
Multi-step Forecasting via Multi-task Learning
Shayan Jawed, Ahmed Rashed, Lars Schmidt-Thieme

Information Systems and Machine Learning Lab
University of Hildesheim

Hildesheim, Germany
{shayan,ahmedrashed,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract—Multi-task learning is an established approach for
improving the generalization of a model. We explore multi-task
learning in the context of time series forecasting. Specifically,
we look into a multivariate setting where main and auxiliary
series are to be forecasted for multi-step ahead. This results in
an interesting multi-task learning problem formulation where the
learning tasks come from future horizon of main and auxiliary
series both. Our proposed method relies firstly on enumerating
multiple Convolutional network architectures to balance the
number of shared and non-shared layers between different time
series tasks. Also, as multi-step strategies minimize forecast errors
over the complete horizon, loss functions would be at different
scales based on model uncertainty for near versus distant future.
For this reason we propose a factorization of the weight vector
for the learning tasks with respect to their categorization of
belonging to main or auxiliary series and index in future. An
optimal number of shared and non-shared layers together with
a novel weighted loss, results in superior performance over 2
real-world datasets compared with several baselines.

I. INTRODUCTION

Reliable time series forecasts are required for planning and
goal setting in many areas of scientific and business activities.
However, producing high-quality forecasts is not an easy task
even for the most skilled analysts. The difficulty only increases
where in real life scenarios, a forecaster encounters multi-
variate time series data. In such cases, useful information in
related tasks could be leveraged to increase model capacity.
Also, a common scenario might require multi-step ahead
forecasts for varying future horizons.

Forecasting multiple steps ahead is a more challenging
problem where points in distant future would be comparatively
harder to forecast for than ones in near future. The inherent
structure of a time series also gives rise to the complex
dependence between observations recorded at successive time
steps. There are three main approaches for generating multi-
step predictions, namely recursive, direct and joint strategies.
In a recursive strategy, a model predicts for a single step and
uses the prediction as input to iteratively predict ahead whereas
in a direct strategy, a separate model is built to predict for
each time step. The focus of this paper is however on the
joint strategy where the model forecasts the whole horizon all
at once in a multi-task manner.

Multi-task learning is an important paradigm in machine
learning which builds upon the idea of sharing knowledge
between different tasks [1]. A set of tasks is learned in parallel,
aiming to improve performance over each task compared with
learning one of these tasks in isolation. The approach has

Fig. 1: Example of a multivariate time series from the vehicle
trajectory estimation dataset; Local X and Y are considered
target series, the rest could be modeled as auxiliary.

been tried and tested across a broad domain of problems
stemming from, for example natural language processing [2]
and computer vision [3]. A multi-task learning problem can
also be formulated with respect to main and auxiliary tasks.
Auxiliary tasks are motivated by the intuition that for most
problem settings, performance over a single task is of primary
importance. However, in order to still reap the benefits of
multi-task learning, related tasks could be modeled as auxiliary
tasks. These exist solely for the purpose of learning an
enriched hidden representation that could lead to a lift in
prediction accuracy over the main tasks. Reference [1], one
of the foremost papers published with respect to multi-task
learning defined tasks predicting for different characteristics of
the road as auxiliary tasks whereas the main task was to predict
the steering direction in a self-driving vehicle. The intuition of
using multi-task learning for multivariate time series domain
fits naturally as both the tasks themselves are correlated and
also the internal representations that could be used for the
different tasks are in turn correlated as well [1].

In this paper, we exploit multivariate time series by for-
mulating main tasks to be the future points needed to be
forecasted for a target series. In contrast, we adopt the other
series’s points as auxiliary tasks. This results in an interesting
multi-task problem formulation because of the rich output
space to be modeled. However, making the problem challeng-
ing at the same time. Specifically the questions that arise are,

first, how much of a hidden representation should be shared
between the different tasks? Second, how to model an output
space which has a strong bias towards the main tasks? Third,
how to cater for the difference in uncertainty involved with
the prediction of near vs distant future?

We conduct an extensive empirical study to investigate
the first question. We exhaustively search for the optimal
combination of shared and non-shared layers between the
different time series tasks modeled via a Convolutional Neural
Network (CNN). The other two questions can be answered
by adopting task weights. Specifically, we can model such
that in general, tasks from the target series are weighted more
than the ones from auxiliary series. Moreover, the tasks of a
series would have to be weighted in a decaying scheme to take
into account the model’s uncertainty with regard to distant vs
near future. However, searching for each task’s weight is not
feasible because of computational complexity. The number of
weights could explode drastically if we wish to predict for a
decent sized horizon in standard multivariate setting.

We propose a novel scheme to tackle this expansion in the
number of weights. Precisely, a factorization of the weight
vector for the learning tasks based on the categorization of
tasks into main or auxiliary tasks and their index in future. Our
factorization leads to searching for only two parameters that
cater for such a weighting scheme described above. To the best
of our knowledge this is the first work that aims to weight this
many tasks. Also, prior multi-task learning approaches have
adopted either uniform weights or manually tuned a handful
of weights. Examples for such include [4], [5].

In summary, our core contributions can be listed as follows:
• Training a variety of Split network architectures [6] for

time series forecasting in order to search for a right
balance between task specific and hidden representations
in context of target and auxiliary series.

• We propose a novel multi-task loss that tackles the chal-
lenging problem of modeling loss functions at different
scales and has a strong bias towards main tasks.

• Demonstrating the importance of loss weights for number
of tasks at a significantly higher order of magnitude
notably than reported previously.

• A thorough ablation study that is built up by rigorously
testing the effect of separate building components of
proposed method. Ultimately, proving the method on
whole is well founded.

II. RELATED WORK

In this section we sketch an overview of the related work
in multi-step forecasting. Secondly, we refer notable works
belonging to multi-task learning. An extensive survey on
multi-step ahead time series forecasting can be found at [7].
Similarly, for multi-task learning at [8].

We firstly note works in recursive strategy such as [9]
where iterative forecasts were generated using Support Vector
Machine Regression (SVR) and benchmarked on artificial time
series data. The authors of [10] did multi-step prediction
of high resolution wave power via Recurrent Neural Net-
works (RNNs). Although powerful, Long Short Term Memory

(LSTMs) have mostly replaced RNNs by effectively learning
longer term dependencies. Multi-step predictions were pro-
duced via recursively forecasting in LSTM based encoder-
decoder architectures such as in [11] which forecasted vehicle
trajectories. A related point is to consider machine translation
works such as [12] where predictions were also generated
recursively.

We can also note works that fall under the direct strategy.
A multivariate ARIMA direct model for predicting economic
processes was discussed in [13]. Non-linear machine learning
models include [14] where an approach to predict the operating
conditions of machines based on decision trees in conjunction
with direct strategy was proposed. Moreover, neural networks
and K-Nearest Neighbors have also been used for multi-step
prediction with direct strategy [15].

