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Motifs are the most repetitive/frequent patterns of a time-series. The discovery of motifs is crucial for practi-
tioners in order to understand and interpret the phenomena occurring in sequential data. Currently, motifs
are searched among series sub-sequences, aiming at selecting the most frequently occurring ones. Search-
based methods, which try out series sub-sequence as motif candidates, are currently believed to be the best
methods in finding the most frequent patterns.

However, this paper proposes an entirely new perspective in finding motifs. We demonstrate that search-
ing is non-optimal since the domain of motifs is restricted, and instead we propose a principled optimization
approach able to find optimal motifs. We treat the occurrence frequency as a function and time-series motifs
as its parameters, therefore we learn the optimal motifs that maximize the frequency function. In contrast to
searching, our method is able to discover the most repetitive patterns (hence optimal), even in cases where
they do not explicitly occur as sub-sequences. Experiments on several real-life time-series datasets show
that the motifs found by our method are highly more frequent than the ones found through searching, for
exactly the same distance threshold.

Additional Key Words and Phrases: Time series, Repeated patterns, Motifs

ACM Reference Format:

Josif Grabocka, Nicolas Schilling and Lars Schmidt-Thieme, 2015. Latent Time-Series Motifs. ACM Trans.
Knowl. Discov. Data. , , Article (May 2015), 21 pages.

DOI: 0000001.0000001

1. INTRODUCTION

Time-series are arguably the most widespread type of data which occur in virtually
all the application domains of our modern lives, wherever measurements have associ-
ated time stamps (e.g.: physiological and medical, financial, meteorological, sound and
video, monitoring system sensors, astronomy light intensities, and many more ).

In many cases, the underlying patterns of those datasets are not known to the do-
main practitioners and a visual inspection is often infeasible given the complexity and
size of the data. For this reason, finding the most repetitive patterns in time-series
help the domain experts understand the underlying phenomena within diverse sources
of data [Buhler and Tompa 2001; Syed et al. 2010]. The most repetitive time-series
patterns are called motifs and their discovery has recently attracted considerable re-
search [Patel et al. 2002; Mueen 2013; Yingchareonthawornchai et al. 2013; Li et al.
2012]. In brief terms, optimal motifs are those which repeat the most (i.e. have the
highest frequency) given a distance/similarity threshold value. The approach of the
current state-of-the-art motif discovery methods is to search the motifs from the seg-
ments (a.k.a sub-sequences) of time series [Patel et al. 2002; Yankov et al. 2007; Li
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et al. 2012; Castro and Azevedo 2010]. More concretely, series segments are consid-
ered to be motif candidates and the most frequent segments are sorted out.

In this paper we present an entirely new and orthogonally different perspective to
the search-based approach. First of all, we treat frequency as a function and motifs as
its variable. Naturally our task becomes finding the values of motifs which maximize
the value of the frequency function. In this perspective we formalize motif discovery
as a principled optimization problem and devise an optimization technique to learn
the optimal motifs. The learning process uses the first order derivative of the frequency
function, in order to find its maximum. In that way, our method can learn motifs which
yield the maximum frequency (a.k.a the highest number of matches). The proposed
learning method is theoretically superior to the search-based approach, because in
the case of searching the motif candidates are limited to the domain of sub-sequences
and cannot discover latent series patterns (Section 4.1) .

As the empirical results (Section 6) over various real-life datasets will indicate, our
optimal motifs have significantly more matches (higher frequency) than the ones found
through searching, for exactly the same distance threshold.

2. RELATED WORK

The research on discovering time-series motifs has suffered from a terminological am-
biguity. Initially, motifs were defined to be the most frequently occurring patterns in a
time-series [Patel et al. 2002]. However, another stream of papers redefined the term
“motif” as the closest pair among series segments [Mueen et al. 2009b; Mueen and
Keogh 2010]. In this paper we mean "the most frequently occurring patterns” [Patel
et al. 2002] when referring to motifs. The closest pair of series segments, on the other
hand, will be referred to as "pair-motif” following the suggestion of [Mohammad and
Nishida 2014].

2.1. Pair-motif discovery

The closest pair of series segments can be perceived as a sub-variation of the general
motif discovery task. The brute-force search that computes the distance of every seg-
ment pair is computationally expensive, therefore efforts are devoted towards scaling
the brute force up. A fast, yet exact, method that discovers pair-wise motifs has been
introduced by [Mueen et al. 2009b]. Enumerations of all motifs having variable lengths
has also been researched [Mueen 2013; Mohammad and Nishida 2014]. In a streaming
scenario an algorithm can not rely on accessing the full past series, therefore we need
to find the top-k motif search via an on-line method as in [Lam et al. 2011]. In addition,
the statistical significance of the motifs found has also been a topic of interest [Castro
and Azevedo 2011; 2012].

Note: Finding motif-pairs is equivalent to the problem of locating the closest pair
of points in a geometrical space and is a historic problem in computational geome-
try [Cormen et al. 2001].

2.2. Motif Discovery

Repeating patterns in sequential data have initially been studied in bio-
informatics [Buhler and Tompa 2001]. However, finding motifs is beneficial in un-
derstanding physiological human data [Syed et al. 2010], while being also useful in
understanding behavioral patterns of living organisms [Brown et al. 2013]. The con-
cept of recurrent patterns was transferred to the realm of time-series data under the
term "motifs” [Patel et al. 2002] and a search-based approach to discovering motifs was
proposed. In order to find motifs that are immune to noisy variations, a probabilistic
search of time-series motifs was based on random projections [Chiu et al. 2003]. An-
other work has explored the employment of uniform scaling as the similarity distance
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used for discovering the motifs [Yankov et al. 2007]. Furthermore, a hybrid combina-
tion of supervised and unsupervised learning has been used for searching recurring
patterns [Oates 2002]. The first step involves a teacher which labels whether or not a
time series includes a particular pattern, while in the next step an unsupervised learn-
ing from the series in order to reconstruct the teacher is exploited. The task of finding
the most recurring motifs has also been tackled through searching for candidate motifs
organized in a tree structure [Liu et al. 2005].

