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Abstract. In decentralized distributed systems the data resides on the
compute devices, which are connected through a high latency network
that can adversely impact the communication cost. In such systems, it
is desirable to employ a training regime that is inherently decentralized,
where learning algorithms operate on local hosts using only the local data
partitions. To ensure their convergence to a joint model, the parameters
of the local models have to be regularly averaged. As each averaging
operation incurs network communication costs, the right balance has to
be found between either communication intensive dense averaging oper-
ations or sparse averaging operations which slows down the convergence.
‘We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each
other (Ring-Star). Ring-Star allows a principled trade-off between the
convergence speed and communication overhead and is well suited to
loosely coupled distributed systems. We demonstrate on an image clas-
sification task and a batch stochastic gradient descent learning (SGD)
algorithm that our proposed method shows similar convergence behavior
as Allreduce while having lower communication cost of Ring.
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1 Introduction

Mini-batch Stochastic Gradient Descent is often employed for training deep
learning models in distributed settings, as each instance of data can be processed
in parallel, which is useful in speeding up the learning process. The most widely
used distributed learning approaches focus mainly on using centralized training
procedures [4[7], which are based on a parameter server (PS) framework. How-
ever, the centralized approaches are not suited for the computing environment,
where data cannot be centralized and the central server can become a bottleneck
due to the underlying network characteristics [8]. Decentralized training proce-
dures [8[9] are proposed to scale on loosely connected, high latency computing
systems. In these procedures, workers are sparsely connected to each other form-
ing a Ring topology. For synchronization, each worker averages its model with
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two neighboring workers. Decentralized approaches are motivated by control
systems and wireless sensor network research, which solve a global consensus
problem. These procedures show a significant reduction in the communication
overhead. However, sparse averaging increases the parameter variance between
workers, which is termed as “network error” in the literature [III3]. The “net-
work error” or variance is large in the early stages of optimizing a non-convex
objective and frequent averaging helps to reduce the variance. Despite being
communication efficient, decentralized training procedures suffer from high net-
work error, which increases with an increasing number of workers. On the other
hand, a grand averaging step, like Allreduce [2], incurs zero network error but is
a communication inefficient operation, especially in a high latency network.

The competing objectives of reducing communication overhead, while keep-
ing the network error as small as possible is a challenging task, which requires
designing a topology that benefits from both worlds. In this paper we analyze
different characteristics of decentralized topologies and design a sparse topol-
ogy that balances trade-off between communication cost and network error. The
main contributions of this paper are 1) a new Ring-Star topology for a de-
centralized parallel SGD that balances network error and communication over-
head, and 2) detailed analysis of different design choices for designing a sparse
topology. The empirical evaluations on an image classification task show, supe-
rior convergence behavior of Ring-Star as compared to communication efficient
Ring based topologies. As a result Ring-Star achieves better final test accuracy
than Ring and RingRandom in same wall clock time.

2 Decentralized Model Averaging

2.1 Problem Formulation

Decentralized distributed settings consist of a set of distributed workers V =
{1,---,V}, where each worker v € V holds a local model (x;6,,), with model
parameters 6, € R and runs a mini-batch SGD to update its model parameters
by sampling a mini-batch B, C D, from the local shard of data D,,.
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where L(-,-) is a loss function. Typical loss functions include the cross entropy
loss, square loss, hinge loss etc. These workers periodically synchronize their
models by averaging over the models learned by other workers. Given a weight
matrix W € RV XV the averaging step at worker v can be defined as:

0, = W,.,0. (2)
v’ eV

The weight matrix (or mixing matrix) W is symmetric and W1 = 1, where
1 denotes a vector of all ones. The weight matrix W defines the influence of
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the averaging step in Eq. at each worker. In a dense averaging scheme, such
as Allreduce [2], each worker gets the model average of all other workers at
each averaging step, whereas in a sparse scheme, such as Ring [§], each worker
averages over two neighboring workers. The weight matrices for Allreduce and

Ring schemes are given as: 11 9...0 1
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2.2 Designing a Sparse Topology

To design a sparse topology that incurs a lower communication cost and at the
same time has lower network error, we define the average-age matrix and the
communication overhead as design characteristics of the topology. The average-
age matrix H holds the information about how old the contribution of a worker
u is to a worker v. Given the weight matrix W, the average-age matrix H can be
defined as the shortest path between the workers, which measures the number of
averaging steps required to average over the model from any other worker. The
second important characteristic of topology is the communication cost, which can
be defined, following [I1], as Ya + I13, where Y is the number of handshakes,
« is the latency, IT is the size of data transferred, and ( is the bandwidth. The
importance of latency in high latency networks cannot be understated as it can
cause a performance bottleneck.
Table 1. Comparison of characteristics of different topologies.

lTopology [Averaging Step[Communication Cost[ Average Age ‘
Allreduce 2] Dense 2(V—-1)a+2Kp 0(1)

Ring [8] Sparse 200+ 2K o)
RingRandom [9] Sparse 200+ 2K O(log(V))
Ring-Star (proposed) Sparse (2(L—1)+2)a+ 2K8 |O(G) or O(log(G))

2.3 Existing Topologies

The Allreduce (AR) topology [2] is a dense averaging scheme used for training
deep learning models. In this scheme, every worker requires a single averaging
step to get the contributions of all other workers, therefore the age matrix H has
one. A disadvantage, however, inherent to this topology is the high communica-
tion cost, which for the most optimized implementation still requires O(V') hand-
shakes. The total communication cost incurred by Allreduce is (V —1)a+ 2K 8,
which becomes more pronounced in high latency network as latency grows in V,
where V' is the number of workers.