We note comparison between the two strategies in [16].
However, we cannot conclude in essence which strategy is
optimal, as it depends on the data generating process, the
time series length, the model complexity and the forecast
horizon. Therefore, often an empirical study is needed. It is
also worth noting that both recursive and direct techniques
for multiple-step forecasting share a drawback in that they
model from data a single output. Variable yt+1 in the recursive
case and the variable yt+k in the direct case respectively. For
long term prediction, both neglect the existence of stochastic
dependencies between future values for example yt+k and
yt+k+1 [17]. Subsequently, multi-output strategies (also known
as Joint strategy) [1], [18] were proposed that avoid the naive
conditional independence assumption in the direct strategy.
Notable works for aforementioned joint strategy include [15],
[18] where neural networks were trained with all three strate-
gies and the joint strategy was shown to perform the best.
The same insight could be drawn from [19] where temporal
modeling was done for vehicle trajectory estimation for multi-
step ahead with Convolutional Neural Networks trained with
joint strategy. Neural networks can naturally deal with multiple
outputs however for other models it is not as straightforward.
However, we note the extensions built up on the traditional
methods for the task of forecasting multiple steps [20] for
support vector machines and [21] for local modeling ap-
proaches both encouraging utilizing the joint strategy. Still,
neural networks remain the choice for multiple step forecasting
with the joint strategy. An extensive review [7] where all
the aforementioned strategies were compared on a large scale
experimental benchmark, the joint strategy was shown to
achieve better predictions.

On the other hand, we review the notable works published
with respect to Multi-task learning. Previously noted works
that utilized the joint strategy fall under the umbrella of
multi-task learning. With regard to the question motivated in
the introduction about sharing the hidden representation we
note two design choices. Hard-parameter sharing has been a
recurring theme in most multi-task learning works. This design
choice is based on sharing all the hidden layers between all
the tasks with the exception of final layers being task specific.

In contrast, soft-parameter sharing models each task with

its own model and parameters. In order to incorporate multi-
task learning, regularization schemes are adopted which try to
minimize the distance between the parameters such as [22].
Another scheme, Split networks shown in [6], falls under the
soft-parameter sharing domain however, instead of using a
regularization to force the network to have shared parameters,
the complete network is splitted in shared and non-shared
layers. We focus on this scheme in the paper.

With regard to related works that adopted auxiliary tasks
we note in addition to [1] works such as [23] where a multi-
task learning problem was formulated for facial landmark
detection task. It was shown that by adopting the head pose
estimation and facial attribute inference as correlated tasks the
performance on main task of detection went up. One of the
most prominent works in object detection [24] is based on
a multi-task loss. The loss is a combined classification and
regression loss for probability distribution and then bounding
box regression offsets for the region. In speech synthesis,
[25] used a single architecture to jointly predict the phoneme
duration and time-dependent fundamental frequency which
depend on each another. Modeling the two related tasks
together follows natural intuition as one depends on another.
Lastly, we note that only a few works have incorporated multi-
task learning with regard to time series data. We note [4]
predictions were generated for clinical tasks using patient time
series data. The authors proposed a heterogeneous multi-task
LSTM architecture to jointly model these clinical prediction
problems. Interestingly, a custom loss function was used that
was formed by weighting the individual loss functions and
catered for reasonable progress on all four learning tasks.
Recent work by [5], proposes a problem formulation with
respect to a target time series like ours. They propose an Auto
Encoder Convolutional Recurrent Neural Network that firstly
learns filters from doing convolutions across the separate time
series including the target series. Later, after applying pooling
to each of the series output, they are merged and fed to an
RNN prediction layer that outputs multi-step prediction for
target time series. The Auto Encoder however simultaneously
reconstructs all input time series making the model multi-task.

Our work is similar to this, however we try to model the
problem of multi-step predictions of target series by exploiting
the shared representation between convolutional layers applied
on different channels of multivariate time series. More impor-
tantly, unlike the previous works that have used uniform or
manually tuned a handful of weights we propose a novel multi-
task loss that caters for a significantly higher number of tasks
by their index in future and while simultaneously balancing
the relation between main and auxiliary series targets.

III. METHOD

We formulate the problem as a multi-variate, multi-step time
series regression process, where the objective is to predict
the future values of N time series, Y = {Y1, Y2, ..., YN}
given the past input X = {X1, X2, .., XN}. We assume
that each of the time series is multivariate with K chan-
nels. The ith time series can be further enumerated as K

separate time series, Yi = Y ∗i , Y
1
i , Y

2
i , ...Y

K−1
i and simi-

larly Xi = X∗i , X
1
i , X

2
i , ..., X

K−1
i . We denote by Y ∗i the

target time series, and the others as auxiliary. The past
values of the ith target time series are defined as X∗i =
{x∗i,t=0, x

∗
i,t=1, .., x

∗
i,t=h}, and the forecast values are defined

as Y ∗i = {y∗i,t=h+1, y
∗
i,t=h+2, .., y

∗
i,t=H}. Where h and H

represent the maximum number of time steps for input and
output respectively. Further, we denote the total time series
length with T = h+ δH where δ caters for the case where H
is at a lower frequency than h.

A. Multi-step forecasting strategies
We now provide a formal introduction to the three imple-

mentation choices for multi-step prediction of a target series
Y ∗ = {y∗t=0, y

∗
t=1, ..., y

∗
t=H} [15], [19].

1) Iterative strategy: Model training occurs with only a
single step prediction which is then recursively fed to the
model to forecast ahead. To fix ideas, we can express the
prediction for a single step ahead:

Y ∗t=h+1 = f(X∗) (1)

Similarly, we can write the equation for two time steps ahead:

Y ∗t=h+2 = f(X∗ ∪ Y ∗t=h+1) (2)

The process is followed until t = H . An obvious issue with
this approach is that errors made early on can significantly
alter the predictions for the later timesteps.

2) Direct strategy: The direct strategy addresses the multi-
step forecasting problem by utilizing multiple independent
models each catering for one of the disjoint subset of a
horizon: If we consider two such horizons:

Y ∗t=h+1 = f(X∗)

Y ∗t=h+2 = g(X∗)
(3)

The advantages of this approach over the former are pro-
nounced wherein values within a horizon vary significantly,
as the strategy models each task independently.

3) Joint strategy: The joint method can be characterized
by its structured prediction over a complete horizon t =
h+ 1...t = H all at once. Mathematically,

Y ∗ = f(X∗) (4)

The joint strategy can be distinguished from the former
approaches by it’s complexity and strong parameter sharing
among multiple tasks modeling for long range horizons.