The brute-force approach which tries out every segment (sub-sequence) as a po-
tential motif has a quadratic complexity in the number of segments. Therefore ap-
proximate motif discovery methods have been exploited. Conversion of motifs into a
symbolic representation (named SAX) is a pre-processing alternative [Ferreira et al.
2006]. Over the new representation an agglomerative clustering can be used to find
motifs [Ferreira et al. 2006]. A scalable alternative that can approximately discover
multi-resolution motifs in a single scan utilizes different cardinalities of the symbolic
representation [Castro and Azevedo 2010]. Last but not least, a scalable version of
the pair-wise motifs has been extended to the general motifs discovery for large-scale
data [Mueen et al. 2009a].

Given the widespread of multi-dimensional time series, there has also been inter-
est in mining multi-dimensional motifs too. Several strategies were inspected, where
motifs span all versus a subset of the dimensions, with or without temporal over-
lap [Minnen et al. 2007a]. The algorithm is based on random projections of the sym-
bolic sub-sequence representations [Minnen et al. 2007a]. Discovering regions of high
density in the space of sub-sequencies is another alternative to mining multivariate
motifs [Minnen et al. 2007b]. Graph clustering implemented as a two-staged algorithm
was also employed in detecting multidimensional motifs [Vahdatpour et al. 2009]. In
the first step single-dimensional motifs are discovered and later blended through clus-
tering [Vahdatpour et al. 2009].

Since motifs are previously unknown patterns, there is little information on the
motifs’ lengths too. Under such a reality authors attempted to discover the optimal
motif length, for instance by inspecting the compressibility of the data [Yingchareon-
thawornchai et al. 2013]. In addition, variable-length motifs can be extracted using
a grammar-inspired inference process [Li and Lin 2010]. Interest has been attracted
in terms of visualizing variable-length motifs [Li et al. 2012], finding them in linear
time [Catalano et al. 2006], or using them for classification purposes [Yin et al. 2014].

2.3. Difference to Symbolic Sequences

Another stream of papers finds latent/hidden motifs for symbolic sequences in DNA
and protein data (e.g. [Tata and Patel 2008; Sahli et al. 2014]). However, those works
operate with symbolic sequences, not real-valued series. Real-valued series are a dif-
ferent problem to symbolic sequences, for instance you cannot build fast sequence suf-
fix/prefix trees out of real values. On the other hand, discretizing a real-valued series
destroys local patterns which might be crucial for the application domain, e.g. dis-
cretized symbolic heart beats are meaningless for cardiologists.

In contrast to the related work, our novel contribution relies in computing an
optimal set of motifs given a threshold distance and the motifs’ length. We are the
first to propose a principled optimization method for the task. As a consequence, our
approach leads to significantly improved motif quality (frequency) compared to brute-
force search.
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3. PRELIMINARIES
3.1. Notations

3.1.1. Time Series and Motifs. A time series is a long ordered sequence of real-valued
measurements. Such a series is abstracted as a list of J-many Z-normalized sliding-
window segments of length L and is denoted as S € R’*L. On the other hand, a
repetitive pattern, a.k.a motif, is simply a sequence of L points. The definition can
be generalized to a set of K-motifs and consecutively denoted as M € RE <L,

3.1.2. Motif Frequency. The occurrence frequency of a motif is defined as the nontrivial
(see Section 3.2.2) number of matches between a motif and all the normalized segments
of the time series. The current approach of counting the matching frequency of the k-th
motif, denoted M, . € RZ, iterates over all the j € {1,...,J} sliding window segments
S; . and check whether the motif of interest matches the segments within a threshold
distance T € RT.

K J
FM) =33 Fr, ()
k=1j=1
1if (Sh (M- 830°) < T
Fri = PR @)
0 otherwise

Equation 1 presents the formalism for the overall frequency as a sum of motifs’
frequencies, while Equation 2 encapsulates the concept of a match. If the distance
between a segment S;. and a motif M} . is less than the threshold T, then a match-
ing value of one is granted. We would like to point out that maximizing frequency
is by definition the aim of motif discovery task. In fact, our definition follows the es-
tablished motif formulation routinely addressed in the related literature [Patel et al.
2002; Yankov et al. 2007; Oates 2002].

3.2. Problem Definition

3.2.1. Optimal Motifs. Following the established literature definition, the only optimal-
ity criterion of a motif'is its frequency at a particular distance threshold. Therefore, the
only legitimate metric to compare the qualities of motifs is frequency (a.k.a. support,
or number of matches). The optimal motifs M* for a time series are defined in Equa-
tion 3 as the candidate motifs M that achieve the maximum frequency value F (M)
from Equation 1. There is, nevertheless, an important constraint in the search for mo-
tifs: The K motifs should be different from each other [Patel et al. 2002], otherwise, the
motifs risk being close variations of the single most repetitive motif. Such a constraint
is presented under a "such that (s.t.)” clause in Equation 3, which enforces each pair of
motifs (My, ., M, ) to be different from each other by a distance of at least 21" (so each
pair does not overlap within a threshold 7, details in [Patel et al. 2002]).

M* = argmax JF(M) 3)
MERK XL

L
s.t.: (Z (Mk:,l — Mp,l)2> > 2T,

=1
Vie{l,... K}, Wpelk+1,.. . K}

3.2.2. Trivial Matches. Stated shortly, trivial matches are consecutive segments which
match the same motif [Patel et al. 2002]. For instance, this case might happen if the
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sliding window is incremented by one. In that case two subsequent segments will share
exactly L — 1 points and therefore the distance of any motif to those close-by segments
will be very similar. Some related work increment the sliding window by an offset of
points, therefore trivial matches can be trans-passed at the risk of potentially missing
certain matches [Castro and Azevedo 2010; Minnen et al. 2007b]. However, in our
paper all the reported figures on frequency do not include any trivial match throughout
the experiments.

3.3. Searching The Motifs

The state-of-the-art methods referred in Section 2 focusing on searching motifs are
primarily concerned with trying candidate motifs from the series segments. Despite
proposing important novelties in their scope (scalability, length analysis, etc ...) still
these techniques are upper bounded in terms of quality by the brute-force motif search.

