In Hindsight: A Smooth Reward for Steady Exploration

Hadi Samer Jomaa', Josif Grabocka', Lars Schmidt-Thieme'
! Information Systems and Machine Learning Lab, University of Hildesheim, Germany
{hsjomaa,josif,schmidt-thieme } @ismll.uni-hildesheim.com

Abstract

In classical Q-learning, the objective is to maximize the sum
of discounted rewards through iteratively using the Bellman
equation as an update, in an attempt to estimate the action
value function of the optimal policy. Conventionally, the loss
function is defined as the temporal difference between the
action value and the expected (discounted) reward, however
it focuses solely on the future, leading to overestimation er-
rors. We extend the well-established Q-learning techniques
by introducing the hindsight factor, an additional loss term
that takes into account how the model progresses, by in-
tegrating the historic temporal difference as part of the re-
ward. The effect of this modification is examined in a de-
terministic continuous-state space function estimation prob-
lem, where the overestimation phenomenon is significantly
reduced and results in improved stability. The underlying ef-
fect of the hindsight factor is modeled as an adaptive learn-
ing rate, which unlike existing adaptive optimizers, takes into
account the previously estimated action value. The proposed
method outperfoms variations of Q-learning, with an overall
higher average reward and lower action values, which sup-
ports the deterministic evaluation, and proves that the hind-
sight factor contributes to lower overestimation errors. The
mean average score of 100 episodes obtained after training
for 10 million frames shows that the hindsight factor outper-
forms deep Q-networks, double deep Q-networks and dueling
networks for a variety of ATARI games.

Introduction

Reinforcement learning (RL) has gained considerable atten-
tion over the past five years. In this field of research, an
agent attempts to learn a behavior through trial-and-error
interactions with a dynamic environment, in order to max-
imize an allocated reward, immediate or delayed. Broadly
speaking, an agent selects an optimal policy either by us-
ing an optimal value function, or by manipulating the pol-
icy directly. Thanks to the rich representational power of
neural networks, the high-dimensional input obtained from
real-world problems can be reduced to a set of latent rep-
resentations with no need for hand-engineered features. Re-
cently, a variant of Q-learning based on convolutional neu-
ral networks demonstrated remarkable results on a major-
ity of games within the Arcade Learning Environment, by

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reformulating the RL objective as a sequential supervised
learning task (Mnih et al. 2015). One of the contributing
factors to this approach is the presence of an experience
replay memory, which stores the transitions at every step.
This leads to the temporal de-correlation between experi-
ences, and hence upholds the i.i.d assumption which allows
stochastic gradient-based learning (Lin 1992). Experience
replay reduces the amount of episodes required for training
(Schaul et al. 2015) even though some transitions might not
be immediately useful (Schmidhuber 1991). A well-defined
optimal value function also plays a major role in RL tasks.
At its core, an optimal value function is basically an approx-
imation of the predicted reward given a state-action pair.
Higher rewards are hence achieved by navigating the envi-
ronment, acting greedily with respect to the value function.
In this paper, we reshape the reward as a weighted aver-
age between the expected discounted reward, for a sampled
state-action pair, and its previously selected action-value. In
one-step Q-learning, the loss, L9, is calculated based on
the temporal difference (TD) between the discounted reward
and the estimated action-value at any given state, Equation
1:

L9(6:) = (rj+7 max Quarger (5541, 0':07) = Q(s, a;; 6:)*
1
where s;, a;, and r; represent respectively the state, action,
and reward at sampled iteration j, with ~y as the discount fac-
tor, and 6; as the network parameters at current iteration ¢,
such that j < ¢, and 6~ as the target network parameters.
One drawback of this equation is that it only focuses on the
forward temporal difference, i.e. between the action-value
at the current sampled state, s; and the next state s;i.
It doesn’t however address how the decision process has
evolved between updates by ignoring action values at pre-
vious iterations. We leverage this information under the as-
sumption that it helps lower the variance of action-values
throughout the learning process, while concurrently main-
taining high rewards, and ultimately learn a better agent.
To that end, we introduce an additional term to the stan-
dard TD error, referred to as the hindsight factor, L (6;),
that represents the difference between the action-value of the
sampled state at the current iteration and its previously se-
lected (stored) action-value, obtained with network parame-

ters 0;:

LH(0:) = (Qsj,a5:0) — Qsjra5:07))° @)
The key observation is that the hindsight factor acts as regu-
larizer on the Q-network, unlike conventional regularization
techniques that force restrictions on the network parameters
directly. The hindsight factor can also be considered as an
adaptive learning step controller that penalizes large devia-
tions from previous models by incoporating the momentum
of change in action values across updates. Inherently, if the
hindsight factor increases, this means that the model param-
eters have significantly changed, leading to higher (or lower)
action-values. The introduction of the hindsight factor re-
structures the reward, as a weighted average between what
is expected, and what was estimated, ensuring that model
updates are carried out cautiously.
We summarize the contributions of the paper as follows:

e A novel extension to the optimal value function technique,
which leads to an overall improved performance

e Deterministic evaluation on a continuous state-space that
shows how the hindsight factor reduces the bias in func-
tion approximation

e Experiments on ATARI games that highlight the effect of
the hindsight factor

e Comparative analysis that demonstrates the effect of
adding the hindsight factor to multiple variations of deep
Q-networks

Background

A standard reinforcement learning setup (Sutton and Barto
2018), consists of an agent interacting with an environ-
ment £ at discrete timesteps. This formulation is based
on a Markov Decision Process (MDP) represented by
(S, A, R,T). At any given timestep j, the agent receives a
state s; € S, upon which it selects an action a; € A, and
a scalar reward r; € IR is observed. The transition function
T :S8x A — S generates a new state s;;1. The agents
behaviour is governed by a policy, 7 : S — A, which com-
putes the true state-action value, as

Qn(s,a) = Ex [Si=07'7"[S0 = s, Ao = a] , (3)
where v € [0, 1] represents the discount factor balancing be-
tween immediate and future rewards.
To solve this sequential decision problem, the optimal pol-
icy selects the action that maximizes the discounted cumula-
tive reward, 7, (s) € arg max, Q. (s, a), where Q. (s,a) =
max, Qr(s,a) denotes the optimal action value.
One of the most prominent value-based methods for solv-
ing reinforcement learning problems is Q-learning (Watkins
and Dayan 1992), which directly estimates the optimal value
function and obeys the fundamental identity, known as the
Bellman equation (Bellman 1957)

Qu(s,a) = E |rj +ymax Qu(sjt1,a")[So = 5, Ap = a]
a
“)
As the number of states increases, learning all action values
per state separately becomes computationally taxing, which

is why the value function is approximated via a paramatrized
network, resulting in Q(s,a) = Q(s, a;).

Deep Q-networks

Deep Q-network (DQN) is a model-free algorithm presented
by (Mnih et al. 2015), which learns the Q-function in a su-
pervised fashion. The objective is to minimize the loss func-
tion,

L?(oi) = Es,va(.)[(yj - Q(s,q; 91’))2}7 &)
with p(.) as the probability distribution over the action
space, and the target y; as the expected discounted reward,
Equation 6:

y; = FEy e Tj + ’Ynza/«x Qtarget(8/>a;9_) . (6)

In this approach, a target network, Qqrget(s', @, 0~) shares
the same architecture as the online network Q(s, a; 6;), how-
ever it is only updated after a fixed number of iterations
which increases the stability of the algorithm. The corre-
lation between sequential observations is reduced by uni-
formly sampling transitions of the form (s;, 541,75, a;) for
the off-policy from a replay buffer (Lin 1993).

Double Deep Q-networks

Double DQN (DDQN) (Van Hasselt, Guez, and Silver 2016)
is a variation of DQN, where the action selected and its cor-
responding value are obtained from two separate networks.
In other words, based on the sampled state s;, the action
is selected based on the greedy policy of the network, i.e.
ajy1 = argmaxy Q(sj41,a’,0), whereas the reward is cal-
culated based on the action-value of the selected from the
target network, resulting in the following target,

Y = Ego¢e [Tj + ’YQtarget(S/a Aj+1; 9_)] : %)

This comes as a solution to the overoptimistic value esti-
mates, which result from using the same network to select
and evaluate the action.

Dueling Network Architectures

Sharing similar lower level representation, the dueling ar-
chitecture (DUEL) (Wang et al. 2015) extends DQN by ex-
plicitly separating the representation of the state values from
the state-dependent action values. This allows the network to
understand which states are valuable agnostic to the action
selected, which is particularly important for setups where
the action does not have a major effect on the environment.
The action value is estimated as a function of two modules,
the action advantage module Adv, and the state-value V' as

expressed in Equation 8:
1
; =(A ; - —
Q(S7 a707a7 /8) < d/U(S’ a707 a) |Adv|

+V(s:0,08)

Yo Adv(s,a’; 0, a))

®)

with € as the shared parameters, 3 as the parameters of the
state-value module, and « as the parameters of the action
value module.