B. Split Networks for Multivariate Time Series
In this section we introduce Split Network Architectures

from [6], and describe how these can be extended to model
shared and non-shared features among target and auxiliary
series tasks in a multivariate time series. Given that our tasks
are related, like we have established, our motivation to use the
split networks is to potentially isolate the uncertainty in one
task from the other to some extent. As an example, consider
the hard-parameter sharing convolutional neural networks that
would try to learn filters whose width is the same number
of channels as the dimensionality of multivariate time series,

Independent Networks Split conv2 Split conv3 Split conv4 Split conv5

Split conv6 Split fc1 Split fc2 Fully shared

Fig. 2: A variety of split
network architecture are shown
by splitting different layers in
the network. Different colors
correspond to different task
specific layers.

then some representations might be insightful, such as if there
is an increase in the acceleration of vehicle then inherently
this would also correspond to an increase in the y-coordinate
too, as in Fig. 1. However, this can also have a disadvantage
as the acceleration component might have a larger inherent
uncertainty which might lead to performance degradation in
the outputs of both. If however, the task uncertainty can be
controlled in some manner, that is if some channels share
the layer up-to some controlled extent then the network’s
performance might increase. With this in mind, we try to
search for the optimal combination of shared and non-shared
layers for both the datasets.
The intuition behind split networks is to firstly create separate
convolutional layers for each input channel. Then a split is
defined which controls the number of shared and non-shared
layers to the left and right of the network. Fig. 2, describes the
split networks that were tried on the optimal network structure
found with hyper-parameter optimization.
Finding the split index is itself a hyper-parameter. An exhaus-
tive search follows, to determine how much of the hidden
representation is to be shared across the input channels. The
search starts by sharing the first convolutional layer and moves
to successively adding more shared layers in the network. The
last step denotes the network that has all layers shared across
all input channels except the final task specific layers. Thus,
split architectures allow for a varying amount of shared and
task-specific representation.
Our implementation of the split networks is different from
the one in [6], as we are interested in processing time series
data and specifically the input channels are not only for
whom we wish to learn shared features for but also then
predict these channels in future. This can be a problem as
the fully connected layers that output for a task need to
take into account features learned for each input channel.
The split networks proposed in [6], in contrast, have different
task specific layers always receive whole image that is all
input channels at the same time. We propose to remedy by
adopting a concatenation operation that can merge all channel
specific features before feeding those to fully connected layers.
Although there is no limitation on learning task specific fully
connected layers as we do so in split networks Split fc1 and

Split fc2 as shown in Fig. 2 albeit now with complete input,
the placement of the concatenation operation is justified after
the convolutional layers as a design choice.

C. Auxiliary task weights
The primary aim of the paper is to improve multi-step

forecast of a target time series by multi-task learning. We wish
to explore the multi-task learning paradigm by incorporating
auxiliary tasks in the model which forecast for other series in
a multivariate time series. This results in an interesting multi-
task problem formulation with K×H tasks to be optimized. A
naive approach would be to manually tune each task’s weight
in the weighted sum [3].

Ltotal =
∑
i

wiLi (5)

Such an approach has been dominant in previous works
[4], [6]. However, it can be impractical for the problem
formulation at hand. Searching for each tasks’s weight is
not computationally feasible as the number of weights could
explode drastically in the case of predicting for a decent sized
horizon in a standard multivariate setting. In order to tackle
this, we exploit the following two insights:

i) Since the aim is to forecast for the complete horizon in-
stead of a single point in future, the loss functions would
be scaled proportional to their corresponding timestep’s
index in future.

ii) If we wish to forecast the auxiliary series for the same
number of steps ahead in the future, firstly they will also
have loss functions at different scales like above, however,
given they are auxiliary targets we would like to weight
them less than the main targets.

The reason to weight the auxiliary targets less than the main
targets is to penalize the model more on the errors that it makes
on the main targets rather than the errors on auxiliary targets.
Given that we wish to jointly learn all the tasks, we devise
a strategy with respect to the above two insights. Firstly, we
define an exponential decaying weighting scheme for the target
series denoted with β. Secondly, we generate the weights of
auxiliary targets by multiplying the weights generated from
this exponential decaying weighting scheme with α, where

Fig. 3: Task weights generated with different values of γ for
a forecasting horizon of 20 tasks.

α ∈ [0, 1]. The loss function for the target series could be
stated as follows:

L(Y ∗, Ŷ ∗) =
1

N ×H

H∑
j

N∑
i

(Y ∗ij − Ŷ ∗ij)2 (6)

A weighted multi-task learning objective formulated with
respect to K series could be given as follows:

L(Y, Ŷ) =
1

K ×H ×N

K∑
k

H∑
j

wij

N∑
i

(Y k
ij − Ŷ k

ij)
2 (7)

We propose a novel factorization of the weight vector wij for
the K ×H learning tasks with α and β as follows:

L(Y, Ŷ) =
1

K ×H ×N

K∑
k

αk

H∑
j

βj

N∑
i

(Y k
ij − Ŷ k

ij)
2 (8)

Specifically, βj represents the weight for task to predict the
series at timestep j regardless of it being a main or auxiliary
task. Fig. 3 shows a set of such weights generated with
the exponential weighting scheme described in the following
section. What differentiates between the weights of main tasks
and the auxiliary tasks is αk, which denotes the weight for kth

series. For target series we set α = 1 and for other auxiliary
series we search for an optimal value of α. Fig. 4 shows a
set of weights generated with exponential weighting and its
scaled versions through α.

D. Exponential weighting
We now discuss how to generate the weight vector β1:H

for all the tasks in horizon H . We define an exponential
weighting [26] for multi-step ahead prediction for the time
series. The intuition behind defining such a weighting is that
it is comparatively harder for the model to predict for points in
the far ahead future because of higher uncertainty. As a result
the model has a larger error for such predictions. This becomes
a problem especially during training with the joint strategy
where the model is trained to minimize the error over all the
points at the same time. In specific cases the model might
diverge. The exponential weighting is defined as follows:

β1:H = e
−|j−center|

τ (9)

Fig. 4: Scaling the target series weights for two auxiliary
series with different values of α.

Where, j defines the index of the timestep we wish to forecast
and center is the parameter defining centre location of the
weighting function. τ defines the decay. We fix center = 0,
and define τ = −(H − 1)/ln(γ) where γ is then the fraction
of window remaining at the very end, that is the weight for
last timestep. Fig. 3 shows the resulting set of weights from
different exponential decay rates.

IV. EXPERIMENTS

This section starts with a description of the datasets fol-
lowed by an explanation of the evaluation criteria. We compare
the proposed model, a Split network trained with a weighting
scheme with various single task and multi-task baselines.
These experiments are followed by a thorough ablation study
in order to evaluate the performance of separate building
blocks of the proposed method.