Algorithm 1 BruteForceMotifSearch()

1: Input: Threshold T ¢ RT, Motif length L € NT, Number of Motifs X ¢ NT,
Segments S € R/*E

2: Output: M € REXE

3: // Precompute frequencies of all segments

4. forj=1,...,Jdo

5: ]:j ~—0

6: lastMatchIndex <+ —oo

7. forr=1,...,J do

8: if ||S;. — S,.||3 < T then
9: // Avoid trivial matches
10: if » — lastMatchIndex > 1 then
11: fj — .7:j +1

12: end if

13: lastMatchIndex < r
14: end if

15: end for

16: end for

17: // Select top-K motifs

18: fork=1,..., K do

19:  best; <0

20: forj=1,...,Jdo

21: // Check if the j-th segment is diverse

22: if ||S;. — M,.||3>2T, Vp=k—1,...,1 then

23: if Fest, > F; then
24: best; « j

25: end if

26: end if

27:  end for

28: Mk,: — Sbestj7:
29: end for

30: return M

Algorithm 1 describes a speed-wise naive, yet qualitatively search-optimal imple-
mentation of a brute-force motif search. We can pre-compute the frequencies of all
series segments in O(J?L) runtime complexity and then search the top-K motifs us-
ing the computed frequencies in O(K?JL) time. Since K is typically a small number
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compared to the segments J >> K, therefore the overall brute-force search has a com-
plexity of O(J?L + K2JL) ~ O(J?L), meaning quadratic in the number of segments.
In this paper we propose a learning (not searching) method that outputs motifs having
higher frequencies than those discovered by the brute-force approach.

4. PROPOSED METHOD
4.1. Motivation

The state-of-the-art methods used for finding motifs are based on searching for the
most frequently occurring candidate segment. In other words, any motif has to explic-
itly occur as a series segments M. € S, Vk € NX_ . Unfortunately, such constrained
motifs are very restricted in the finite space of possible values they can have, compared
to the space of real matrices M € RX*! (infinitely more candidates than M ¢ S). In
this paper, we hypothesize and empirically show that the optimal motifs are located
in the space of real numbers M € R¥*L while the space of segments contains sub-
optimal motifs. Figure 1 provides a hint for the comparison between restricted motifs
(M € S) and un-restricted optimal ones. From a geometrical perspective the segments
and the motifs are points in an L-dimensional space. In the example of Figure 1 the
segments and motifs have a length of 2, thus the scenario is 2-dimensional.

Search Motif (T=1) Learn Motif (T=1)
N
2 'o \ﬁ ° Q‘ 2 . “ -y ~‘
) ‘e | ‘9 M
‘. M ’ ° o | » L] =
™ > ™
=05 souele 05 NYI e
° ° ° °
_1 _1 .
-1 0.5 2 -1 0.5 2
5;71 S:,l

Fig. 1. Motif found by searching (left) yields 3 matches while learning a latent motif (right) yields 4 matches

The frequency of a motif M, given a threshold 7', can be interpreted as the number
of segment points (blue in the illustration) that lies within a radius of the threshold
distance from the motif (shown in red). The radius is v/7 because we used the squared-
Euclidean distance in Equation 2, however this poses no problems since 7T is anyway
a hyper-parameter of our method. The most frequently occurring motif is defined to be
the point that covers the maximum number of blue points (segments) inside the circle
of radius /T that is centered at the motif, hence the densest geometrical ball [Liu et al.
2005]. The best segment-motif is shown in the left plot of Figure 1 and has a frequency
of three. However, the optimal motif is located in the right plot and has a frequency
of four. As clearly seen, the optimal solution is hidden in the space of real numbers,
outside the very restricted set of segment points. The method proposed in this paper
learns optimal motifs lying in the real-numbers space through a tailored numerical
optimization technique. Even though the aforementioned 2-dimensional example was
created to awake the reader on the need for learning motifs, still empirical results
of Section 6.2 will demonstrate that learning motifs yields more frequently occurring
patterns, compared to searching them, on real-life time series.
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4.2. Smooth (Differentiable) Motif Frequency

We are going to find the optimal motif through a mathematical maximization of the
frequency as a function of the motifs. Unfortunately, the frequency of Equation 1 has
two problems (i) it is not continuous at point ||M}, . —S; .|| = T and (ii) first derivative is
zero in all other points (i.e. frequency is flat having values 1 or 0). Therefore we cannot
compute the optimal motifs using gradient-based optimization. However, we can use a
differentiable approximation for the frequency function using the Gaussian kernel of
Equations 4-5.

K J
N 1 )
k=1j=1
‘/—:'k:,j — e T Sk (M1 —S5.0)2 “

The smooth frequency function of Equation 5 is both an accurate approximation
to the frequency measure from Equation 2, but also a differentiable alternative, as
illustrated in Figure 2 (left plot). The parameter o controls the smoothness of the
soft frequency. For optimization reasons (details in Section 4.4) the frequency sum of
Equation 4 is divided by KJ to limit the value of 7 between 0 and 1. In terms of
notation, the approximated frequency is distinguished by a hat (F vs F).

Hard vs. Smooth Frequency (T=1) Hard vs. Smooth Violation (T=1)
1 1
— F(My.); — V(M)
_ 08 F(My); =1 08 — V(M)
% 06 —F(My.)j, a =2 5 06
= 8
o 04 L 04
I >
0.2 0.2
0 N~ 0
0 1 2 3 4 5 0 1 2 3 4
L 2
>y (Miy = Sja) Prp

Fig. 2. Smooth vs. Hard Variants of Frequency (left) and Diversity Violation (right)

4.3. Motif Diversity Violation

As previously described in Equation 3 the motifs need to be distant by a margin of
2T. We call such a property as motif diversity. In that line, this section is devoted to
formalizing a differentiable penalty function for the violations of the distances among
motifs from the diversity threshold of 27". As a first step, the distance between two
motifs M. € R* and M,,. € R is defined as ¢, : (RY x R*) — R and formalized in
Equation 6.