Other variations that have been proposed on Q-networks
include selecting an action based on the average of it

value over across previous networks (Anschel, Baram, and
Shimkin 2017) which preserves the original loss function,
and [s-regularization (Farebrother, Machado, and Bowling
2018) to avoid overfitting on the training environment.

The proposed modification to the existing Q-learning net-
works shares the same input-output interface, however, it
reformulates the existing loss function L2 (6;), where the
objective is to minimize the difference between the action-
value and the future discounted reward, by introducing the
hindsight factor L (6;) that adaptively manages reward ex-
pectation.

hindsight factor

L7 (0,) = (Q(sj.a5,05) — Qsja5560)° (9

In Hindsight

Hindsight is an extension of the conventional value itera-
tion techniques in reinforcement learning that considers the
previous performance of the network when calculating the
reward. In this supervised formulation, the target is calcu-
lated based on the forward directional temporal difference,
i.e. between the estimated action-value and the expected dis-
counted reward (future), Equation 1, dropping any use of
previous action-state value (past). To counter that effect, we
introduce the hindsight factor, Equation 9, to balance the
current action-value estimate, and prevent overestimation.
(Thrun and Schwartz 1993) Intuitively, this term represents
the confidence of the agent in previous actions. More specif-
ically, if the estimated action-value at current iteration ¢, is
much higher than the previously estimated action-value at
iteration j, ¢; = max Q(s;,a;;0;), given the same state
representation s;, then in hindsight action a; was not opti-
mal in the global sense, even though it was selected based
on greedy policy as a; = arg max,Q(s;, 6;). If on the other
hand, the historical temporal difference is small, then the
network is converging in the optimal direction, as given the
same state and the same action, the corresponding action
value is equally high.

The total loss would simply be a weighted sum between the
forward temporal difference, L” and the backward temporal
difference, L. If we expand the loss and factorize the com-
ponents, we end up with a new loss representation, Equation
10,

]

L(6;) =(r; + ymax Quarget ($j+1,a';07) —Q(s5, a;; 91‘))24‘

’_’y- 2
5(Q(s;,a5,0;) —Q(s;,a;;6:))

(10)
with § as the hindsight coefficient. The hindsight factor in-
herently restructures the target reward as a smooth trade-off
between the expected and the previously estimated reward.
This is derived by first expanding the loss, Equation 11,

L(6;) =i” — 29Q(s;, a5 0;) + Q(s;, a5 0:)°+

2 , (D
0y° —20yQ(s5,a;5;0;) + 0Q(s5,a;;6;)

since g and ¢ are simply constants, i.e. independent of 6;,
we can ignore them, which leaves us with Equation 12:

L(6;) = (1+8)Q(s, a;; 0:)* —=2(5+07) Q(s;, aj; ;) (12)
In order to complete the squares, we introduce the constant
(9 + 67)?, and divide by (1 +) to obtain the final loss as
Equation 13:

Y) 2

L(6:) = (Gg —Ussras:69) (13)

With this formulation, 7,, can be considered as the
smoothened reward, a balance between the current dis-
counted reward and the previous action-value. Notice that
the proposed model doesn’t introduce any additional com-
putations, as both loss terms LP and L share the same set of
gradients. which results in the following parameter update,
Equation 14:

91‘4_1 = 91 +Oz(7‘new — Q(Sj, CLj; 91))VQ1 Q(Sj, CLJ‘; 91), (14)
with « as the scalar step size.

Algorithm 1 in Hindsight Algorithm

1: Randomly initialize Q(s, a;0) and Qiarget(s,a;607)
2: Initialize modified experience replay buffer B

3: for episodes e = 1, M do

4: Initialize environment £

5 fort=1,7 do

6: Determine and Execute action a;

_ [max, Q(s;,a;0;), ifprob> e
*~ \random, otherwise
7: Receive reward r; and new state s; 1
8: Store experiences ($;, Sit+1, @i, Q(8i,ai56;),73)
in B

9: Sample a minibatch of experiences from B
10: Set target value ¢

. T, for terminal state s,
§ = J J+
rj + vy maxg Qurget(Sj+1,a;07), otherwise

with 7 as the index of the sampled observation
11: Update the network by minimizing