A. Datasets
We evaluate the performance of proposed method on two

real-world public time series datasets. Since the data generat-
ing processes are completely different, the proposed method’s
performance can be judged without bias to similar data gen-
erating processes.

1) Vehicle Trajectory Estimation Dataset: Our first dataset
is the widely cited Next Generation Simulation (NGSIM)
dataset [27]. We consider both of its subsets, US 101 and
I-80. Amongst other features NGSIM provides, we utilize the
x and y coordinates of the front center of the vehicle in a
road-relative frame, the velocity, acceleration, time and space
headway. There is also information available regarding vehicle
and lane identifiers and vehicle types, however we restrict
ourselves to using only the dynamic features and ignore such
static features altogether. The Local X coordinate measures
the distance from left-most section of the highway to vehicle’s
front center in feet whereas Local Y coordinate measures the
distance between entry edge section in the direction of travel
and the front center. A summary of dataset characteristics
is provided in Table I. We chose not to model time and
space headway series as auxiliary targets as a result of feature
analysis done with Gradient Boosted Decision Trees [28] and
only use these as input.

Time series samples, N ′ 6,785
Channels, K 6
Sample Length, T 500
Samples after augmentation, N 142,485
Target Series, Y ∗i Local X, Local Y
Auxiliary Series, Yi Velocity, Acceleration
Input window, h 100
Test window, H 20
Train Horizon t ≤ 300
Test Horizon 400 ≥ t < 500

TABLE I: NGSIM Dataset Characteristics

2) News Popularity dataset: In light of analyzing ever
increasing social media data, authors in [29] published a
dataset which tracks the popularity of different news items
on Facebook, Google News and LinkedIn. The news items
belong to 4 different topics: Microsoft, Obama, Palestine and
Economy. Popularity is defined as the number of shares an
item gets on each of the platform. The authors motivate a
horizon of two days for tracking the popularity of each news
item, with a period being 3 measurements each hour that is
144 timesteps for each news item over each platform.

Time series samples, N ′ 83,161
Channels, K 3
Sample Length, T 144
Samples after augmentation, N 831,610
Target Series, Y ∗i Facebook
Auxiliary Series, Y ∗i Google News, LinkedIn
Input window, h 36
Test window, H 36
Train Horizon t ≤ 72
Test Horizon 108 ≥ t < 144

TABLE II: News popularity dataset characterisitcs

For both the datasets a challenging evaluation criteria is
adopted where the model is judged on out of sample predic-
tions. Precisely, the model has not seen data from the test
horizon in training stage.

B. Baselines

Our aim in this subsection is to compare the proposed model
to representative works from the three multi-step strategies
introduced before. We consider the following baselines:

1) Mean Baseline: The mean baseline outputs the average
of all historical data for a target time series for as many steps
into future, the prediction is needed for.

2) Last Value Baseline: The baseline propagates the last
observed value for H timesteps.

3) Joint Strategy Baseline: We compare our proposed
method to multi-task Lasso [30]. In multi-task Lasso an l1/l2
block norm is defined over h×H matrix B with the column
ζt ∈ Rh as the tth column.

||B||l1/l2 :=

h∑
t=1

||ζ1t , ζ2t , ..., ζHt ||2 (10)

An l2 norm is applied to each row of B and an l1 norm across
all these blocks. A coordinate descent optimization is done for

the following objective:

B̂ ∈ argmin
B∈Rh×H

{ 1

2n

H∑
t=h+1

||y∗t −Xζt||22 + λ||B||l1/l2} (11)

4) Direct Strategy Baselines: We consider Random Forests
(RF) and Gradient Boosted Decision Trees (XGB) as the direct
strategy baselines. We train H many RF and XGB models
each, to predict for each timestep ahead. Directly applied
to our setting the baselines would require hyperparameter
tuning for each target timestep which is impractical. Instead,
we resort to default hyperparameters for RF and XGB from
implementations in [31] and [28] respectively.

5) Iterative Strategy Baseline: For the iterative strategy
baseline, we implement an LSTM based sequence to sequence
(Seq2Seq) model where the decoder predicts jointly for all
series albeit only 1-step ahead. The encoder and decoder are
both LSTM layers with output dimensionality set to 128.

6) 2-D Kernel Baseline: Another baseline is the Conf.4
explained in the following Section IV-D. The main difference
between it and the Split networks is the dimensionality of
kernel. The split network will learn 1-D kernels for each of
the channels and through soft sharing, the kernel depending
on if it belongs to the shared layer will have the same weights
for the different channels. In contrast, Conf. 4 will process
each channel at the same time with a 2-D kernel. This makes
it an interesting baseline to compare the results to.

7) Random Search: Hyperparameter configurations sam-
pled uniformly at random have been shown to be effective
for a variety of problems [32]. We compare against model
trained with randomly set task weights for loss function in (7)
to judge the proposed factorization scheme in (8).

C. Results
This section reports our findings for the proposed method

and the baselines for the 3 target series. It is also here that we
make the case that although different weighting schemes (7)
were adopted for training the model, all results are however
stated in terms of an unweighted root mean squared error for
fair comparison. All models are judged based on error measure
given by squared root of loss in (6) for individual time series.
Tables III,IV and V show a comparison of per-step error for the
proposed method and baselines for forecasts over the complete
horizon H . The results are also stated for the best performing
Split network architecture and single task with and without
exponential decaying scheme and optimal random weights for
target series. A number of interesting observations can be
drawn from these results. Firstly, we observe that the proposed
method outperforms all other models on the final average error
metric in the case of Local Y and Facebook target series.
This is only made possible by achieving a consistently low
per-step error throughout the forecasting horizon. It follows
intuition that errors increase as models predict further ahead
as predicting for distant future is harder. Interestingly, this
is exactly where the proposed model’s strengths lie, which
shows a clear advantage of the proposed weighting scheme
that can cater for model uncertainty involved in the prediction

of near vs. distant future. The Rand. baseline comes second
which verifies the intuition of searching for task specific
weights. It is worth noting at the same time advantage of
setting task specific weights with the proposed factorization
which is based on a principled way. We leave the discussion
for exploiting rich hidden representations from incorporating
auxiliary tasks for the following section and pass over to
analyzing how the 3 multi-step prediction strategies compare
against each other. We note the recursive strategy baseline
Seq2Seq performance over the 3 series to be sub-par especially
for predictions in distant future which can be expected as
errors start accumulating from the first prediction. On the other
hand, the baseline XGB performs on par with deep networks
consistently. In fact, we can note that for the target series of
Local X, it’s the best performing approach in terms of average
error. Its counterpart direct strategy baseline RF however
fails to model the underlying temporal dynamics. Finally,
we note that despite Lasso and Conf. 4 both predict jointly,
the proposed method clearly has an edge due to underlying
exploitation of rich features together with a principled loss
function. Moreover, perhaps surprisingly, a naive baseline such
as Last value, models an item’s popularity better than all other
models when it comes to predicting in near future. We infer
that this might be because of the way how the evaluation
criteria is set up, as the last popularity after 36 hours, might
become representative of shares in the next 12 hours if the
news item does not go viral.

t Mean LV Lasso XGB RF Seq2Seq STL STL(γ) Conf.4 Spl conv5 Rand. Prop.

