first of which counts the absolute
number of wins. Each dataset awards a total value of 1, which is split into equal
fractions in case methods have equal error rate scores. The “Absolute wins” row, in
the bottom of the table, counts the datasets where a method has the best prediction
accuracy. As can be trivially deduced, our method has a clear superiority in terms of
absolute wins, scoring 25.16 wins against 8.00 wins of the second best method. In
addition, the transductive INFA outperforms by large margins all the baselines in an
one-to-one comparisons of wins. INFA has more wins, yet the predominant analysis
is whether or not those wins represent statistically significant differences. Each cell
on the bottom row represents the p value of the Wilcoxon signed-rank test on the error
rate values of INFA against each baseline. Our method has a statistically significant
difference over the error results of all baselines with a two-tailed hypothesis and the
standard significance level of 95 % confidence (p ≤ 0.05).

The transductive mode INFA is obviously always better than the inductive version
INFAI, because INFAI learns a partial objective function, as previously explained and
demonstrated in Sect. 4.8. Yet, the results for the ‘Fold-In’ mode (INFAI) indicate that
our inductive variant is also very competitive. In a one-to-one comparison the inductive
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Fig. 6 a Comparison of error rates of INFA+SVM against SVM without dimensionality reduction; b
comparison of error rates over time-series factorized using two different dimensionality reduction techniques
INFA versus PCA

mode outperforms all the baselines, except TSBF. Moreover, the difference of TSBF
to INFAI is not significant according to the Wilcoxon signed-rank test (p = 0.075).
On the other hand, INFAI outperforms strong popular methods such as DTW by 24
wins, 1 draws and 18 losses; or similarly CID by 29 wins, 2 draws and 12 losses.

5.4 On the need of INFA as a dimensionality reduction method

In its essence, our method can be perceived as a special variant of a PCA or matrix
factorization that is tailored for time-series data. Instead of reducing the dimensionality
(a.k.a. factorization) of the full time series, our method INFA factorizes sliding window
segments and sums up the factorization coefficients (analogous to PCA weights).

Factorizing local segments has several advantages compared to the factorization of
the full segment. First the weights of patterns are captured independent to the locations
of those patterns (shift variations of series). Secondly, INFA takes into account the size
of patterns by applying a factorization of various sliding window sizes. Furthermore,
since the sliding window can be arbitrarily large (up to the full series length), then
INFA includes PCA in terms of functionality.

Nevertheless, two experimental tests are required to support our claims. First of all,
we should be able to empirically demonstrate whether or not our proposed factorization
is required at all, meaning to check how the same classifier (SVM) would perform on
the original time-series data. Figure 6, sub-plot a), shows the error rates of INFA+SVM
against SVM over the original data using all the 43 time series of our experimental
setup. As can be easily deduced from the illustration INFA outperforms largely a SVM
without factorization. Yet, we would like to also show that the success belongs to our
specific factorization method and not due to any dimensionality reduction method.
In sub-plot b) we compare the error rates of SVM over factorized time-series using
either our method or a standard PCA. The results indicate that our method, as expected,
largely outperform the PCA representation.
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5.5 Comparison to semi-supervised methods

Whilst our factorization method is unsupervised, yet the transductive operation mode
factorizes all predictors of a dataset, including the testing predictors (detailed in
Sect. 4.8). The utilization of all predictors (including train and test) for dimensionality
reduction, even-though fully unsupervised, raises questions on comparisons against
semi-supervised methods. Therefore, this section is dedicated to comparing the pre-
diction quality of our method INFA against state-of-the-art methods that focus on the
semi-supervised classification of time series.

We selected two state-of-the-art methods for comparison. The first method by Wei
et al. is a well-established alternative in semi-supervised classification of time series
(Wei and Keogh 2006). The classifier is trained on an initial training set with positive
labeled instances and in an iterative manner the unlabeled instances are mined for
enlarging the training set. In addition, a recent method in semi-supervised time-series
classification, named SUCCESS, utilizes a combination of constrained hierarchical
clustering and DTW (Marussy and Buza 2013).

Table 2 contains the results of our method INFA against the two state-of-the-art
methods denoted as Wei et al. (2006) and SUCCESS (Marussy and Buza 2013). The
time series belong to the UCR collection of datasets, same as the ones described in
Sect. 2. Both leave-one-out training and testing error rate results are shown for all the
methods, with the emphasis naturally being on the test scores. The method that achieves
the minimum error is highlighted for every dataset. Two different comparative figures
are derived. First of all, the total wins indicate that our method INFA has 33.5 wins
against the 6.5 wins of SUCCESS, the closest baseline. Secondly, the same superiority
is demonstrated by the very high number of one-to-one wins of INFA against both Wei
et al. and SUCCESS. All the one-to-one wins are statistically significant as shown in
the last row by the Wilcoxon signed rank test (significant for p < 0.05).

5.6 Prediction ahead of time

Sometimes it is important to be able to tell ahead of time the prediction accuracy of
the method, by looking only at the training set (Batista et al. 2014). In order to conduct
this comparison, first we define the concept of accuracy gain. The gain is defined as
the ration of the accuracies among our proposed method INFA and selected baselines,
i.e.: Gain = 1−Error INFA

1−Error Baseline . The smaller the error of INFA compared to the baseline,
the bigger the gain in accuracy. The ’Expected Gain’ is defined as the leave-one-out
error on the training set, while the the ’Real Gain’ is defined as the test error.