L(0;) = (§—Q(s,a;;0;))*+6(Q(s5, a;; 0,)—Q(s;, a3 0:))*

or,

L(0;) = (Tnew — Q(Sjvaj§‘9i))2

In order to implement this algorithm, we modify the experi-
ence replay buffer, B to accommodate the action-values of
the states. Hence at every frame, we store the transitions
(sj, Sj+1, a5, Q(s;,a;4;0;),7;) in the memory. The goal is
to improve the performance of the Q-function, by introduc-
ing updates that do not emphasize solely on the future dis-
counted reward, but also take into account not to deviate
from the values associated with decisions in the agent’s ex-
perience in older encounters, and reduces overestimation er-
rors.

= True Values
DQN Estimate
= DQN-HINDSIGHT Estimate
& sampled States

AV,

N

o

N

AN/

0
state

(a) True value and an estimate

=== DQN

Avyerage Error 0.322 DON-HINDSIGHT

Average Error 0.605

/}\\ S

o ! ~

1!

-1

Average Error 0.422 Average Error 0.468

/\///\/\/\

-6 -4 -2 0 2 4 6
state

(b) Bias in DQN as a function of state

Figure 1: Illustration of Overestimations

—— DDQN
DDQN-HINDSIGHT
Average Error -0.024
0 , | /

1

Average Error 0.0129

state

(c) Bias in DDQN as a function of state

Overestimation and Approximation Errors

One of the issues of function estimation based on Q-learning
is the overestimation phenomenon (Thrun and Schwartz
1993) that lead asymptotically to sub-optimal policies. As-
suming action-values are corrupted by uniformly distributed
noise in an interval [—¢, €], target values Would be overes-
timated by a value w1th an upper bound of ye 2= +1’ due to
the max operator, with -y as the discount factor and m as the
number of actions. Overestimations also have a tight lower
bound (Van Hasselt, Guez, and Silver 2016), which is de-

—= 1, with C' > 0. The DDQN approach reduces

overestimation, and replaces the positive bias with a nega-
tive one.

The effect of the hindsight factor on overestimation is
demonstrated in the following function estimation experi-
ment(Van Hasselt, Guez, and Silver 2016). The environment
is described as a continuous real-valued state-space with 10
discrete actions per state. Each action represents a polyno-
mial function, with a chosen degree of 6, fitted to a subset
of integer states, with two adjacent states missing; for action
agp, states -5 and -4 are removed, for action aq, states -4 and
-3, and so on. Each action has the same true value, defined
as either Q. (s,a) = sin(s) or Q.(s,a) = 2exp(—s2).

We are able to reproduce the experiment for DQN and
DDQN and obtain the exact overestimation values, pre-
sented in the original approximation (Van Hasselt, Guez, and
Silver 2016), as can be seen in Figure 1. Systemic overes-
timation is an artifact of recursive function approximation,
which leads to a detorioration of value estimates as the ac-
tion values are assumed true, when in fact they contain noise.
Introducing the hindsight factor maintains low bias in the
estimates, especially when applied to DQN. We also notice,
that even though the bias is slightly higher than DDQN, it
is indeed however much smoother, which translates into an
overall better estimation. However, we realize later that ap-
plying the hindsight factor to DDQN can in some cases lead
to an extremely cautious exploration within the game, and

rived as

Table 1: Summarized performance for 33 games

Method DQON DQN-H
Wins w.r.t all 2 4
Wins w.r.t counterpart 10 23
Score 676 2874
Method DDQN DDQN-H
Wins w.r.t all 2 2
Wins w.r.t counterpart 15 18
Score 1632 2593
Method DUEL DUEL-H
Wins w.r.t all 6 17
Wins w.r.t counterpart 9 24
Score 3247 4342

respectively lower rewards.