L

Prp = Z (M, — Mp,l)2 (6)

=1

The distance ¢, of any pair of motifs M;, ., M, . should obey to the diversity con-
straint shown in Equation 7.
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bop > 2T, Ve ({1,... K}, Vpe{k+1,... K} (7)

We introduce the concept of diversity violation by Equations 8-9. For each of the
KE-1 pairs of motifs, the violation is 0 if the distance between the pair motifs is
greater than 27'. Otherwise, if the distance is zero then the motifs are identical (hence
not at all diverse) and a maximum violation of one is returned. For all the distances
between 0 and 27 a linear violation between 0 and 1 is returned as formalized in
Equation 9. The constant term K(K#—l) makes sure that the violation function has a

range between 0 and 1, the same range as the approximative frequency.

K K
2
VM) = —— Vi, (8)
M) = R 2 2
1— e g, < 2T
— 2T P 9
Vk,p {0 stm 2 T ( )

Despite achieving its aim, the violation penalty of Equations 8-9 still it suffers in
terms of differentiability at the point ¢, = 27" Therefore, we are proposing a smooth
and differentiable variant of the violation penalty in Equations 10-11 by squaring the
hard violation of Equation 9.

K K
N 2 N
VM) = —— V, (10)
S (e PP PR
2
R Pk
Vip = (1-%2) oep<or (11)
0 ¢k,p > 2T

As in the case of the frequency, we denote the smooth approximative version of the

violation penalty by a hat (V for hard and V for smooth). The violation penalty as a
function of the distance between motif pairs is depicted in the right plot of Figure 2.

4.4. Motif Learning Through Optimization

This section fuses the smooth motif frequency and smooth motif diversity violation into
a meaningful objective function. Our aim is to learn a set of K motifs that maximize the
frequencies and minimize (have no) violations. Such an objective can be constructed as
the maximization task of Equation 12.

M* = argmax O(M)
M

= argmax F(M)— V(M) 12)

M
The universally optimal motifs are tho§e WhiChA achieve the universal maximum
value of our objective function O(M) = F(M) — V(M). As both terms are positive,
the objective is maximized for the highest motif frequencies and zero violations. In
this paper we will optimize the objective function through gradient ascent motif up-

dates in a series of iterations. Since both ranges of 7 and V are between 0 and 1, no
term over-scales the other and the overall learning does converge. In our preliminary
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experiments we found out that a trade-off coefficient 3 in the form F (M) — SV(M) was
not needed as both terms converge quickly.

Series and Motifs M,

2l "‘M\"" vsAJ : \
—2 MM"F\ -1

1000 2000 3000 4000 40 120

Z Normalized Motlf Matches M,
2f 1 ’ ' J\ \ 1 . |
_2 L i Il ] _l ‘
1000 2000 3000 4000 40 120

Smooth Frequenueb _7-' M) M;
0.6 1 J\N
1000 2000 3000 4000 40 120

Fig. 3. Top-3 motifs from the "Insect B” time series (L = 150,7 = 61,7 = 0.3, = 300, = 2)

The output of the learning process is a set of motifs M, as shown in Figure 3 for
the "Insect B” time series. In this illustration the top three motifs (K = 3) are shown
on the right plots, while the matches of the motifs on the time series are shown in
the upper-left plot. Z-normalized versions of the matched segments are shown in the
middle-left plot and the lower-left plot illustrates the per-segment smooth frequency
scores of the motifs.

4.4.1. Gradient Ascent Optimization. Since the objective function of Equation 12 is a sub-
traction of frequency and diversity violations, the partial gradient of the objective
function with respect to each point [ of any k-th motif is decomposable as shown in
Equation 13.

O0(M)  OF(M) 0V(M)
oMy, — OMy, OMy,

(13)

The partial derivative of the smooth frequency with respect to the motifis computed
as the first derivative of Equation 4 in terms of M and shown below in Equation 14.

OF (M —2a < .
R SUNEENEY as
) j:1

Similarly the partial derivative of the diversity violation with respect to each motif’s
point is defined in Equation 15.
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V(M) 2 K OV
- (15)
ROK—1) 2

OV _ [ 1020 Mot g <o
0 g > 2T

4.5. Learning Algorithm

Having defined the partial derivative needed for gradient ascent, we can present the
complete learning method. Our method is detailed in Algorithm 2 and in this section
we will explain the steps of the algorithm in detail. There are a set of hyper-parameters
to the learning process, starting with the frequency smoothness «. The other impor-
tant hyper-parameters are the number of motifs K, the threshold 7' and the motif
length L, to be set by a practitioner. The learning rate n and the number of iterations
I are less critical hyper-parameters that control the number of steps needed until con-
vergence. For small learning rates and large number of iterations, the convergence is
safely achievable.

Iteration O Iteration 10 Iteration 20
— —
M, M,
— —
N V'
-2 -2
0 200 400 0 200 400 0 200 400
Frequencies (It. 0) Frequencies (lt. 10) Frequencies (It. 20)
15 15 15
7.5 7.5 l 7.5 l
M1 M2 M3 M1 M2 M3 M1 M2 M3

Fig. 4. Metamorphosis of three motifs on the "EOG” time series (L = 150,7 = 58,7 = 0.3,1 = 300, = 2)

The algorithm starts with a set of motifs initialized from random segments and up-
dates them in the direction of the partial gradients using a learning rate step size. The
learning rate is dynamically updated per each point of each motif using an adaptive
technique known as AdaGrad [Duchi et al. 2011]. We accumulate the square of the
partial gradients into accumulators denoted by V. In order to speed-up the updates
we pre-compute the per-segment frequencies ]i'k,j and pair distances ¢y, , in lines 9-12.
Then every point of each motif M}, ; is updated in the positive direction of the deriva-
tive in lines 13-25. The partial gradients correspond to the ones previously explained
in Section 4.4.1. The update of line 24 adjusts the learning rate by the square root of
the accumulated square gradients [Duchi et al. 2011].