0 3.08 0.26 0.48 0.27 0.95 1.14 0.83 0.82 1.56 0.72 0.72 0.71
1 3.13 0.52 0.66 0.51 0.62 1.17 0.96 0.96 1.60 0.81 0.80 0.77
2 3.19 0.73 0.83 0.71 1.08 1.25 1.08 1.08 1.65 0.89 0.90 0.88
3 3.25 0.91 0.99 0.90 1.00 1.34 1.20 1.21 1.72 1.03 1.02 1.00
4 3.32 1.08 1.15 1.06 1.13 1.44 1.33 1.34 1.80 1.18 1.17 1.13
5 3.38 1.23 1.29 1.22 1.32 1.55 1.45 1.47 1.88 1.28 1.27 1.25
6 3.45 1.37 1.43 1.37 1.42 1.67 1.58 1.59 1.96 1.42 1.40 1.36
7 3.51 1.53 1.57 1.51 1.64 1.79 1.70 1.70 2.04 1.54 1.52 1.48
8 3.58 1.67 1.70 1.65 1.81 1.90 1.79 1.80 2.11 1.66 1.63 1.61
9 3.64 1.80 1.81 1.75 1.95 1.99 1.89 1.89 2.19 1.76 1.74 1.71

10 3.71 1.91 1.90 1.84 2.09 2.09 1.98 1.98 2.27 1.85 1.82 1.80
11 3.79 2.03 2.00 1.94 2.33 2.18 2.08 2.07 2.35 1.95 1.91 1.89
12 3.87 2.17 2.11 2.04 2.36 2.29 2.18 2.17 2.43 2.05 2.01 2.00
13 3.96 2.32 2.24 2.17 2.49 2.40 2.29 2.28 2.52 2.17 2.13 2.13
14 4.03 2.45 2.34 2.27 2.64 2.49 2.39 2.38 2.62 2.29 2.24 2.23
15 4.11 2.57 2.45 2.38 2.75 2.59 2.50 2.48 2.72 2.38 2.34 2.33
16 4.18 2.66 2.53 2.47 2.88 2.68 2.58 2.57 2.78 2.47 2.44 2.42
17 4.25 2.75 2.61 2.53 3.05 2.76 2.65 2.65 2.85 2.55 2.51 2.50
18 4.31 2.82 2.67 2.59 3.20 2.84 2.73 2.73 2.92 2.62 2.57 2.56
19 4.35 2.88 2.73 2.64 3.26 2.90 2.78 2.80 2.98 2.68 2.63 2.62
µ 3.70 1.79 1.78 1.70 2.00 2.02 1.90 1.90 2.24 1.77 1.74 1.71

TABLE III: The proposed method vs. the baselines for all
timesteps H , for Local X series. The results (rounded to 2
digits after decimal) are also stated for the different modules
of the proposed method.

D. Network Architecture
Neural network architectures vary based on the number of

layers and nodes in each layer. We tested different network
architectures to model the problem at hand. All architectures
are inherently convolutional neural networks with dilated
causal convolutions [33]. Also, we fixed the kernel sizes
to 3 and activations to ReLU . However they differ in the
specific number of filters, maxpooling, batch normalization
and dropout layers. We also catered for network depth. Table

t Mean LV Lasso XGB RF Seq2Seq STL STL(γ) Conf.4 Spl conv5 Rand. Prop.

0 557.46 13.88 8.00 4.06 5.42 10.90 13.33 16.69 24.58 11.90 12.95 10.28
1 573.14 29.82 9.95 6.55 7.44 12.24 13.41 17.02 24.22 10.90 11.68 9.57
2 588.92 46.20 13.05 9.55 9.54 14.85 14.06 16.84 23.77 10.27 10.58 8.82
3 604.87 62.84 16.61 12.97 12.84 17.90 15.60 18.12 24.18 11.22 11.27 10.63
4 620.92 79.53 20.30 16.27 16.95 20.79 16.99 19.13 24.62 12.63 13.08 11.17
5 637.11 96.43 24.23 20.34 20.25 24.23 19.22 21.25 26.06 14.50 15.31 13.88
6 653.29 113.24 27.99 23.85 24.29 27.33 21.68 23.60 27.13 17.10 16.87 16.13
7 669.61 130.13 31.62 27.59 28.43 30.50 24.00 25.84 29.83 18.81 17.36 17.74
8 686.11 147.27 35.87 31.74 32.62 34.18 27.20 28.89 32.19 22.90 20.69 20.35
9 702.72 164.53 40.17 35.87 35.58 38.06 30.91 32.53 35.29 25.06 23.22 23.88

10 719.29 181.73 44.62 40.53 39.81 42.01 35.19 36.26 38.52 27.16 26.20 27.04
11 735.93 199.01 49.05 45.07 44.22 46.08 39.38 40.18 42.02 31.02 30.32 30.57
12 752.65 216.34 53.56 48.70 48.53 50.22 43.89 44.03 45.81 33.91 33.89 34.02
13 769.35 233.62 57.94 53.04 52.76 54.32 48.04 48.33 49.67 37.55 37.60 37.45
14 786.14 250.99 62.35 58.23 56.46 58.49 52.79 52.63 53.61 40.88 40.75 41.22
15 802.93 268.34 66.79 61.74 60.17 62.79 57.10 57.06 57.82 44.53 44.57 44.82
16 819.66 285.62 71.29 66.96 65.84 67.16 62.27 61.14 62.25 48.21 48.47 48.40
17 836.34 302.84 75.74 71.37 68.67 71.64 67.36 65.65 67.16 51.91 52.41 52.27
18 853.11 320.15 80.28 76.01 72.92 76.26 72.30 70.33 71.21 55.75 56.42 56.18
19 870.04 337.59 84.78 80.85 77.05 80.95 77.67 74.68 75.85 59.59 60.50 60.26
µ 711.98 174.00 43.71 39.56 38.99 42.05 37.62 38.51 41.79 29.23 29.20 28.73

TABLE IV: Results for the complete horizon of the Local Y
series.

t Mean LV Lasso XGB RF Seq2Seq STL STL(γ) Conf.4 Spl fc2 Rand. Prop.

