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Abstract— Transportation is a crucial cog within the cog-
wheel of our economies and modern lifestyles. Unfortunately,
both the rising cost of energy production and the increasing
demand for transportation pose the challenge of minimizing
the energy consumption of automobiles. This paper proposes
an offline driver behavior adaptation approach (eco-driving) for
trains. An optimal driving behavior policy is computed using
Simulated Annealing optimization search over a collection of
real driving behavior data (realistic policy). Empirical findings
show that if drivers would follow the recommended optimal
policy, then an energy saving of up to 50 % is a realistic upper
bound potential.

I. INTRODUCTION

Transportation is a backbone of modern economies that
catalyzes the connectivity of businesses and the motion of
supplies across long distances. The unfavorable rising cost
of energy production has emphasized the importance of op-
timizing the energy consumption of transportation vehicles.
In that prism, nations are striving to maintain a win-win
balance, which copes with the increasing need for trans-
portation, while at same time avoids additive figures on their
cumulative energy bills. Population and economy growths
make it hard (if not impossible) to reduce the total number
of travels and deliveries, therefore solutions need to be found
in order to reduce the energy consumption by preserving
the total traffic throughput. One could categorize at least
three key approaches for optimizing energy consumption:
(1) technological innovations (more efficient engines, aero-
dynamics, tires, etc.), (ii) infrastructure and administrative
regulations (shorter roads, speed limits, etc.) [14], and (iii)
computer science methodologies (algorithms for ecological
routes, driving behavior recommendation systems, etc.) [18].
This paper lies within the scope of the (iii)-rd approach
and proposes a novel method that helps optimizing the
energy consumption through an algorithm that recommends
the adaptation of ecological driving behaviors.

More specifically the process of adapting one’s driving
behaviors, by suggesting energy-efficient driving patterns, is
also known as either energy-efficient driving or eco-driving
recommendation [1]. Eco-driving can be conducted online
during the travel [9], or offline in the form of a training
course [1]. Several eco-driving aspects have been elaborated
in the literature, with a concise list presented in Section

In contrast to existing work that largely concentrates on
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introduces an offline eco-driving method for trains. Further-
more, this paper addresses the problem of computing the
optimal driving behavior between two arbitrary destinations.

Since the primary objective of this work is to save
energy, we define optimal driving as being the driving
behavior which results in the universally minimum energy
consumption, by respecting travel time constraint. Unfortu-
nately, the existence of several real-life factors which cannot
be measured or taken into analysis make it very hard to
compute universally optimal policies through mathematical
analysis. Fortunately, the availability of measurements (big
data paradigm) that record driving data of train trips offers
a possibility to tackle the problem alternatively using a data
mining perspective.

Before providing a highlight of our method, we would
like to clarify one term. By optimal policy we identify a
velocity series with respect to the relative distance from the
start of the travel. In other words, an optimal policy answer
the following question: "While driving between arbitrary
departure and arrival station, what is the best velocity/speed
a train driver should follow at every distance point (e.g. at
each kilometer stone)?”.

A collection of driving data from the train fleet of Train-
OSE S.A., Greece is utilized. The data consists of multivari-
ate time-series composed of time, relative distance, speed
and instantaneous energy variables. For instance, Figure [I]
shows the velocity vs distance series corresponding to travels
conducted by different train drivers between the Domokos
and Thessaloniki stations in Greece. In addition, there is
one energy series associated to every speed series, which
we denote as the velocity-energy bi-variate series.

The proposed method mines through all the velocity series
and the instantaneous energy series, in order to compute
the best driving policy, i.e. the series that has the minimum
energy consumption. We will demonstrate that the optimal
policy can be constructed by concatenating low-consumption
sub-sequences of different velocity-energy series. The search
for the optimal policy is carried using a non-convex opti-
mization method named Simulated Annealing. The search
starts with the velocity time series which has the minimum
recorded total energy and improves it by perturbating local
segments. Because the segments of the optimal policy are
extracted from driving data series of real drivers, then the end
result is a realistic (practically feasible) policy. We applied
the proposed method to real data and the derived optimal
policies demonstrate a potential for up to 50% reduction of
the used energy.
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II. RELATED WORK

Given the economical importance of saving energy, a large
number of researchers have dedicated efforts towards propos-
ing eco-driving related methodologies. The purpose of this
section is to mention only a fraction of highly related works,
instead of exhaustively enumerating the existing work.

Eco-driving for motorway automobiles is a vastly re-
searched topic. In particular, the adaptation of driving skills
has been a focus of energy optimization analysis [18].
Communication technologies, on the other hand, have been
utilized to provide online eco-driving assistance using either
Vehicle-to-Infrastracture communication [15], or distributed
Vehicle-to-Vehicle infrastructure [2]. A more analytic ap-
proach has elaborated the identification of the most influ-
ential factors over fuel consumption [12].