As a consequence of the gradient ascent updates, the motifs undergo a metamorpho-
sis as is shown in Figure 4 for the "Full EOG” time series. The illustrative motifs are
learned on the first 10000 non-overlapping segments of the time series having length
L = 150. At the beginning (Iteration 0) the motifs are random and the corresponding
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Algorithm 2 LearnMotifs()

1: Input: Threshold 7' € R*, Motif length L € N, Number of Motifs K € NT, Seg-
ments S € R/*% Learning Rate n € R, Number of iterations I € N*, Smoothness
acRT

: Output: Motif M € RExE

: // Initialize random motifs and gradient accumulators:

M + (SM(17J)7:)K7 V + OKXL

: // Initialize constant values:

2 —2a

T RE-DT2 CF T RKIT

: // Tterate the learning method:

: foriter=1,...,1 do

// Precompute the per-segment occurence scores:

Fij e T i Mei=5;0* vy e NK vj e N/

I Precompute the pair-wise motif distances:

Ph,q Z(Mkz—Mql)Q, Vk € NK vg e NK

13 // Update the motifs :
14: fork=1,...,K; l=1,...,Ldo

D5 ©oa ook Wiy

=
»

15: / Gradient of frequency w.r.t. the motif:
16: 8f(M)—cA§j(M —8;0) Frj
: My, F - k,l Jt) kg
17: // Gradient df diversity violation w.r.t. the motif:
18: %\j\/[M) cp Z {(‘bk g —2T) (Mg — Mg)  ¢r,q < 2T
k.l ¢k,q 2 2T

19: // Gradient of the final objective w.r.t. the motif:
920: BO(M) dF (M) V(M)

OMj OMj 1 M,y
21: // Update the history of gradients:
"N 2
22: Vi< Vi + (%ﬁ;ﬁ?)
23: // Update the motif point:
0 90(M)
24: Mkl(—Mkl—l—\/—aMkl

25: end for
26: end for
27: return M

frequencies zero, however the motifs start to take form after approximately 20 itera-
tions and converge after 40 iterations. The metamorphosis of the motifs is conducted
such that their matching frequencies (lower plots) are maximized.

4.6. Convergence of The Learning Algorithm

The learning algorithm converges by updating the motifs so that the approximative
frequency is maximized and the diversity violations minimized to zero as shown in
Figure 5 (left plot) for an execution on the "Insect B” dataset. It is worth noting that the
inclusion of the penalty on the diversity violation is crucial for preserving the diversity
constraint. An experiment is shown on the right plot of Figure 5. In this experiment
the line 24 of Algorithm 2 is edited so the motifs are updated only with respect to the
frequency and not diversity violation (see plot title). As we can clearly see, maximizing
the frequencies without penalizing diversity violations causes the motifs to be similar
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Fig. 5. Convergence on "Insect B” dataset (K = 5,7 = 382, = 0.3)

to each other. That is demonstrated by the fact that the violation measure increases,
as shown in the right plot of Figure 5.

5. OPTIMALITY OF OUR METHOD

The objective function of Equation 12 is not concave, because the frequency function
is a sum of Gaussians and not concave. We demonstrate the non-concavity of the fre-
quency function in Figure 6 using the TAO and EEG LSF5 datasets. Here we generate
all possible motifs of length 500 using two values, (for the sake of a 3d-plot), one value
for all the first 250 points in X-axis and another value for the last 250 points in the
Y-axis. As can be clearly seen, frequency is not a concave function in terms of motifs
and has multiple local maxima.

TAO EEG LSF5

2
0 0
]\/11‘251;5(]0 -2 -2 A{legg)o A[1,251:500 -2 -2 Z\/jl,l:250

Fig. 6. Non-concave frequency (M) as a function of motif values M; . on TAO and EEG LSF5 time-series
datasets, Parameters: L = 500, 7 = 100, a = 2

In case of non-concave functions (or non-convex for minimization problems), an ef-
fective cook-book solution is to combine gradient descent with a random-restart strat-
egy [Lones 2011]. In order to avoid getting stuck in local maxima, the gradient descent
optimization is restarted multiple times with random initial values for the motifs. The
run that achieves the highest 7 (1) is selected, as is formalized in Equation 16, where
the number of restarts is denoted by R € N. It is important to recognize that we select
the motifs yielding the highest hard frequency F, not the proxy smooth one F. The
hard frequency F does avoid counting trivial matches in our implementation.

M* = argmax ]-"(M(T)) (16)
M@, r=1,..,R

s.t. M) « LearnMotif() from Alg 2
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Figure 7 illustrates the effect of 50 random restarts on the frequency function F (M)
values over the TAO dataset. On the left plot we see that the maximum values of
the objective are reached after a few restarts. The distribution of the frequency values,
shown in the right plot, demonstrates that the histogram is normally distributed. That
means there is a normal probability that a restart will yield an optimal value on the
right portion (maximal) of the values within.

Impact of Random Restarts Distribution of F(M)
300
» _10
S 275 =
3 :
& O
250 5
—e— F(M) per restart
Best F(M) so far
0
0 16 32 48 200 250 300 350
Restart Index F(M)

Fig. 7. Impact of Random Restarts on F(M); "TAO” time-series dataset with hyper-parameters L =
500, K = 10, = 0.3,1 = 300, T = 109.6

5.1. Runtime Algorithmic Complexity

The runtime complexity of Algorithm 2 is determined by the pre-computation steps
and the update steps. Computing of the frequency terms has an algorithmic com-
plexity order of O(RIKJL), while computing the pairwise distances has a compu-
tational complexity of O(RIK?L). The computation of the partial gradients of the
frequency with respect to the motifs has a complexity of O(RIKJL). Similarly the
complexity of computing the gradients of the diversity violation with respect to the
motif has a complexity of O(RIK?L). The overall complexity of the algorithm is
O(RIKJL + RIK?L + RIKJL + RIK?L), which translates to O2RIK (J + K) L) ~
O(RIKJL) since K << J. The brute force search on the other hand, has a complex-
ity of O(J?L) which is quadratic in terms of the number of segments J. In contrast
our method is linear in terms of the number of segments J and faster than the brute-
force search in case RIK < J. It is worth reminding that our algorithm learns optimal
motifs (brute-force finds non-optimal motifs) and the primary strength is quality at a
feasible runtime.