0 272.90 10.00 14.87 22.67 43.09 46.69 60.99 41.07 37.09 27.44 23.41 19.08
1 277.39 19.16 22.20 37.10 56.29 47.59 58.90 43.18 38.55 29.87 26.81 22.73
2 279.24 21.64 25.12 34.87 49.72 49.20 59.33 43.65 38.41 30.58 27.61 24.49
3 281.32 24.42 27.48 41.36 63.81 50.57 59.18 43.98 40.66 31.22 28.57 25.96
4 283.35 26.62 29.36 44.79 63.51 51.64 59.42 42.81 42.01 31.85 29.49 28.19
5 285.52 33.97 36.39 46.69 61.06 55.88 62.20 47.30 44.90 37.44 35.49 33.64
6 287.33 36.14 38.45 49.33 72.45 57.37 63.10 48.23 44.61 38.61 36.94 35.13
7 289.01 37.68 39.87 52.10 66.29 58.79 63.88 48.77 44.84 39.41 37.88 36.03
8 291.35 42.34 44.12 54.45 82.09 61.63 65.20 51.59 47.59 42.80 41.58 39.81
9 293.07 44.21 46.25 54.25 87.50 62.98 65.01 52.99 47.54 43.48 42.94 41.08

10 297.64 52.43 52.53 61.63 84.22 61.55 64.54 58.17 48.40 46.83 45.08 46.20
11 301.18 62.65 62.15 64.83 101.35 69.94 71.51 66.72 57.84 55.84 54.49 56.07
12 303.61 68.60 67.92 72.37 103.43 75.48 76.39 71.86 63.56 61.68 60.39 61.99
13 305.36 69.96 69.34 73.72 110.19 76.54 76.61 73.16 63.54 62.18 61.09 62.69
14 308.74 72.33 71.04 77.51 110.72 77.38 78.26 73.72 65.12 63.82 62.07 63.11
15 310.66 74.15 72.41 76.98 110.27 79.76 79.41 75.29 66.27 64.92 63.15 64.12
16 312.35 76.20 74.26 78.17 111.30 81.75 80.48 76.88 67.54 65.84 64.43 65.59
17 315.01 77.78 75.60 86.19 128.23 84.62 80.86 78.24 69.98 67.35 65.45 66.82
18 316.62 79.26 76.94 85.84 122.94 86.04 81.04 79.55 70.79 68.35 66.19 67.76
19 318.27 80.74 78.22 85.07 125.32 87.40 81.61 80.63 71.29 69.00 66.77 68.56
20 319.84 82.75 80.17 86.25 136.15 89.38 82.62 82.11 72.90 70.47 68.36 70.29
21 320.98 83.89 81.32 86.60 135.71 90.88 83.56 83.07 73.58 71.77 69.31 70.86
22 322.81 85.38 82.54 86.25 134.27 92.31 84.62 84.14 74.72 72.85 73.36 71.64
23 324.05 86.44 83.45 88.26 133.39 93.58 85.26 84.88 75.41 73.77 74.51 72.23
24 325.62 88.11 85.06 87.71 137.22 95.47 86.43 86.21 76.35 75.28 75.95 73.46
25 328.24 92.26 88.94 93.38 144.31 97.85 87.78 89.78 79.36 78.83 79.50 76.73
26 329.28 93.10 89.81 96.04 145.25 98.85 88.47 90.42 79.98 79.92 79.97 77.18
27 330.69 94.41 90.94 92.66 148.63 100.48 89.28 91.42 80.87 80.84 81.07 78.07
28 332.19 95.74 92.07 97.39 145.40 101.59 89.80 92.33 81.70 81.75 81.74 79.98
29 333.91 97.38 93.37 94.61 151.01 102.97 91.74 93.35 83.14 82.81 83.05 80.87
30 335.66 99.39 95.33 96.58 151.73 104.72 93.08 94.96 85.44 84.10 84.74 82.31
31 337.95 101.89 97.58 96.87 150.33 107.30 94.73 97.06 87.87 85.94 87.07 84.28
32 346.58 124.99 120.25 120.81 161.68 128.89 118.67 120.09 113.36 111.52 112.93 110.79
33 352.86 139.18 134.11 136.13 169.97 142.37 133.11 134.15 128.39 126.43 128.42 126.40
34 357.35 145.37 139.75 140.94 176.52 148.09 138.55 139.28 134.40 131.77 134.31 131.89
35 359.98 147.89 141.91 144.68 182.98 150.04 139.95 141.07 135.83 133.60 136.26 133.60
µ 313.56 74.12 72.80 79.03 115.50 85.21 82.65 77.84 70.38 67.23 66.40 65.26

TABLE V: Results for the Facebook series.

VI shows the different network architectures. The network ar-
chitectures were trained for the 100 epochs on news-popularity
dataset with a non-weighted version of multi-task loss shown
in (7), where the last three fully connected layers predicted
for the last 36 timesteps that is the test set for the popularity
of the item on the respective platform. We can see that
Conf.4 is the leading network architecture. Thus we adopt
this architecture in order to build the Split Networks as shown
in Fig. 2. It is worth noting that this is the standard protocol
to design a network structure in machine learning. As there
is no standard network that fits all tasks, one needs to do a
systematic experimentation with a robust evaluation protocol
for the task at hand. However, that being said, there are some
generalizations across a particular data type, like for example
deeper networks would be preferred for image classification
whereas the same architectures could lead to overfitting on

time series data.

C1 C2 C3 C4 C5 C6 C7 C8

Conv(8) Conv(8) Conv(8) Conv(8) Conv(24) Conv(32) Conv(64) Conv(64)
BN BN BN BN BN BN
Max Max Max Max

Conv(16) Conv(16) Conv(16) Conv(16) Conv(32) Conv(32) Conv(64) Conv(64)
BN BN BN BN BN BN
Max Max Max Max

Conv(32) Conv(32) Conv(32) Conv(32) Conv(48) Conv(64) Conv(128) Conv(128)
BN BN BN BN BN BN
Max Max Max Max

Conv(64) Conv(64) Conv(64) Conv(64) Conv(64) Conv(64) Conv(128) Conv(128)
BN BN BN BN BN BN
Max Max Max Max

Conv(128) Conv(128) Conv(128) Conv(128) Conv(64)
BN BN BN BN
Max Max Max Max

Conv(256) Conv(256) Conv(256) Conv(256)
BN BN BN
Max Max GbMax Max Max Max Max Max
Flat Flat Flat Flat Flat Flat Flat

Drop(15)
FC(200) FC(200) FC(200) FC(200) FC(256) FC(256) FC(256) FC(256)
FC(100) FC(100) FC(100) FC(100) FC(128) FC(128) FC(128) FC(128)

FC(64) FC(64) FC(64) FC(64)
Drop(15) Drop(15) Drop(15) Drop(15) Drop(15) Drop(15)
FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36)
FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36)
FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36) FC(36)

FB 140.90 109.10 108.41 72.11 122.71 134.84 117.40 100.98
GN 3.93 4.22 4.00 2.14 4.30 4.30 3.84 2.56
LN 18.35 13.03 14.22 10.18 17.28 15.33 15.86 11.64

TABLE VI: Network architectures tested on the news
popularity dataset. The results are reported for the test set.
We observe that Conf. 4 reports the least error for all three
series.