The Ring (R) topology proposed in [§] has a sparse averaging scheme, where
at an averaging step each worker only averages with its two adjacent neighboring
workers. This sparse connectivity incurs a very low communication cost of 2 +
2K 8 per communication round. However, due to a sparse averaging, a worker
on average has to take O(V') averaging steps before it gets the contribution from



4 M. Jameel et al.

its furthest neighbor, which causes high network error, requiring more iterations
for a model to converge.

The RingRandom (RR) topology proposed in [9], improves the averaging
steps by averaging randomly with a neighbor that is 2° 4+ 1 hops away, where i is
an integer between 0 and log(V') — 1. They also introduce a bipartite partitioning
of the workers, where workers in an active group initiate the communication,
whereas a passive group worker only responds to the request. These random
re-links connect any pair of workers in O(log(V')) steps. The communication
overhead is the same as the Ring topology, i.e. 2a + 2K 8 per communication
round.

2.4 Ring-Star: A Sparse Topology

The existing topologies discussed above either incur a high communication over-
head or suffer from a low averaging operation which results in a high network
error. Keeping in view these characteristics, we propose the Ring-Star topology
that aims to reduce their disadvantages. In our proposed Ring-Star (RS) topol-
ogy, distributed workers are divided into local groups and a worker from each
group is selected as a Delegate. The Delegate is responsible for averaging models
from the local group as well as exchange the group average with two neighboring
Delegates (similar to a Ring topology). After the averaging step, each worker in
the connected group gets the average of the two neighboring groups. Let the size
of the local group be L then the size of the Delegates Ring becomes G = V/L.
This significantly reduces the average age in H, as each worker requires O(G)E|
averaging steps to get contribution from the furtherest worker, and speeds-up the
information propagation among workers. Ring-Star incurs ((2(L—1)+2)a+2K
communication cost, where O(L) handshakes are required for local group averag-
ing and two more handshakes are required for averaging between two Delegates.
Ring-Star is a sparse topology, in which, after the averaging step each worker
gets the contribution of a subset of workers, and it has a significantly different
communication pattern from dense Allreduce [6I2], where after the averaging step
each worker gets the contribution from all other workers. The characteristics of
Ring-Star and other topologies are summarized in Table
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Fig. 1. Analysis of different group configurations for Ring-Star.

The group configuration of Ring-Star, i.e. [G x L], controls the sparsity in W
and is a tunable parameter. We designed an experiment by training Resnet20 on
the CIFARI10 dataset using 64 workers to analyze the effect of choosing the

! replacing Ring for Delegates with RingRandom will give O(log(G)).
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[G x L] on average age, communication cost and final test accuracy, and we
have used the “Relative Gain”ﬂ € R to compare Ring-Star and other topolo-
gies. Figure [I] shows that Ring-Star has better “Relative Gain” in average age
over Ring and RingRandom, whereas it has a lower communication cost as com-
pared to Allreduce. The test error of Ring-Star is also lower than Ring and
RingRandom across different group configurations. It is also shown that choosing
L =1 retrieves the Ring topology and L = V retrieves the Allreduce topology.

3 Experiments

In this section, we empirically investigate the effect of sparse topologies on the
decentralized training of deep convolution neural networks for an image clas-
sification task. We selected well-known CIFAR10 and CIFAR100 as evaluation
datasets for our experiments, which consists of 32x32 color images with 10 and
100 classes respectively and split into 50K train-set and 10K test-set. The deep
learning models and hyperparameters for our experiments are summarized in Ta-
ble 2] The models are implemented in PyTorch and the distributed framework

Table 2. Hyperparameters for Experiments

]Dataset [ Model [batchsizeﬂ[ lr[ Ir_schedule llr,decay [ size [
Resnet20 [3] 32 0.1] {81, 122} 0.1 IMB

CIFARI0 VGG16 [10] 64 0.1/{25, 50, 75, 100} 0.5 60MB
DensNet-40-12 [5] 64 0.1] {150, 225} 0.1 IMB

CIFARIO0 a7 f e Resmet-28-10 2 64 0.1] {60, 120, 160} 0.2 |146MB

is implemented using mpidpy. The experimental setup consists of nodes on the
Google Cloud Platform (GCP), where each node is a “nl-standard-64" instance
with Intel Xeon E5 v3 (Haswell) 64 vCPUs, 240 GB of memory, 1000GB SSD
storage, and 4 Nvidia P100 GPUs. The nodes are connected through a 10Gbit/s
Ethernet interconnect.

