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Abstract. Distributed training of deep learning models on high-latency
systems necessitates decentralized parallel SGD solutions. However, ex-
isting solutions suffer from slow convergence because of hand-crafted
topologies. The question arises, “for decentralized parallel SGD, is it pos-
sible to learn a topology that provides faster model averaging compared
to the hand-crafted counterparts?”.

By leveraging spectral properties of the graph, we formulate the objec-
tive function for finding the topology that provides fast model averaging.
Since direct optimization of the objective function is infeasible, we em-
ploy a local search algorithm guided by the objective function. We show
through extensive empirical evaluation on image classification tasks that
the model averaging based on learned topologies leads to fast conver-
gence. An equally important aspect of the decentralized parallel SGD is
the link weights for sparse model averaging. In contrast to setting weights
via Metropolis-Hastings, we propose to use Laplacian link weights on the
learned topologies, which provide a significant lift in performance.
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1 Introduction

The current trend in learning distributed models on edge devices (factory con-
trollers etc) is gaining traction as it eases the burden of transferring data to a
central location, which in a real-world scenario, is limited by slow transfer rates
or legal restrictions [I3]. The decentralized nature of these devices coupled with
high latency networks renders the centralized parallel SGD [2TI§] approaches in-
feasible due to high aggregation cost at the central node. Hence, it is imperative
to design distributed algorithms that are well suited for these high latency sys-
tems. Decentralized learning algorithms [9I10] operate on local hosts using only
the local data partitions but to reduce communication cost, each worker shares
information with a small subset of neighbors. As a result, the central bottleneck
is effectively eliminated. An example is the hand-crafted virtual ring topology,
where each worker only communicates with its two adjacent neighbors.
However, these hand-crafted solutions exhibit slow model averaging proper-
ties, which lead to high variance among the individual models learned by work-
ers [20/16]. For training highly non-linear models with non-convex optimization
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objectives, this could be problematic as high variance degrades convergence be-
havior and leads to suboptimal solutions. The fundamental question arises, “for
decentralized parallel SGD, is it possible to learn a topology that provides faster
model averaging compared to the hand-crafted counterparts?”. It is well known
that the spectral properties of the graph provide a good metrics to measure the
connectivity structure of the topology [14]. Based on this, we propose an ob-
jective function, optimization of which leads to the topology that provides fast
model averaging under constraints such as the number of connections. The direct
optimization of the objective function leads to a combinatorial explosion of the
search space, thus finding an optimal solution under constraints is intractable.
The solution [I2] that exists is limited to prime and prime power of the number
of direct connections, which hinders its real-world applicability. In this paper,
we propose a local search algorithm guided by the objective function to find a
topology that leads to fast model averaging.

The topology itself is an incomplete solution for fast model averaging without
giving due importance to optimal averaging link weights. The common practice
to set weights so far has been based on the Metropolis-Hastings algorithm [14].
However, as we shall show these are not generalizable across learned topologies.
We propose to exploit spectral properties of the graph to assign link weights for
model averaging, which have been proven to be the optimal choice for constant
edge weights [18].

To recap, our contributions are:

e We propose a principled method to find a topology that enables fast model
averaging under communication constraints.

o We demonstrate improved convergence behavior with Laplacian link weights
in contrast to weights set by the Metropolis-Hastings algorithm.

e We evaluate on a set of image classification tasks that model averaging solu-
tions based on our method converges faster than hand-crafted counterparts.

2 Related Work

Training machine learning models in a distributed setting is a widely studied
topic, and becoming more challenging with the increase in data and model com-
plexity. Literature [2I/8I3] on centralized approaches relies on a central node for
aggregating the updates from distributed workers. Lian et al. [9] have shown
that in high latency systems, the central node becomes a bottleneck due to high
communication cost. To eliminate this central bottleneck, they proposed a decen-
tralized model averaging scheme, where each worker performs model averaging
by communicating with their adjacent neighbors. Their solutions [9/T0] use vari-
ants of a structured topology based on a Regular Ring Lattice (RRL) graph and
link weights are set using the Metropolis-Hastings algorithm [I4]. However, these
handcrafted topologies exhibit poor spectral properties of the graph, which lead
to slow model averaging and degradation in the convergence behavior. Wang et
al. [16) through a unified analysis of centralized and decentralized approaches,
show that the averaging delay and sparse connectivity can adversely affect the
convergence behavior.
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The main reason for slow convergence of the decentralized model averaging
is the consequence of a poor choice of topologies and link weights. The choice
of setting link weights for a fixed graph topology are extensively studied in
[2I8/TT]. The convergence is guaranteed, if the averaging matrix is a doubly
stochastic transition matrix and has an eigenvalue of 1 and all other eigenvalues
are within a unit circle. Furthermore, convergence is inversely proportional to
the magnitude of the second largest eigenvalue [1]. Xiao and Boyd [I8] showed
for an unweighted graph, the best constant link weights are set based on the
spectral properties of the graph. Taking it further, they defined an optimization
procedure for finding optimal link weights for fast model averaging.