Online driving assistance have been tailored to consider
contextualized recommendation using CANBUS data [9].
Furthermore, research efforts have been spent to devise
online systems that continuously encourage efficient driving
behavior [17]. In addition, online driving assistance have
been applied in hilly roads with up-down slopes [10].

Fuel Economy Optimization Systems typically involve
computations of optimal velocity and acceleration [20], [11].
Another study extends optimal control frameworks of driving
assistance systems for predicting the dynamics of other ve-
hicles [19]. From another perspective, optimal policies have
been computed for identifying the safest driving patterns [7].

In terms of eco-driving for trains, the computation of
reference trajectories have been conducted for automatic
train operation [8]. Speed profiles have been calculated from
simulation models in order to derive energy-efficient driving
strategies [13]. Last but not least, the optimization of driving
speed of trains has been further proven beneficial in reducing
the overall traction energy [5], [6].

In comparison to the existing literature, we introduce a
novel method that computes the optimal policy for train
driving. Our approach explores realistic policies that are
extracted through a large amount of driving behavior data
from different drivers.

III. SEARCHING THE OPTIMAL POLICY
A. Problem Definition

The input data consists of N-many bi-variate velocity-
energy series, each having a length of L-points. The velocity

385 velocity series for the trips between the Domokos and Thessaloniki stations (Even numbered routes (50,52,..., 60)).

series are denoted as V € RNV while the energies as
E € RV*L We would like to stress that energy measures
instantaneous consumption. The consumption at distance
point [ is denoted as ElOpt and records how much energy was
spent since the measurement at the [ — 1 distance point. The
final definition of the problem is formalized in Equation [I}
Semantically we search for the optimal policy VOoPt ¢ RT
that results in the minimal energy E°P! ¢ RE.

L
(VP E°F) =argmin y E (1)
(V/ ,El) 1=1
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The objective function of Equation [I] is subject to an
important constraint that is emphasized in Equation [2} The
constraint ensures that every point [ of the optimal velocity
and energy series VOPt, EOPt must belong to the I-th point
of some series bi-variate series (v,e) from our input data
(V, E). Therefore, we ensure that the optimal policy is
realistic, in terms of occurring in real data series.

B. Principle

Naturally the first intuition towards solving the problem
of this paper needs to answer a trivial question: "Why
can’t we use the series having the minimal energy as our
optimal policy?”. Whilst the minimum recorded energy series
is a candidate, one can further optimize that policy by
incorporating segments of other series.

Figure [2] provides an example that motivates the principle
behind our method. The upper plot includes two velocity
series in red and blue, marked as El and E2, each having
different total energies. In this synthetic dataset the red series
E2 has the minimal recorded energy of 900 kwh, while the
blue series E1 has a worse total energy consumption of 1000
kwh. Yet there is one segment delimited by vertical dashed
lines where the blue series is more efficient that the red
series. Concretely, the blue line has an energy consumption
of 300 kwh for the sub-sequence, that is smaller than the 350
kwh consumed in the red series. Such an illustration shows
that a cumulatively energy-minimal series can still have non-
efficient sub-sequences.

The optimal policy, on the other hand, can be simply
derived by concatenating the most energy-efficient sub-
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Fig. 2. Improving the driving policy (velocity vs. distance series) by
swapping segments

sequences/segments of different series, as shown in the
lower plot of Figure [2| The optimal policy shown in green
color can be constructed by taking the recorded minimal
El and replacing its content between the dashed vertical
lines with the content of the blue E2 series. In that way,
the overall consumption of the optimal policy is reduced to
900 — 350 4 300 = 850 kwh.

C. Perturbation of a Velocity-Energy Bi-Variate Series

This section simply formalizes the procedure of swapping
the contents of segments between two series, which we
denote as perturbation. In the forthcoming search algorithm,
the perturbation of the series having minimal recorded energy
will provided useful candidates toward finding more energy-
efficient policies.

Algorithm [1| describes the pseudo-code needed to generate
a random perturbation of a current input bi-variate series,
denoted as VCUIT ECUIT The perturbation of the current
velocity-energy bi-variate series is conducted by first select-
ing two random points pl,p2 in lines 2-3 of the algorithm.
Next, a search is conducted in lines 4-5 to check whether
there is any series V; from our data V, where the velocity
endpoint values of the segments match.