E. Ablation Studies

We seek to answer the questions outlined previously with
a thorough ablation study. We firstly isolate the building
components of the methodology and test their performance
and then gradually piece up the components to compose the
proposed method.
Our first set of results in the ablation study is on comparing
the performance of single-task networks for the target series
with and without exponential decay rates. The reason for doing
this is to study the effect of adopting an exponential decaying
weighting scheme and have a single-task learning baseline to
compare the results to. In order to do so, we take the best
performing architecture which we refer to as Conf. 4 from
previous section, and train it with a weighted loss only to
predict for the main tasks. We can note the RMSE averaged
over the entire horizon for the test set of the three series in
Fig. 5. We trained the network with different decay rates,
for example γ = 0.01 corresponds to an exponential decay
whereas a much higher value of γ = 0.75 would correspond
to a linear decay. One can observe that adding the different
exponential decay rates was unfortunately not fruitful. The
averaged results over the horizon did not decrease as shown
in Table. VII where for Local Y and Local X, having no
exponential decay achieved the lowest error.

Next, we trained split networks based on the architecture
from Conf.4. For the vehicle trajectory dataset we trained 4
networks, where each predicted for one series tasks. These
networks had parameters shared up-to a split. Similarly, for the
news popularity dataset, 3 networks were trained. Results are

γ 0.01 0.45 0.76 1.00
Local X 2.09 1.95 1.89 1.89
Local Y 39.57 38.51 38.86 37.61

Facebook 77.84 90.39 85.80 82.65

TABLE VII: Averaged results for models trained with and
without exponential decay rates over the complete horizon
for the three target series. Errors are reported in original
units from the dataset, Local X and Local Y in ft. and
number of shares for Facebook series.

reported in Table. VIII. A number of interesting observations
can be made looking into the results. Firstly, we note that hav-
ing a multi-task objective clearly helped bring the performance
up for both the datasets. For the vehicle trajectory dataset we
can see that the targets of Local Y have benefited the most
where average error over the horizon has gone considerably
down, compared to the single task learning objective from
Table. VII. It is also worth noting that Local Y tasks are
considerably difficult to model than their Local X counterparts,
as a vehicle might not change lanes but rather shift gears more
frequently. This causes the network to diverge for the Local
X tasks although the training loss keeps decreasing. We also
state the errors on auxiliary series for the reader’s curiosity.
On the other hand, it can be observed that the Split architecture
split fc2 has the lowest RMSE for the experiments conducted
yet for the Facebook series. The split fc2 architecture is in-
fact sharing all the layers though. However, we also note that
the RMSE varies considerably in between the different split
architectures. Thus, the intuition of enumerating the possible
architectures for the optimal number of shared and non-shared
layers was fruitful and we achieve the lowest RMSE yet.
Moreover, Fig. 5 shows variability in convergence of top-2
performing split networks for all three target series.

Target Series
Network Local X Local Y Velocity Acceleration Facebook Google LinkedIn
Indep. 1.80 32.47 4.96 6.33 76.80 2.05 9.81
Split conv1 1.81 30.41 4.97 6.60 73.72 2.02 9.65
Split conv2 1.80 32.07 4.97 6.45 71.67 2.03 9.62
Split conv3 1.77 32.20 4.97 6.66 77.64 2.32 10.19
Split conv4 1.77 30.32 4.96 6.49 75.12 2.10 9.82
Split conv5 1.77 29.23 4.96 6.65 77.83 2.32 10.62
Split conv6 1.79 29.58 4.97 6.71 72.82 2.17 9.95
Split fc1 1.84 30.63 4.97 6.50 69.33 2.05 9.93
Split fc2 1.88 33.08 4.97 6.43 67.23 2.07 9.73

TABLE VIII: We tried different configurations of Split
Networks for both the datasets. These networks are
characterized by soft-sharing among their parameters up-to
the split.

Our next set of results is on studying the effect of in-
corporating different weights for target and auxiliary series
tasks. We select the best-performing split network found for
each target series and train it with a weighted multi-task
objective (8) at this stage. To incorporate task weights, we
employ a random search procedure that samples uniformly at
random from the range (0, 1) for the optimal values of γ and
αk. We ran 12 different configurations for both the random

Local X Local Y Facebook

Fig. 5: We plot here the error averaged over the horizon for the three target series from the different exponential weighting
schemes. Higher values of γ correspond to linear decays and γ = 1.0 denotes single task learning without any loss weights.

Local X Local Y Facebook

Fig. 6: A variety of split networks architectures were trained by splitting at different layers with a multi-task objective of
generating multivariate multi-step predictions. We plot here for the top-2 performing split networks for the three series. We
notice that there is considerable variability in the convergence of split networks which verifies the intuition that parameter
sharing depends on task at hand. Also worth noting is how the performance on Local Y increases, but the networks starts
diverging for Local X due to optimization of a multi-task loss where Local Y targets dominate the loss.

search baseline and our proposed factorization and for all
3 target series found the minimum error with the proposed
factorization. The best hyperparameters were found for Local
Y to be (γ = 0.11, αvel = 0.82, αacc = 0.29). Similarly,
for Local X and Facebook series we found the parameters
(γ = 0.70, αvel = 0.54, αacc = 0.86) and (γ = 0.05,
αgoogle = 0.55, αlinkedin = 0.38). It is also worth noting
that model performance is sensitive to selection of weights.