The literature for finding optimal link weights assumes that the graph topol-
ogy is already defined, but does not explore the possibility of finding it. In this
direction, Kar et al [7] proposed methods for finding ‘the regular Ramanujan
Graphs’, which are known to exhibit better spectral properties but are limited
to prime or prime power values of the number of direct connections. To over-
come this limitation they provided the R3L method to find a random regular
like Ramanujan Graphs by random rewiring of the edges. Their solution has
similar principles to a random rewiring approach of Watts and Strogatz’s model
(WS) [I7] to construct small-world graphs, but with better spectral properties.
Despite providing solutions superior to RRL approaches, both methods are not
studied in the context of decentralized parallel SGD. R3L and WS are based on
random edge rewiring heuristics and are not guided by the objective function.

In this paper, we define an optimization objective function, which can be
used to find a topology for fast model averaging in a decentralized parallel SGD.
Furthermore, we employed R3L and WS based averaging solutions and compare
them with RRL approach currently used in the literature. We also analyze the
link weights derived from the graph Laplacian and compare it with the usual
choice of Metropolis Hastings.

3 Decentralized Stochastic Gradient Descent as Average
Consensus Problem

In supervised machine learning, the training dataset D consists of M training
instances each represented by a tuple (x,y), where x is a feature vector and y
the corresponding label. A model §(x; 6), with model parameters 6 € R¥ can be
learned by minimizing the objective function,

0= argénin E(x,y)~Po (x,) [L(y,5(x;0))] (1)

where L(y,3(x;0)) is a loss function. Typical loss functions include the cross
entropy loss, squared loss, hinge loss etc. Stochastic Gradient Descent based
algorithms are most widely used to optimize the objective function in Eq.. In
a decentralized SGD, distributed workers V = {1,--- , N} represent computing
resources that hold local partitions of data D. Each worker holds a local copy 6,
and calculates the gradient in Eq. by sampling a mini-batch B, C D, from
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the local data partition D,,.
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The connectivity between workers is defined by an undirected graph topology
G = (V,€) with an edge set of the unordered pairs {u,v} € £. An edge means
that a pair of workers u and v can exchange information. The neighborhood of
each worker u is a set Ny, = {v : {u,v} € &, v € V} and its degree, deg(u) is
the total number of its neighbors i.e. deg(u) = |[Ny|. To update the local model,
each worker first averages the local models of the neighborhood and applies the
local gradients in Eq..

Ot = > Wbl —ngl (3)
ve{u}UN,

where W € RV*N g called averaging/weightin matrix. Eq. is known as
an average consensus problem, and the weight matrix W encodes the averaging
scheme for a sparse connectivity. Convergence of Eq. is possible if W exhibits
the property tli}IEOWt = (1/n)117 | i.e. for t steps averaging with W approaches

to a global average [I8]. This limit only holds if,
p(W — (1/n)117) < 1 (4)
T =1/log(1/p) (5)

where W is a doubly stochastic transition matrix, 1 denotes vectors of all ones
and p(-) is the spectral radiusﬂ of a matrix. The term p(W — (1/n)117) is called
the asymptotic convergence factor and Eq. defines its convergence speed.
Convergence of Eq. is possible if W has eigenvalue A; (W) =1 and Ao(W) >
A3(W) > -+ > Ay (W) lies in a unit circle. The asymptotic convergence is faster
for smaller values of the second largest eigenvalue modulus (SLEM) Agjem (W) =
max{|Ao(W)], [ (W)} 11,

3.1 Relationship between Network Topology and Averaging Matrix

The convergence of Eq. highly depends on the link weights encoded in W and
the structure of the connectivity of workers defined by graph G. The eigenstruc-
ture of the graph Laplacian provides an important tool for studying numerous
graph invariant properties including connectivity, expandability, diameter, mean
distance and so on [I4]. For a given graph G, its Laplacian L € RV*¥ is defined
as,

-1 {u,v} €€,
Ly, =4 deg(u) u=nv,
0 otherwise,

! Averaging matrix, weighting matrix and mixing matrix are interchangeably used to
refer to W
2 p(M) = max{|\|, X eigenvalue of M}
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For a connected graph the eigenvalues are enumerated as 0 = A;(L) < Ay(L) <
-+ < An(L), where the second smallest eigenvalue A2(L) is known as the alge-
braic connectivity of the graph [14].