It is important to realize that we can not simply swap
segment content that create non-smooth policies with dis-
connected segments. Yet, we tolerate the endpoint segments
values from the two different series to be within an e distance
(in our setting ¢ = 3 kmh). In case there do exists a series
where the velocity values are close at the segment endpoints
p1, P2, then the swapping step is executed in lines 6-7. Both
the new velocity and energy series, denoted V1eXt pnext
are created by concatenating existing parts of the input series
VeuIt pCUIT and the segment from series V;, ;. After the
perturbation the loop breaks (algorithm returns) in line 8.
Otherwise, if no matching series V; is found, then two other
random segment endpoints are selected and the algorithm is
repeated until a perturbation is created.

Algorithm 1: Perturbate a Policy Using Real Data

Data: Current Policy Speed: VT € R Current
Policy Energy: ECUT ¢ RL, Velocity series:
V € RV*L Energy series: £ € RV*L,
Swapping threshold € € R

Result: Perturbated policy: VXt ¢ RL EhexXt ¢ RL

1 while true do

2 Draw a random point p; € U(1,...,L);

3 Draw a random point ps € U(p1 +1,...,L);

4 | if 3V, | iel,...,N] A (Vipr — VT <¢)
5 A (VG = Vi o > €) then

6 VIS VO @ Vipipe © VioiLLh

2 || BN (BT & By © BSHT L
8 break;

9 end

10 end
next rnext
return V JE

-
-

D. Simulated Annealing Search

The minimal recorded series is a good start towards
discovering the optimal policy. Still further improvements
can be achieved through swapping the energy-inefficient
segments of the optimal policy with more energy-efficient
segments of other bi-variate series.

We are going to use a search method called Simulated
Annealing [16] to conduct the search for the optimal policy.
The idea of the search is to start with the minimum as
a current solution and generate lots of candidates through
perturbation. The Simulated Annealing is presented with the
means of Algorithm [2]

Algorithm 2: Simulated Annealing: Finding The Optimal
Policy

Data: Velocity series V € RV XL Energy series
E ¢ RNVxL

Result: Optimal policy VOPt ¢ RE
1 [Vopt’ Eopt] — [chrr’ Ecurr] —

{lVi,Ei] | =35 st. > E; <Y E;, i,j€[1,...,N};
2 for T = Thaxs - -+ s Trnin do
3 | [vmeXt pnexty . perturbate(VEWT, ECUT Y E) ;
4 AFE = E EHCXt _ Z Eeurr.
s | if AE<O0V rand(0,1) < e " then
6 [chrr Ecurr} — [Vnext Enext].
7 if S ECWT <3 EOP! then
3 ‘ [Vopt7 Eopt] « [chrr’ Ecurr];
9 end

10 end
11 end
12 return VP!

The algorithm starts by initializing two velocity-energy bi-
variate series in line 1, denoted by the superscripts current
and optimal. The current series identifies the latest perturba-



tion in a sequential (iterative) style, while the optimal series
record the series with the minimal total energy yielded so
far. During each iteration (line 2), the next series (line 3)
can have a smaller or larger total energy. We record the
difference in total energy consumption before and after the
perturbation as AF in line 4. If the next series has a lower
energy (AE < 0) then it is accepted directly in line 5 and
the perturbated next series is copied to the current solution
(line 6), in order to start a new perturbation. During each
next accepted solution we check whether the new current
series has the minimum/optimal so far energy (lines 7-9).

An important aspect of Simulated Annealing is the condi-
tional acceptance of perturbated series that worsen energy
consumption. In order to avoid local optima, one should
allow occasional divergence steps during the search. The
iteration variable, denoted as 7, represent metaphorically
the search temperature. The conditional acceptance is carried
only if a random number between O and 1 is smaller than
e .Sucha temperature metaphor is inherited from the field
of metallurgy where metals are heated to high temperature
where random perturbation of the molecular structure are
allowed. Gradually the temperature of the metal is cooled
down while the molecules arrange themselves towards a min-
imum bond energy. Further discussions on the mechanism of
Simulated Annealing can be found in [16].

E. Convergence of The Search
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Fig. 3. Tllustration of Simulated Annealing convergence using trip series
whose total travel times are between 100 and 118 minutes.

The convergence of the Simulated Annealing terminates
when the temperature 7 approaches the specified minimum
temperature 7,,;,. Figure [3]illustrates the convergence of the
search algorithm. Initially, both the current series (shown
in black) and the optimal policy series (shown in red) are
initialized to the minimal recorded series (shown in blue).
As next perturbations are generated the current line goes
down (AE < 0), or oscillates up for conditional probabilistic
acceptances.

Overall the current series keeps resulting in smaller and
smaller total energies as the temperature (x-axis) cools down.
While approaching the minimum energy (7 — Tp:) there
are less oscillations because 7 approaches zero. Such
a stability in terms of the changes of the current and the

optimal policies is known as the convergence of the search
algorithm.