6. EMPIRICAL RESULTS
6.1. Experimental Setup

We compare the quality of the proposed methods against the brute-force search strat-
egy using a battery of six time-series datasets from diverse application domains. In
addition, we employ an evaluation protocol which compares the frequencies of the com-
puted motifs per different number of motifs, motif lengths and distance thresholds.

6.1.1. Datasets

—Insect B is a time series of insect behavior data and has a length of 73929
points [Mueen et al. 2009b].

—TAO is a long time series representing Tropical Atmosphere Ocean temperature
measurements having 741528 measurements’.

lwww.pmel.noaa.gov/tao
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—RandomWalk is a time-series dataset consisting of 1000000 points, among which
motifs at randomly selected time-stamps are implanted [Mueen et al. 2009b].

— EEG is a series of 1802136 continuous measurements from electroencephalographic
sensors, measuring voltage differences across the scalp [Mueen et al. 2009b].

— Salinity is a time series containing recordings on the level of oceanic salt concen-
tration. The data has a length of 2324134 points and is provided by the National
Oceanographic Data Center?.

— EOG is the longest series in our collection consisting of 8099500 points. The data
is collected by an Electro-Oculogram and represent electrical potential between the
front and the back of a human eye [Goldberger et al. e 13].

6.1.2. Baseline. Many motif discovery method are based on searching for frequent pat-
terns among the series segments (e.g. [Patel et al. 2002; Yankov et al. 2007; Chiu et al.
2003; Li et al. 2012; Li and Lin 2010], enumerated in a broader scope in Section 2).
While those search-based methods are successful in terms of scalability, data repre-
sentation, on-line learning, etc..., they are still upper bounded in quality (a.k.a. fre-
quency) by the Brute-Force search. That is trivial to show, because all the frequent
sub-sequences those methods could find are also detectable by Brute-Force search. In
that aspect, it is sufficient to demonstrate that our method is superior to Brute-Force
searching in terms of quality (a.k.a. frequency) and that naturally translates into
qualitative superiority against all the other scalable/approximate/on-line search-based
methods.

6.1.3. Evaluation Protocol. We will compare against the brute-force search algorithm as
the most qualitative search-based baseline. Our protocol involves comparisons across
all the parameters of both the searching- and learning- based methods.

Three different number of motifs will be computed K € {3,10,30} having two dif-
ferent lengths L € {500,1000}. Furthermore, the threshold (7") of the experiments
is chosen as a percentile in the distribution of distances between segments. To il-
lustrate the setup, a length corresponding to the 1%-th percentile, (denoted Pct = 1
in Table I) means that 1-% of segments pairs have a pairwise Euclidean distance
smaller than the threshold. In that way we can compare our method against the
brute-force search across a range of thresholds computed by different percentiles
T € {0.001%,0.01%,0.1%,1%} of the pairwise distances of segments. In that way we
avoid hand-picking different thresholds values per dataset and select the threshold in
a data-driven neutral manner. In order to ensure convergence, the learning rate was
set to an initial value of n = 0.1 and the number of iterations to I = 1000. In addition,
the optimization was restarted R = 200 times. The segments were extracted from the
series by sliding a window and normalizing the clipped segment, while the window
is slid by half of the motif length. For every combination of the number of motifs K,
length L and threshold 7" (computed from the percentile), three different values of fre-
quency smoothness were searched « € {1,2, 3}, keeping the one yielding the highest F
value.

The brute-force search baseline was executed using the same K, L, T(Pct) combi-
nation parameters as the learning-based approach, and for both methods the final
frequency F does not include trivial matches. In order to be entirely transparent to
the research community we publicly shared our source code and the data used in this
paper in an on-line repository?.
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Table I. Hard Frequencies: Learning Motifs (LM) vs. Brute Force Motifs (BFM)
L=500 L=1000
Pct=0.001]| Pct=0.01 | Pct=0.1 Pct=1 Pct=0.001]| Pct=0.01 | Pct=0.1 Pct=1

BFM|LM|BFM| LM|BFM| LM| BFM| LM[BFM|LM|BFM| LM|BFM| LM|BFM| LM

Datasets Top-3 (K=3) Top-3 (K=3)
Insect B 47 9 6] 10 16] 45 44] 151 4] 11 4] 13 9] 27 19] 51
TAO 12| 24 29| 45 86| 119 313 429 10| 12 18| 35 56| 98| 219/ 284
RandomWalk 25| 43 74| 125| 239| 321| 697, 855 9| 23 27| 64| 114| 165| 327| 458
EEG LSF5 17| 42 47| 101| 150 199| 388| 442 11| 34 27| 173 96| 125| 232| 238
Salinity 39| 48| 151| 184| 497 590| 1462| 1718 18| 32 72| 94| 269| 330| 683| 876
EOG 153/ 190| 504| 669| 1646|2168 4957 8042 67| 102| 196| 340| 676/1390| 2171|5998

Datasets Top-10 (K=10) Top-10 (K=10)
Insect B 11] 18 14] 23 35] 78 81] 189 11] 29 11] 28 17] 54 46] 97
TAO 30| 48 62| 95| 192| 314 780| 1164 18| 29 44| 55| 112| 203| 344| 584
RandomWalk 40| 79| 132| 206| 313| 579| 1314| 1502 23| 48 52| 118 223| 310| 603| 768
EEG LSF5 42| 109| 131| 273| 400| 557| 1118| 1266 32| 96 84| 212| 234| 379| 634| 810
Salinity 100| 105| 291| 358| 1000|1149 2797| 2995 47| 59| 136| 198| 456| 597| 1222|1564
EOG 263| 283| 973|1296( 3128(4130|11181|13439|| 122| 164| 417| 685| 1552|2206| 4321|5729

Datasets Top-30 (K=30) Top-30 (K=30)
Insect B 31] 40 36] 47 68] 107] 200] 221 32] 49 32] 49 42] 72 89[ 110
TAO 65| 95| 133| 209| 432| 698| 1720| 2193 38| 55 65| 93| 202| 336| 577| 932
RandomWalk 61| 117| 158| 279| 471| 764| 1778| 2249 45| 87 83| 174| 256| 421 989|1151
EEG LSF5 110| 281| 275| 646| 850|1442]| 2541| 3505 72| 205| 153| 428| 417| 879| 1304|1914
Salinity 162| 199| 428| 540| 1260|1456 3270| 3855 91| 107| 233| 284| 660 779| 2038|2150
EOG 427 557| 14942028 | 5200|5681 |17442|17075| 247|338| 787|1186| 2306|2955| 6227|7349
[Wins Ol 18] 0] 18] 0] 18] 1] 17| 0 18] 0 18] 0 18] 0| 18]

6.2. Results

In the conducted experiments, for all the different thresholds 7' (computed through
the percentile), for all the different number of motifs K and for different motif lengths
L, the motifs learned through our method almost always had a higher frequency
than the ones found through brute-force search. Table I displays the empirical results
comparing the frequency score of the optimal learned motif (denoted LM ) against the
motifs found through brute-force search (denoted BF M).