Existing approaches for decentralized parallel SGD set link weights using a
simple approach based on Metropolis-Hastings algorithm. Hastings approach [2]
utilizes the local degree information of two incident nodes of an edge to assign
link weights as,

1

Waw = max{deg(u), deg(v)}’

Yu,v € V (6)

The graph Laplacian captures global information about the connectivity, and
can be used to set the constant edge weights for matrix W  as,

W=I-aL, acR" (7)

The eigenstructure of W can be expressed as \;(W) = 1 — a\;(L). The conver-
gence in Eq.([4)) is possible for o values in the interval (0,2/X2(L)) and the best
constant value [1§] is obtained as,

2

O S ND D) ®)

The Eq. explicitly relates link weights assignment with the spectral properties
of the graph i.e. to A\y(L) and Ax(L). Kar et al. [7] have shown that maximizing

the ratio %(II‘J)) is equivalent to minimizing Agem (W).
. A2 (L)

Aslemn (W) ~ 9

min Agjem (W) ~ max (L) (9)

Now using the fact that the convergence factor in Eq. depends on Agem (W),
therefore Eq.@ becomes,

A2 (L)
An (L)

min p(W — (1/n)117) ~ max (10)

3.2 Optimization Problem

Let e be the edge set defining the connectivity between workers and using re-
lationship in Eq., we can define the objective function with connectivity
constraints as:

.7 Az (L)
max fole) == max (L) (11)
with Y e, <C, CeR' (12)

over e, €{0,1} Yu,v eV, u<v (13)
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where e is the optimization variable, C' is the communication budget. Eq.
defines the communication constraint that limits the total amount of information
exchange at a given averaging step. For a homogeneous network, also focus of
this paper, C' could imply the total number of connections allowed in a network,
whereas, in a heterogeneous case, each communication link has an associated la-
tency and we can bound the total latency in the system. The direct optimization
of Eq. under constraints is infeasible as it leads to a combinatorial explosion
of the search space.

4 Optimal Network Topology Through Local Search

As we discussed in the previous section, direct optimization of Eq. is infea-
sible, therefore, in this section we will provide a local search algorithm guided
by the objective function to find a topology that provides fast model averaging.

4.1 Constructing Optimal Network Topology using Local Search
(LS-R2L)

We initialize the edge set as a regular ring lattice (RRL) topology, which is
constructed by taking a cycle and connecting each vertex with its hops =
1,...,|C/2] neighbors on the right and left. The resulting graph is connected and
satisfies the constraint in Eq.. We propose local-search-R2L (LS-R2L)
method that uses the local search for rewiring of edges guided by the objective
function Eq.. At each step, we search the local neighborhood for a set of pos-
sible solutions that improve the objective value, and move to that solution. The
local search is performed at lines 5—8 by rewiring a subset of edges and the effect
of each change is calculated. Then at line 12, a solution is picked with probability
proportional to the improvement in objective values. These steps are repeated
until a local minimum is reached or the maximum number of steps T is reached.

local-search-R2L(LS-R2L)(V, C, T, S, €o): rewire-edges(V, e):
e := construct-RRL(V, C) 1 {u,u'} ~
for t:={1,..,T} unif({u, v’ }Hey o = 1)
e: = exp(eg x t) 2 {v,v'}~
fe = fo(e) using Eq.(LI) unif({v, v’} e, v =1 A e\ {ew,, e, })
for s:={1,...,5} 3 €y =0,y =0
e, (u,u',v,v") := rewire-edges(V,e) 4 Cupw = 1,e4 4 =1
Afunt v = fe— fol€) 5 return e, (u,u’,v,0")

Puu’ v 2= max((), €t + Afu,u’,v,v’)

if all py .y v =0

return e, local minimum
p := normalize-to-sum-1(p)
€y’ Eup ~ Cat(e X e,p)
ey = 0,6y =0
Cy,v = 1,6u/71,/ =1
fE = fe + Afu,u’,v,v’

return e, not converged
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LS-R2L method is a simple method that performs a local search in the im-
mediate neighborhood to find a better solution among them. It is to be noted
that there are methods like Monte Carlo Random Walk, which perform a more
aggressive search. However, the LS-R2L method demonstrates the importance of
optimal topology search for fast model averaging and serve the purpose of this
paper.