IV. EXPERIMENTAL RESULTS
A. Travel Time Constraint

Before presenting the results of the optimal policies, it
is important to clarify a constraint on the travel time. An
energy-efficient style of driving typically involve slower
velocities. However, a train also needs to arrive in time at
the destination. In order to ensure such a constraint we will
divide the data into three groups based on the histogram of
travel times, shown in Figure E}
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Fig. 5. Histogram of the travel times of all travels between the Domokos
and Thessaloniki stations
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The trips are divided into three groups by dividing the
histogram into three equi-volume chunks, as follows:

o Travel time between [100,118) minutes: Fast trips

o Travel time between [118,130) minutes: Normal trips

o Travel time between [130, 160] minutes: Slow trips

B. Optimal Policies Per Travel Time

The optimal policies for all the three travel time segments
are shown in Figure @ The blue line denotes the recorded
minimum, while the red line the optimal policy achieved by
the search algorithm. The used search parameters are 7,4, =
10, Trin = 0 with T decremented by 0.0003.

Regarding the slow trips (time [100,118) mins), we ob-
serve that the optimal policy results in a total consumption
of 1236.7 kwh, compared to the 1805 kwh of the minimal
recorded. Please note that the saving potential of the optimal
policy is 31% better than the best recorded policy. An
inspection of the optimal policy reveals that the optimal
policy enforces lower velocity values and naturally lower
energy consumption.

The improvement of the optimal policy is also visible
in both remaining travel time segments ([118,130) mins,
[130,160] mins). In the case of normal trips, the optimal
energy results in a total consumption of 1002.6 kwh. That is
104.4 kwh better than the recorded minimal policy. Similarly,
the optimal policy has 493.6 kwh less consumption than the
minimal policy.

C. Analysis of Potential Savings

It is of important value to assess the potential economical
impact that our optimal policy might achieve. Under such a
scope, we are presenting the amount of money a train fleet
company could save if an average driver would strictly follow
our suggested optimal policy. The per-trip average and the
minimal and optimal figures are displayed in Table [ for three
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Fig. 4. Optimal Train Driving Policies; Time units in mins, Energy units in kwh.

criteria: energy consumption, monetary cost and the green
house gas emission. We would like to note that the figures
were round up for the sake of presentability.

Time (min) Average | Minimal | Optimal
100-118 1800 1240
Energy (kwh) 118-130 2290 1100 1000
130-160 1680 1190
100-118 200 140
Cost (euro) 118-130 254 125 110
130-160 190 130
100-118 1170 1210
CO2 (kg) 118-130 2244 1080 980
130-160 1645 1160
TABLE I

ENERGY CONSUMPTION (KWH), MONETARY COST (EURO) AND THE
GREEN HOUSE GAS FOOTPRINT (KG OF CO2)

The energy is measured directly from the locomotives
from every trip, while the average figure is presented for all
the trips between the Domokos and Thessaloniki stations. On
the other hand, the monetary cost is derived from EuroStat’s
electricity price per kwh energy [4]. The COs emission is
computed from the energy figures using the EcoTransIT
initiative’s convertion rates [3].

Therefore, the potential energy, cost and emission reduc-
tions which could be achieved if an average driver would
follow the optimal policy are up to: 45% for time [100,118)

mins, 56% for time [118,130) mins and 48% for time
[130,160] mins. Since our optimal policy is constructed
using real driving data, we can deduce that a reduction of
approximately 50% is a realistic upper bound potential.

V. CONCLUSION

The optimization of energy consumption is a key trend in
transportation research. This paper proposed a novel method
that computes an off-line optimal driving policy for trains.
Our method operates over real train driving data, ensuring
this way that the derived optimal policy is realistically
feasible. Simulated Annealing is used to discover the op-
timal velocity policy by starting from the minimal recorded
series and optimizing it through swapping segments with
other recorded series. By perturbating (swapping) arbitrary
segments of a current velocity-energy bi-variate series, a
lot of further candidates are created. The candidates are
conditionally accepted by evaluating whether they reduce
the total energy consumption, or not. Finally, the results of
the optimal policies were presented for three trip categories,
grouped based on their travel times into fast, normal and slow
trips. The optimal policy discovered using our novel method
improves the energy consumption of the best (minimum)
recorded series by up to 31%. In case an average driver
would follow our suggested optimal (yet realistic) velocity
policy, the overall consumption could potentially be reduced
to approximately 50%. Economically speaking the potential



monetary saving, as well as the reduction in Green House
Gas emission is also up to 50%.
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