10 15
y = °
y=0.902x+0.969 [y et .
= | r’=0.9782 = I A o (+1.96SD)
= > CO/ ° 0’ &0 °¢
g 5 . Z 05 — A 'l (Mean)
= ir S
% uﬁ « ® o ...0
0 9P we
/ N (-1.96SD)
0 L -05
0 1 0 5 10

BEM (l0g(F)) Mean BFM & LM (log(F))

Fig. 8. Bland-Altman plot showing significance of LM vs BFM frequencies (log-scale for visual comprehen-
sion)

The results of Table I indicate that learning the motifs (LM) is better than searching
(BFM) them in 99.31% of the experiments (143/144). The improvement arising from

2http://www.nodc.noaa.gov/General/salinity.html
Shttp:/fs.ismll.de/publicspace/LearnMotifs/
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learning motifs (LM) in terms of motif frequencies is in average 67 & 56% better than
the search-based approach (BFM). The famous Bland-Altman plot is used to assess the
significance of the improvements. Figure 8 (left plot) shows the dominating ratio of LM
through least-squares fitting. Moreover, the right plot shows that the difference LM-
BFM and its standard deviations are above zero, thus we have a significant difference
in terms of frequencies.

Table Il. Running Times (seconds) of Learning Motifs

L=500 L=1000
Pct=0.001]Pct=0.01| Pct=0.1| Pct=1 ||Pct=0.001]|Pct=0.01]| Pct=0.1] Pct=1
Datasets Top-3 (K=3) Top-3 (K=3)
Insect B 14.3 14.9 14.6 14.5 21.3 22.0 20.4 214
TAO 231.8 234.0 236.5 234.9 233.5 229.6 239.6| 229997
RandomWalk 3194 3194 338.1 317.5 326.2 328.0 324.4| 349844
EEG LSF5 11990.3 711.5| 46473.8| 10472.3 688.2| 7160.4| 6652.2| 6817.2
Salinity 4690.6| 2918.8| 2837.9| 3085.0 3710.4| 1042.3| 6925.6| 1184.0
EOG 74114.1| 19786.1|/107585.0| 74479.9 4679.0| 4365.0| 35988.8/35642.7
Datasets Top-10 (K=10) Top-10 (K=10)
Insect B 471 251.1 48.0 47.9 74.8 179.5 73.5] 197797
TAO 763.0 2309.3 798.3 780.0 776.6 2293.1| 5627.6| 764.9

RandomWalk 1097.0| 1074.4| 44425.9| 44318.9 1056.6| 1074.4| 34507.4/10894.9
EEG LSF5 154632.2| 154325.2| 2477.9) 8778.3 22054.0| 22651.2| 2482.0| 8634.1

Salinity 9805.0| 206640.0) 9232.4| 10696.9 3605.6| 3274.3| 3323.6| 3382.3
EOG 59876.8| 65480.0| 58343.4|291463.4|| 122449.0| 40395.9/122389.2|43407.9
Datasets Top-30 (K=30) Top-30 (K=30)
Insect B 306.9 460.8 286.3 333.8 367.8 575.6 388.5] 253.5
TAO 2429.9| 2400.8) 5061.9| 5422.3 97017.7| 2526.7| 5018.9| 5440.9
RandomWalk 3114.1| 3524.7| 3188.2| 3216.4 11319.4| 3281.6/ 3184.1/75287.5
EEG LSF5 7558.7| 7478.6| 7488.1| 7328.3|| 130566.3| 49818.7| 7560.4| 7207.7
Salinity 41372.2| 37847.7| 36486.3| 23483.1 32050.3| 9914.4| 89407.1/88720.4
EOG 122752.6| 140252.5/558185.7|120871.9 40991.9| 42518.8| 67828.3|44654.8

Even though the proposed method is significantly better in quality that the search-
based alternatives, it is not the fastest method in the literature. We are emphasizing
that learning the motifs in our experiments was in general up to two/three orders
slower than searching the motifs. However, since our method is always better in terms
of quality than searching, our primary objective is to show that our approach is prac-
tically feasible in terms of run-time. In that context, learning the Top-30 motifs of
Insect B (smallest dataset) took 4.7 minutes, while learning the Top-30 motifs of EOG
(largest dataset) took 33.57 hours, in a cluster having Intel Xeon E5-2670v2 processors
with speed 2.50GHz. The full table of runtimes can be accessed from Table II, while
the runtime results for searching motifs are shown in Table III.

7. CASE STUDY: AUDIO MOTIFS

In this case study we extract motifs from audio files. The case discussed in this thread
is a poem by Edgar Allen Poe, titled "The Bells” and famous for its onomatopoeic nature
in terms of repeating the word "Bells”. We extract a time-series representation of the
audio file through the first channel of the Mel-frequency cepstral coefficients (MFCC).
For the sake of illustration we took the first 300000 measurements of the original WAV
file, corresponding to a 68 seconds audio reading of the poem.