V. REPRODUCIBILITY

We first describe the preprocessing of the datasets. Since
the task at hand is to strictly model time series, we ignore
any type of feature engineering or static information from
both of the datasets. We do however, utilize standardization by
removing the mean and scaling the features to unit variance
as follows. This standardization is applied to each column
separately and the mean and standard deviation for each are
stored to be used on later inverse transformations. For the
vehicle trajectory dataset, we have about 2355 vehicles from
I-80 subset and 2490 from the US 101. Almost each vehicle
appears in around 3 different tracking sequences. We group
by all rows by vehicle ID then by the tracking sequences of
15 minutes each. This can lead to one vehicle providing up to
three samples of trajectories. We discard any trajectory sample
that is less than 500 points that is less than 50 seconds and end

up with 6785 samples. Since for each sample we record the 6
different time-dependent features the input tensor dimension
is then (N ×T ×K). Where N = 6785, T = 500 and K = 6.
We shuffle this dataset to remove any correlated trajectories.
Next, we augment this data using a sliding window mechanism
on the second dimension of the tensor. We define a window
size of 100. Each such window covers 10s of past trajectory
of the vehicle. We take each window after every 1s that is we
do a sliding window operation on the dataset with a stride of
10. We do this operation until T ≤ 300 as we keep the last
sliding window from T >= 300 ≤ T < 400 for testing. This
procedure determines the X and for Y , the targets, we take
20 points each spaced at half a second from the 100 points
following the 100 points from X. That is predicting for the last
step would translate into predicting the vehicle’s position after
10 seconds. By doing the operation 21 times until T ≤ 300,
we end up with a tensor of dimensions (21×6785×100×6).
From here, we multiply the first and second dimension to
create a tensor of shape (142485 × 100 × 6) effectively
augmenting the dataset’s sample dimension. Similarly, for
the other dataset, we ignore any feature engineering except
the standardization as was noted earlier. There are around
83,161 items in total from all topics with their popularity
tracked for 144 timesteps on 3 platforms. Thereby, generating

a tensor of shape (83161× 144× 3). We shuffle this tensor to
break the correlation between the same topics for example
the top 29928 items are from Economy. This should lead
the network to generalize well across all items. The sliding
window mechanism to augment the data is also utilized for
this dataset. With a stride of 4, and a window length of 36
we do 10 passes until T ≤ 108 which forms the train part of
the data. The target for this dataset is to predict for the last
36 timesteps that is the last quarter of the 48 hours timespan.
By doing the sliding window, the resulting tensor is of shape
(831610× 36× 3).

VI. ACKNOWLEDGEMENTS

We gratefully acknowledge the co-funding of our work by
Volkswagen Financial Services through Data-driven Mobility
Services project.

VII. CONCLUSION

Our focus in this paper was on the challenging task of multi-
step forecasting. We presented multi-task learning methods
that could exploit shared information to improve generalization
over single-task models. Split networks showed promising
results by learning a rich hidden state representation of shared
and task specific features. With the intuitions of catering for
model uncertainty in distant future and bias towards main
tasks set forth, we defined a factorization of the weight
vector to derive a principled loss function, which employed
by an optimal Split network was shown to outperform a
series of baselines. Moreover, the proposed method is broadly
applicable to any problem setting involving multivariate input
and requiring multi-step forecasting.

REFERENCES

[1] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[2] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang, “Repre-
sentation learning using multi-task deep neural networks for semantic
classification and information retrieval,” 2015.

[3] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 7482–7491.

[4] H. Harutyunyan, H. Khachatrian, D. C. Kale, and A. Galstyan, “Mul-
titask learning and benchmarking with clinical time series data,” arXiv
preprint arXiv:1703.07771, 2017.

[5] R.-G. Cirstea, D.-V. Micu, G.-M. Muresan, C. Guo, and B. Yang, “Cor-
related time series forecasting using multi-task deep neural networks,” in
Proceedings of the 27th ACM International Conference on Information
and Knowledge Management. ACM, 2018, pp. 1527–1530.

[6] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 3994–4003.

[7] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the nn5 forecasting competition,” Expert systems with appli-
cations, vol. 39, no. 8, pp. 7067–7083, 2012.

[8] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[9] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and
V. Vapnik, “Using support vector machines for time series prediction,”
Advances in kernel methods—support vector learning, pp. 243–254,
1999.

[10] K. Hatalis, P. Pradhan, S. Kishore, R. S. Blum, and A. J. Lamadrid,
“Multi-step forecasting of wave power using a nonlinear recurrent
neural network,” in 2014 IEEE PES General Meeting— Conference &
Exposition. IEEE, 2014, pp. 1–5.

[11] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2018, pp. 1468–1476.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[13] G. Chevillon and D. F. Hendry, “Non-parametric direct multi-step
estimation for forecasting economic processes,” International Journal
of Forecasting, vol. 21, no. 2, pp. 201–218, 2005.

[14] B.-S. Yang, A. C. C. Tan et al., “Multi-step ahead direct prediction for
the machine condition prognosis using regression trees and neuro-fuzzy
systems,” Expert systems with applications, vol. 36, no. 5, pp. 9378–
9387, 2009.

[15] D. M. Kline, “Methods for multi-step time series forecasting neural
networks,” in Neural networks in business forecasting. IGI Global,
2004, pp. 226–250.

[16] M. Marcellino, J. H. Stock, and M. W. Watson, “A comparison of direct
and iterated multistep ar methods for forecasting macroeconomic time
series,” Journal of econometrics, vol. 135, no. 1-2, pp. 499–526, 2006.

[17] G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Machine learning
strategies for time series forecasting,” in European business intelligence
summer school. Springer, 2012, pp. 62–77.

[18] G. Bontempi, “Long term time series prediction with multi-input multi-
output local learning,” Proc. 2nd ESTSP, pp. 145–154, 2008.

[19] S. Jawed, E. Boumaiza, J. Grabocka, and L. Schmidt-Thieme, “Data-
driven vehicle trajectory forecasting,” arXiv preprint arXiv:1902.05400,
2019.

[20] Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series prediction
using multiple-output support vector regression,” Neurocomputing, vol.
129, pp. 482–493, 2014.

[21] G. Bontempi and S. B. Taieb, “Conditionally dependent strategies for
multiple-step-ahead prediction in local learning,” International journal
of forecasting, vol. 27, no. 3, pp. 689–699, 2011.

[22] Y. Yang and T. M. Hospedales, “Trace norm regularised deep multi-task
learning,” arXiv preprint arXiv:1606.04038, 2016.

[23] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by
deep multi-task learning,” in European Conference on Computer Vision.
Springer, 2014, pp. 94–108.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[25] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice: Real-time
neural text-to-speech,” arXiv preprint arXiv:1702.07825, 2017.

[26] S. Gade and H. Herlufsen, “Use of weighting functions in dft/fft
analysis,” B&K Technical Review, vol. 3, 1987.

[27] J. Colyar and J. Halkias, “Us highway 101 dataset,” Federal Highway
Administration (FHWA), Tech. Rep. FHWA-HRT-07-030, 2007.

[28] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: ACM, 2016, pp. 785–794. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939785

[29] N. Moniz and L. Torgo, “Multi-source social feedback of online news
feeds,” arXiv preprint arXiv:1801.07055, 2018.

[30] G. Obozinski, B. Taskar, and M. I. Jordan, “Joint covariate selection and
joint subspace selection for multiple classification problems,” Statistics
and Computing, vol. 20, no. 2, pp. 231–252, 2010.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[33] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” SSW, vol. 125, 2016.

http://doi.acm.org/10.1145/2939672.2939785