4.2 Constructing Network Topology using Random Heuristics

We also like to discuss two more approaches based on random rewiring heuristics
that provide better model averaging behavior than RRL, but are interestingly
not employed in decentralized SGD. The first solution is proposed by Watts and
Strogatz [17] to construct a small-world graph. They proposed a mechanism of
converting an RRL to a small-world graph, by rewiring edges based on a given
probability p” € (0, 1]. Their objective is to maintain the high clustering of an
RRL, while introducing random long links to decreases the shortest path. If the
rewiring probability is low, the resulting topology is closer to an RRL and for
higher values it becomes a random graph.

The second method is proposed by Kar et al. [7], which is also based on
random rewiring heuristics that converts RRL to a Random Regular Ramanujan
Like graph. The algorithm runs for a sufficiently large numbers of steps to obtain
the solution.

In this paper, we refer to Watts and Strogatz’s model [I7] as WS and Kar et
al. [7] method as R3L. Both methods, R3L and WS, show an order of magnitude
better convergence properties than RRL, however, none of these methods are
employed for distributed SGD so far.

5 Experiments

In this section we address the following research questions to evaluate the pro-
posed techniques.

(RQ1) Do learned topologies exhibit better spectral properties than the exist-
ing approaches?

(RQ2) How does the model averaging solutions provided by learned topologies
impact the decentralized training of deep learning models?

(RQ3) Do Laplacian based link weights improve upon Metropolis-Hastings set
weights?

5.1 Convergence Properties (RQ1)

We assess the quality of topologies obtained form LS-R2L, R3L, WS and RRL
on three properties, i.e convergence factor, convergence time and the objective

value. Results in Fig.(1(a)) and Fig.(1(b)|) are obtained by varying the number
of nodes N = {32,48,...,256} and the node degree C = {4,6,...,14}. LS-R2L

performs best among the four methods on three properties, followed closely by
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R3L. On the other hand RRL shows an order of magnitude slower convergence
properties than the other three methods. We observed that for a constant node
degree C, convergence degrades as the number of nodes increases and for a fixed
number of nodes N, the convergence factor improves with the increase in the
node degree.
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Fig. 1. LS-R2L show better convergence factor, convergence time and the objective
values than other methods. We omit the RRL plots for the convergence time 7 as
values are an order of magnitude worse than others.

5.2 Performance Comparison (RQ2)

In this section, we empirically investigate the effect of learning an optimal topol-
ogy on the decentralized parallel SGD. For this purpose, we choose image classifi-
cation tasks and perform our evaluation on well-known CIFAR10 and CIFAR100,
which consists of 32x32 color images with 10 and 100 classes respectively and
split into H0K train-set and 10K test-set. The deep learning models and hyper-
parameters for our experiments are summarized in Table [I| Implementation is
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based on PyTorch and mpidpy. The experimental setup consists of “nl-standard-
32” instances on the Google Cloud Platform, where each instance has 32 vCPUs,
120 GB of memory, 250GB SSD storage, and 4 Nvidia P100 GPUs. The nodes
are connected through a 10Gbit/s Ethernet interconnect.

Table 1. Hyperparameters for Experiments

Dataset | Model batch,siz n n-schedule n_decay size
CIFAR10 Resnet20 [5] 32 0.1 {81, 122} 0.1 1MB
VGG16 [15] 64 0.1 {25, 50, 75, 100} 0.5  60MB
CIFAR100|_DensNet-40-12 [6] 64 0.1 {150, 225} 0.1 1MB
WideResnet-28-10 [19] 64 0.1 {60, 120, 160} 0.2 146MB

Methods: We compare solutions for decentralized SGD based on the following
methods:

e Complete is a reference topology for the global averaging (1/n)117, which
has worse communication cost (grows in O(N)).

e RRL: Baseline method based on a ring topology [9].

¢ RingRandom: Baseline method proposed in [10], where workers communi-
cate with a random neighbor within a ring.

e WS: Our proposed method based on Watts and Strogatz model [I7].

e R3L: Our proposed method based on Kar et al. model [7].

e LS-R2L: Our proposed method based on the local search guided by Eq..