Figure 9 illustrates shows the MFCC representation time-series together with the
results of the brute force search algorithm in blue and our proposed method in red. We
extracted three motifs K = 3 of length L = 300 for both methods. The distance thresh-
old used in the experiment is the 0.1%-th percentile of pair-wise segment distances
corresponding to a value of 7' = 171.56. For each method, we display the location of
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Table Ill. Running Times (msecs) of searching brute-force motifs

L=500 L=1000
Pct=0.001|Pct=0.01|Pct=0.1]| Pct=1 ||Pct=0.001][Pct=0.01]Pct=0.1] Pct=1

Datasets Top-3 (K=3) Top-3 (K=3)
Insect B 60 63 60 57 43 40 36 42
TAO 8092 8986 8524| 7963 3550 3328 3367 3855
RandomWalk 12637 14398| 13129| 17302 5326 6336 7479 6551
EEG LSF5 29825 45684| 80684| 46916 19170 16007| 44147 48198
Salinity 371804 63604| 75709| 59381 100073 52378| 22855| 29939
EOG 1328921 974995|1870861|599013 432456| 389050| 8838471002247

Datasets Top-10 (K=10) Top-10 (K=10)
Insect B 65 75 63 81 44 55 44 54
TAO 7659 6022 7651| 6404 4243 3068 2093 3231
RandomWalk 15876 13373| 28573| 25452 5178 5980, 18486 4644
EEG LSF5 84019 78900, 37632| 39182 44384 39119 21335| 41621
Salinity 90910 214055, 64057| 63665 31852 33435| 30476 26541
EOG 906873| 854037| 722941|697854 882154 792652| 878873|1523925

Datasets Top-30 (K=30) Top-30 (K=30)
Insect B 248 412 112 115 101 100, 80 53
TAO 6806 5418 6894| 7915 9288 3307 5607 2468
RandomWalk 15973 39291 8402| 9885 7785 7532 7188| 14683
EEG LSF5 45499 45629 50080| 38360 40905 14501| 18317, 16803
Salinity 67964 222415 76594| 74409 34896 30701| 82041 93272
EOG 970592| 1137155|1324029|956936 402382 314477 344206 333424

the motif matches over series segments with a filled oval mark. Under the plots of
the matches we show the found motifs together with the corresponding frequencies.
For the same distance threshold, the learned motifs have totally 50 matches while the
searched motifs have 35 matches, for an improvement of 42% in terms of frequency.
Our method learns patterns that for exactly the same distance threshold match more
frequently than the brute-force motifs.

An investigation of the motif sounds reveals that the top-K repetitive sounds are
different pronunciations of the word bell. All the motifs are different from each other by
2T, so they are all legit motifs by definition. Let us analyze how optimality translates in
concrete terms. For instance we can consider the segment between points 10000-15000
in the times series, which corresponds to the following poem text:

... Of the rapture that impels

To the swinging and the ringing

Of the bells, bells, bells -

Of the bells, bells, bells, bells,

Bells, bells, bells -

To the rhyming and the chiming of the bells! ...

Within the above segment, the brute-force motifs can find 7, 10, 7 occurrences of the
word bell within a threshold 7. Our motifs can find 9, 11,9 matches within the same
interval and for exactly the same distance threshold T. As the ground truth text above
indicate, there are 11 ”bells” pronunciations in total. In average, given the specified
threshold 7', the brute-force motifs find similar sounds that match to the word Bells
in 72% of the cases, the matches of our optimal motifs correspond to the word Bells
in average on 88% of the cases. This is a very important detection accuracy given that
we used only the first channel of the MFCC representation, which is a low-resolution
representation that encapsulates only the overall loudness of the sound.
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Fig.9. Learning 3 audio motifs on a read version of the "The Bells” poem from Edgar Allan Poe. The method
parameters are: T' = 171.56 (Pct = 0.1%), L = 300, = 3,7 = 0.3, 1 = 1000, R = 4.

8. DISCUSSION ON MOTIF QUALITY CRITERION

Given the fact that motifs have been utilized in diverse ways (see Section 2), one could
question whether frequency is best quality criterion for searching motifs. However,
when searching for the most repetitive pattern (our problem definition), frequency is
the only meaningful quality measure for finding those patterns. In the context of time
series, repetitiveness is defined as the number of matches given a distance threshold
T (a hyper-parameter). Such a threshold-based match is not necessary in the case of
discrete valued sequences, such as strings (e.g. DNA) or transactions (e.g. frequent
item set mining), where a match means direct equality. From an optimization perspec-
tive, the right outcome of this paper is the comparison of two numerical optimization
approaches. Searching and learning motifs solve the same objective function (Equa-
tion 12), with a difference on the way they compute the parameters M (the motifs).
To give a hint: Assume you have a list of empirical values Y and you need to find the
value of a parameter x that achieves the maximum value of the function f(z,Y’) over
Y (in our case the frequency of z on Y). The search approach finds x by guessing pos-
sible values among = € Y, while the learning approach uses the slope indication of

%Z,y) to update = € R. The standard mathematical approaches are often orthogonal
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to current practices of computer scientists (data miners), who often minimize problems
by guess-searching for candidate solutions, instead of utilizing first or second order
derivative (curvature) information on the surface of the objective functions. Yet, given
the highly non-convex nature of the objective functions for various data mining prob-
lems, search-based heuristics still find competitive local optima solutions, compared
to the slower and better local optima computed through derivative-based solvers. On
other cases the situation arises from the lack of mathematically-principled problem
formalizations which would enable derivative-based solvers. In the motifs case, we
believe the community had previously failed to correctly formalize the problem as a
parametric maximization function. Our contribution can be seen two folds: A) formal-
izing the problem and B) proposing a numerical optimization that computes better
local optima than the existing guess-searching based numerical optimization.

9. CONCLUSION

This paper proposed a new perspective in learning time-series motifs. In contrast to
current state of the art techniques which searches out motif candidates from series
segments, our method learns them in a principled optimization. The motif frequency
is approximated as a differentiable function and a gradient ascent method is proposed
to find the motif values which maximize the objective function. In order to avoid local
optima, a random restart strategy is combined with the gradient ascent learning of the
motifs.

Learned optimal motifs have more segment matches than the motifs found through
searching, for the same distance threshold. The optimal motifs represent latent pat-
terns not necessarily present as sub-sequences in an explicit form, therefore can iden-
tify motifs which are in the center of the densest hyper-balls including segment points.
Detailed experimental results demonstrate that learning optimal motifs always pro-
duces more qualitative motifs than searching them.
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