3.1 Convergence behavior of difference topologies with respect to
epochs

Experiments on CIFAR10: We looked at the convergence behaviors of dif-
ferent topologies on the CIFAR10 dataset by varying the number of work-
ers. Figures and summarize the results on the CIFAR10 datasets for
Resnet20 and VGG16 respectively. The Allreduce and Ring-Star consistently
show better performance across both the models. It can be seen that Ring-
Star learning curves follow closely the Allreduce learning curves. The impact
of fast averaging over all the workers becomes more pronounced as the num-
ber of workers is increased. The more sparsely connected workers in Ring and
RingRandom have more divergence among the local models, and they tend to

2 “Relative Gain” is a ratio between Ring-Star and other topologies, i.e. % > 1
indicates Ring-Star is better than Allreduce and % < 1 indicates otherwise.

3 the warmup learning rate scaling technique as described in [2] is employed for sta-
bilizing the learning process for large batch sizes i.e Bglobat = V X B.
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converge to the worst local optima. To overcome this issue, Lian et al. [9] de-
creased the learning rate for Ring and RingRandom earlier than Allreduce in
their experiments for the number of workers > 32 to stabilize the optimization.
The final test accuracies in Table[3|also show a similar trend, where Allreduce and
Ring-Star achieved the best test accuracy with minimum effect of increasing the
number of workers. FEASGD [14] performs the worst among all methods.
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Fig. 2. Epoch-wise convergence behavior of different topologies on the CIFAR10 (a-b)
and CIFAR100 (c-d) training using 32 and 64 workers.

Experiments on CIFAR100: In this section, we present results on the CI-
FAR100 dataset. In these experiments, we choose complex workloads i.e. DensNet-
40-12 and WideResnet-28-10. Figures andsummarize the results on the
CIFARI100 datasets for DensNet-40-12 and WideResnet-28-10 respectively. The
results show similar trends in the learning curves as for the CIFAR10 dataset.
The hybrid Ring-Star is shown to perform at par with Allreduce in terms of
final test accuracy (Table [4]) as well as speed of convergence, whereas Ring and
RingRandom suffers from a slow averaging step, which leads to slower learning.

Table 3. Comparison of test accuracy for the CIFAR10 experiments.
lModel [Workers[Allreduce[Ring-Star[RingRandom[ Ring [EASG’D @]‘

16 [4x4] | 91.98% | 91.93% 91.68%  [91.59%] 90.76%
Resnet20[ 32 [8x4] | 91.58% | 91.42% 90.82%  |90.70%| 86.68%
64 [16x4]| 90.90% | 90.50% 89.44%  |87.32%| 81.32%
16 [4x4] | 91.80% | 91.57% 91.61%  [91.43%| 89.323%
VGG16 |32 [8x4] | 91.77% | 91.44% 90.19%  |89.71%| 83.726%
64 [16x4]| 91.47% | 91.25% 88.74%  |86.04% -

3.2 Convergence behavior of difference topologies with respect to

In the second set of experiments, we analyze the convergence speed with respect
to time. The comparisons of convergence with respect to time is presented in
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Figures[3(a)]and[3(b)|for Resnet20 and VGG16 trained on CIFAR10, and Figures
and [3(d)] for DensNet-40-12 and WideResnet-28-10 trained on CIFAR100.
The effect of communication is clearly visible, as Allreduce requires more time
to converge due to high communication overhead. The communication efficient
Ring and RingRandom show better communication behavior and require less
amount of time to finish training. However, due to their slow averaging step,
they still need more epochs to converge to a similar loss as Allreduce. Ring-
Star on the other hand enjoys superior communication behavior and converges
to the lowest loss in less amount of time. Ring-Star shows similar communication
requirements as Ring and RingRandom, while achieving a similar solution as a
more accurate, but communication inefficient Allreduce.
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Fig. 3. Time-wise convergence behavior of different topologies on the CIFAR10 (a-b),
and CIFAR100 (c-d) training using 32 and 64 workers.

Table 4. Comparison of test accuracy for the CIFAR100 experiments.

lModel [Workers[ Allreduce [ Ring-Star [ RingRandom[ Ring [
16 [4x4] | 71.59% | 71.61% 71.11%  [71.09%
DensNet-40-12 32 [8x4] | 71.31% 71.24% 69.37% 67.91%
64 [16x4]| 71.25% 71.19% 68.70% 66.01%
16 [4x4] | 78.86% 78.73% 78.49% 78.10%
WideResnet-28-10| 32 [8x4] | 78.26% 78.31% 77.18% 76.37%
64 [16x4]| 78.15% | 78.20% 76.23%  |74.77%

4 Conclusion

In this paper we address the design choices for a sparse model averaging strategy
in a decentralized parallel SGD. The detailed analysis of different topologies show
the importance of averaging age, communication overhead and variance among
workers, and how it could effect the overall learning behavior of the deep learning
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model. We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each other
(Ring-Star). Ring-Star allows a principled trade-off between convergence speed
and communication overhead and is well suited to loosely coupled distributed
systems. We demonstrate on an image classification task and a batch stochastic
gradient descent learning (SGD) algorithm that our proposed method shows
similar convergence behavior as Allreduce while having lower communication
cost of Ring.
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