Experimental Results

We now demonstrate the practical advantage of adding the
hindsight factor to the Q-learning loss function. To do so, we
reimplement several variations of deep Q-learning methods,
namely: DQN (Mnih et al. 2015), Double DQN (Van Has-
selt, Guez, and Silver 2016), and dueling networks (Wang et
al. 2015). All the models are trained in TensorFlow (Abadi
et al. 2016) on a GeForce 1080 TI GPU, using the hyperpa-
rameters provided by (Mnih et al. 2015), with the average
runtime duration per baseline amounting to 30 GPU hours.
The proposed model modifies these existing architectures by
introducing the hindsight factor as an additional loss term,
and is referred to as (BASE)-H. As shown in Algrorithm 1,
the buffer is extended to accommodate the action-value per
state. We evaluated the proposed method on more than 30
ATARI games, which differ in terms of difficulty, number
of actions, as well as the importance of memory, i.e. pre-
vious state-action values. We do not report on the games
that did not achieve any significant learning for the speci-
fied number of frames. The results showcase the importance

Assault-v0 Amidar-v0 Breakout-v0
70
500 3.0
60
§ § § 2.5
g g0 g
2.0
& &40 &
9] [} % 7]
8 830 g
k) Ry 2 Ryl i
& 20 g1.0/
10!“ 0.5 ;,’
®
0.0 0.2 0.4 0.6 0.8 8.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
timesteps le7 timesteps le7 timesteps le7
Assault-v0 0 Amidar-v0 Breakout-v0
40 3
[0 [
E 230 2,
o o © v
> > > W Y W
c c c
2 220 21
9] O 9]
< < <
10 | 0
0.0 ’
0.0 0.2 0.4 0.6 0.8 8.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
timesteps le7 timesteps le7 timesteps le7

Figure 2: Performance curves for various ATARI games using variants of Q-learning techniques; DDQN(dark blue),DDQN-

H(green); DQN(red),DQN-H(cyan); DUEL(pink),DUEL-H(yellow)

of the hindsight factor under various settings, and its con-
tribution to an overall improved performance over the deep
Q-network counterparts. Table 1 summarizes the mean score
of 100 episodes after training for 10 million frames.

Figure 2 represents the performance curves of the base-
lines and the proposed approach for a selection of games.
The hindsight factor has a different effect on every approach
depending on the nature of the game. However, the results
are clearly indicative of the power of hindsight. Conven-
tional Q-learning techniques lead to an early rise in per-
formance, which is attributed to a more courageous explo-
ration, as compared to a delayed increase in the reward when
using the hindsight factor, attributed to the cautious explo-
ration. However, as the learning algorithm progresses, the
baselines, seem to plateau at a local optima, as the perfor-
mance remains consistent for several million frames.

As mentioned earlier, the hindsight factor models an adap-
tive learning rate controller, further discussed in the follow-
ing section. This is also realized experimentally, for exam-
ple in AMIDAR, when DQN performance detoriorates (in
red) at the final one million frames, whereas DQN-H keeps
on improving which is also a sign that introducing the hind-
sight factor prevents overfitting. Even for simple games such
as BREAKOUT, the relative difference in performance be-
tween the proposed approach and the counterpart baseline is
significant.

We also take a look at the values of the selected actions
using the hindsight method. Smoothing the discounted re-
ward by previous reward values turns out to have a great
impact on the action values. Throughout the training pro-
cess, the action-values selected by applying the hindsight

factor seem to increase at a steady (linear) pace with no signs
of convergance as the number of frames exceeds ten mil-
lion frames. The opposite can be said about the regular Q-
learning techniques. Overestimation in standard Q-learning
can be avoided with DDQN, where we notice that it results
in the lower set of action-values as compared to DQN and
DUELING. Nevertheless, these values are still higher than
their hindsight counterparts, especially at the early stages
of learning, which proves that there are still some reminent
overestimation inherent in DDQN.

The underlying effect The underlying effect of the hind-
sight factor is that it adaptively changes the learning rate, as
it establishes a direct dependance on the action value, un-
like exsiting adaptive optimizers such as ADAM (Kingma
and Ba 2014) and RMSProp (Hinton, Srivastava, and Swer-
sky 2012), which depend only on the evolution of the gra-
dients. To estimate the value of state-action pairs in a dis-
counted Markov Decision Processes, Equation 15 is intro-
duced (Watkins and Dayan 1992):

Qit1(s,a) =(1 — ai(s,a))Qi(s, a)+
a;(s,a) (ri(s,a) + 7y max Qi(s,0)), (15)

Target Reward

where «; represents the learning rate at iteration ¢ and s’
represents the next state resulting from action a at state s.
Given the hindsight factor, we replace the target reward with

Tnew»> Which leads to,
Qirr(5,0) = (1 - i(s,0)) Qu(s,0)+

% (ri(s,a) + T Qi(s',b) +0Q;(s,a)))
(16)

with j < . The effect of introducing Q;(s,a) is an adap-
tive state-action pair updates that dynamically changes over
time. Now if we replace (s, a) with Q;(s,a), i.e. the ef-
fect would be scaling down the learning rate by a factor of
1—_1%. Nevertheless, the learning rate would still be fixed and
does not adapt to the change in model parameters. We high-
light this effect in Figure 3 as we see that with a halved
learning rate results in a better performance for DQN and
DEUL, however still results in higher overestimation errors
and plateaus at an early stage. Reducing the learning rate
partially models the effect provided by the additonal loss, as
it is still independent of the action-values, and does not par-
ticularly help with overfitting. This is evident by the early
spike of the DQN at during the first two million frames of
training.