The scatter plot of expected versus real gain against two methods is shown in Fig. 7.
We selected two baselines, namely the ED and Complexity-Invariant distance, as used
in the original paper (Batista et al. 2014). The scatter plot can be divided into four
quadrants that represent regions of True/False Positives/Negatives. As can be seen,
our method has a very large number of True Positive results over the baselines using
the same 43 datasets of the UCR collections. The semantics of the test is to show that
there is a consistent pattern where our method wins, which can be estimated by using
only the training series.
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Table 2 Error rate results of INFA against state-of-the-art semi-supervised methods

Dataset Classes Train error Test error

Wei et al. SUCCESS INFA Wei et al. SUCCESS INFA

50words 50 0.432 0.398 0.213 0.436 0.414 0.220

Adiac 37 0.607 0.582 0.326 0.601 0.595 0.322

Beef 5 0.683 0.656 0.400 0.617 0.600 0.233

CBF 3 0.007 0.002 0.000 0.005 0.003 0.001

ChlorineConcentration 3 0.373 0.062 0.381 0.350 0.101 0.464

CinCECGTorso 4 0.021 0.001 0.125 0.019 0.001 0.138

Coffee 2 0.429 0.368 0.000 0.460 0.440 0.000

CricketX 12 0.477 0.425 0.167 0.465 0.444 0.205

CricketY 12 0.463 0.405 0.154 0.433 0.396 0.197

CricketZ 12 0.443 0.395 0.167 0.459 0.423 0.192

DiatomSizeReduction 4 0.018 0.017 0.063 0.031 0.025 0.003

ECG200 2 0.237 0.225 0.080 0.239 0.195 0.130

ECGFiveDays 2 0.051 0.021 0.000 0.053 0.030 0.001

FaceFour 4 0.201 0.191 0.000 0.182 0.200 0.000

FacesUCR 14 0.080 0.062 0.060 0.083 0.070 0.083

Fish 7 0.424 0.449 0.040 0.403 0.434 0.023

GunPoint 2 0.089 0.039 0.000 0.075 0.045 0.007

Haptics 5 0.671 0.706 0.426 0.704 0.730 0.516

InlineSkate 7 0.693 0.679 0.470 0.683 0.663 0.636

ItalyPowerDemand 2 0.063 0.073 0.030 0.066 0.076 0.036

Lighting2 2 0.355 0.322 0.150 0.342 0.317 0.180

Lighting7 7 0.463 0.477 0.243 0.536 0.529 0.233

Mallat 8 0.042 0.041 0.018 0.042 0.037 0.047

MedicalImages 10 0.379 0.386 0.252 0.394 0.393 0.299

MoteStrain 2 0.124 0.129 0.050 0.115 0.107 0.066

OliveOil 4 0.300 0.315 0.100 0.367 0.383 0.067

OSULeaf 6 0.550 0.512 0.105 0.532 0.466 0.095

SonyAIBORobotS. 2 0.052 0.090 0.050 0.060 0.110 0.101

SonyAIBORobotS.II 2 0.088 0.094 0.074 0.079 0.087 0.054

StarLightCurves 3 0.119 0.200 0.022 0.140 0.200 0.021

SwedishLeaf 15 0.330 0.369 0.068 0.364 0.379 0.074

Symbols 6 0.033 0.022 0.040 0.025 0.019 0.026

SyntheticControl 6 0.051 0.029 0.010 0.065 0.045 0.013

Trace 4 0.054 0.001 0.000 0.050 0.000 0.000

TwoPatterns 4 0.000 0.000 0.002 0.000 0.000 0.003

TwoLeadECG 2 0.004 0.001 0.000 0.003 0.001 0.002

uWaveGestureX 8 0.276 0.284 0.173 0.284 0.286 0.176

uWaveGestureY 8 0.356 0.368 0.211 0.377 0.377 0.237

uWaveGestureZ 8 0.359 0.378 0.219 0.368 0.385 0.233
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Table 2 continued

Dataset Classes Train error Test error

Wei et al. SUCCESS INFA Wei et al. SUCCESS INFA

Wafer 2 0.009 0.009 0.000 0.009 0.009 0.002

WordsSynonyms 25 0.414 0.378 0.247 0.410 0.382 0.307

Yoga 2 0.148 0.149 0.130 0.152 0.151 0.119

Absolute total wins 0.50 4.50 37.00 2.00 6.50 33.50

INFA one-to-one wins 37 40 – 36 37 –

INFA one-to-one draws 0 0 – 0 1 –

INFA one-to-one losses 5 2 – 6 4 –

Wilcoxon signed rank (p value) 0.000 0.000 – 0.000 0.000 –

0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

Expected Gain INFA/ED

R
ea

l G
ai

n 
IN

F
A

/E
D

(a) Expected vs Real Gain INFA/ED

TN

FN

FP

TP

0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

Expected Gain INFA/CID

R
ea

l G
ai

n 
IN

F
A

/C
ID

(b) Expected vs Real Gain INFA/CID

TN

FN

FP

TP

Fig. 7 Illustration of the expected (train) versus real (test) gain against a ED and b CID

6 Conclusions

In this study we presented invariant factorization, a method that initially decomposes
the time series into a set of overlapping segments via a sliding window approach.
The segments are approximated by learning a set of latent patterns and degrees of
memberships of each segment to each pattern. We formalized the factorization as a
constraint objective function and proposed a stochastic coordinate descent method
to solve it. The new representation of time series are the sums of the membership
weights, which represent frequencies of local patterns. Features from various sliding
window sizes were concatenated to encapsulate interaction among patterns of various
scales. Finally we conducted a thorough experimental comparison against totally 11
state of the art baselines in 43 real-life time series datasets. Our method introduces
state-of-the-art results in the realm of time-series classification, regarding the UCR
collection of datasets.
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