Figures[2|a-b) summarize the results on the CIFAR10 datasets for Resnet20 and
VGG16 respectively. Figures c—d) summarize the results on the CIFAR100
datasets for DensNet-40-12 and WideResnet-28-10 respectively. The LS-R2L and
R3L based solution consistently show faster epoch-wise convergence for training
deep learning models. The WS based solution provides slightly degraded conver-
gence behavior. Structured topologies, such as RRL and RingRandom, perform
worse among all the methods and the differences become more pronounced when
increasing the number of workers from 32 to 64. This shows that the averaging
matrix generated by topologies exhibiting better spectral properties, provides
faster convergence on training deep learning models. The final test accuracies
achieved in the minimum number of iterations are listed in Table |2} which shows
superior performance of LS-R2L and R3L compared to other methods. LS-R2L
and R3L in most cases, reached best final accuracy values in the minimum num-
ber of iterations. The communication requirements for all the topologies are
same, as the latency’] grows in O(C) < O(N).

3 the warmup learning rate scaling technique as described in [4] is employed for sta-
bilizing the learning process for large batch sizes i.e Bglobal = IV X B.

* Communication in parallel SGD is dominated by the number of handshakes (latency)
required for transferring data, whereas the amount of data transfer (bandwidth re-
quirements [9]) remains the same.
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Fig. 2. Epoch-wise convergence behavior of different topologies on the CIFAR10 (a-b)
and CIFAR100 (c-d) training using 32 and 64 workers.

5.3 Edge Weights (RQ3)

In this section, we empirically evaluate the impact of setting link weights based
on the Laplacian approach in Eq.(7) and compare the results with Metropolis-
Hastings approach in Eq.@. Fig.(3) provides a relative comparison between
Hastings and Laplacian edge weights. We trained deep learning models on 64
workers using Hastings and Laplacian link weights. The figures show relative
performance in the form of relative gain, which is the ratio of training loss for
Hastings over the training loss for Laplacian weights. The values less than 1
means Laplacian weights are better than Hastings weights and vise versa for
values greater than 1. The Laplacian edge weights provide faster convergence
than Hastings edge weights for LS-R2L and R3L graphs, whereas WS and RRL
Hastings edge weights provide faster convergence. Overall LS-R2L and R3L with
Laplacian edge weights show faster convergence than WS and RRL with Hastings
edge weights, as shown in the previous section.

6 Conclusion

In this paper, we addressed the shortcomings in the choice of topology for model
averaging in a decentralized parallel SGD. The existing literature on decentral-
ized parallel SGD employs hand-crafted structured topologies. We show through
experiments that these solutions exhibit worse convergence properties that lead
to a suboptimal model averaging solution. We defined an objective function
based on the spectral properties of the graph Laplacian for finding an optimal
averaging scheme under constraints. As the objective function is intractable, we
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Table 2. Comparison of test accuracy for the CIFAR10/100 experiments, where the
numbers in () show the minimum iterations required to reach this accuracy. The best
accuracy reached in the minimum number of iterations is highlighted with 7.

I Reference Proposed Baselines
Model N | Complete LS-R2L R3L WS RRL RingRandom
Resnetoo 32 [91:73 (145)| 91,70 (132)|1 91.35 (125)|  91.70 (132)[91.14 (141) 90.85 (150)
64 190.90 (141) |+ 90.88 (126)| 90.88 (138)| 90.15 (126)]89.80 (142) 89.44 (150)
VaG16 32 | 91.77 (98) 91.62 (99)| t 91.43 (98) 91.40 (99)] 91.03 (99) 90.19 (100)
64 | 91.47 (98)] T 91.35 (98) 91.01 (99) 90.84 (98)] 89.77 (98) 88.74 (98)
DeneNet 32 |7142 (153)| 71.33 (160)| 71.37 (158) |t 71.21 (154)| 7055 (226) 69.65 (228)
64 |71.25 (229) |1 71.23 (226)| 70.87 (227)| 70.65 (226)]70.01 (240) 68.70 (246)
Wide- 32 |78.26 (133)| 78.06 (138)| 78.05 (130)| 77.81 (171)]78.05 (150) 77.18 (169)
Resnet 64 |78.15 (160) |+ 78.01 (162)| 77.35 (178)| 77.21 (171)]77.45 (178) 76.94 (178)

provided a local search based solution (LS-R2L) for finding a good solution.
The averaging matrix obtained through LS-R2L provides the best convergence
behavior on image classification benchmark datasets. As a future direction, it
would be interesting to apply these methods in heterogeneous systems, where
each link between a pair of workers has a different communication cost.
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