Asterix-v0

Action Values

0.0 0.2 0.4 0.6 0.8 1.0
timesteps le7

Figure 3: Performance curves for ASTERIX where the baselines
have lower learning rate. DQN-H(cyan), DDQN-H(green), DUEL-
H(yellow), DQN-H-HALF(red), DDQN-H-HALF(dark blue),
DUEL-H-HALF(pink)

Adjusting the Hindsight coefficient For the previous ex-
periments, we have fixed the hindsight coefficient § to 1,
and hence uniformly weighing the reward between the ex-
pected gain and historic achievement. In the following, we
juxtapose the performance obtained by setting § = %, and

0 = —%. First we notice that if we set the hindsight co-

efficent to —%, the agent is prone to diverge almost imme-
diately, so no results are shown. On the other hand, setting
the hindsight coefficient to %, as expected, results in slightly
higher action values that is caused by the decreased depen-
dence of new action-values on the history, and hence allow-
ing for more overestimation, Figure 4. A lower hindsight co-
efficient has a positive impact at the early stages of learning
when the agent is still exploring the environment, however,
as the number of frames increases, the agent becomes prone
to overfitting, and ultimately results in a lower performance.

Optimizing the Q-function using the hindsight factor as a

Spacelnvaders-v0 Seaquest-v0

=
=
u o

——|

\

A

(7 0.2 0.4 0.6 0.8 1.0 80 0.2 0.4 0.6 0.8 1.0
timesteps 1e7 timesteps 1le7

=
o
IS

[N}

Action Values
Action Values
w

'

co N & O ®
-

Figure 4: Performance curves with § = 1 and § =
%; DQN-H(cyan), DDQN-H(green), DUEL-H(yellow), DQN-H-
HALF(red), DDQN-H-HALF(dark blue), DUEL-H-HALF(pink)

regularizer to smoothen the expected reward turns out to im-
prove the performance well before the action-values seem
to converge. However, with some games we notice that the
performance is negatively effected by this formulation. This
might be attributed to the penalty which the hindsight fac-
tor indirectly applies on exploration. In addition, it is worth
noting that as the hindsight coefficient decreases to 0, the
action-values start to come closer to their counterpart mod-
els.

Conclusion

Existing Q-learning techniques aim at maximizing the ex-
pected reward, by minimizing the difference between the
current action-value and the expected discounted reward.
However, they offer no insight into the past as the progress
of the estimator, measured through the difference between
the current action-value and the action-value at the same
state at a previous iteration, is ignored. In this paper, we pro-
posed the introduction of the hindsight factor, an additional
loss function that shares the same gradients of the predic-
tion network, and hence incurring no extra computational
efforts. The hindsight factor acts a reward regularizer, forc-
ing the reward to be more realistic and hence avoiding over-
estimation. The new reward is a trade-off between the ex-
pected discounted reward, and the historic temporal differ-
ence. Through a deterministic function estimation problem,
we are able to prove that by adding the hindsight factor to
exiting function estimators via Q-learning, we are able to re-
duce the average error, and produce a stable estimation. The
underlying effect of the hindsight factor is translated as an
adaptively controlled learning rate that outperforms the re-
spective base models. We have shown that in general outper-
forms deep Q-networks, double deep Q-networks and duel-
ing networks in 74%, 58%, and 77% of the games, respec-
tively.

Moving forward, it would be interesting to study the effect
of introducing an adaptive hindsight coefficient, based on
the absolute reward improvement across frames.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: a system for large-scale machine learn-
ing. In OSDI, volume 16, 265-283.

Anschel, O.; Baram, N.; and Shimkin, N. 2017. Averaged-
dqn: Variance reduction and stabilization for deep reinforce-
ment learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, 176-185. JMLR.
org.

Bellman, R. 1957. Functional equations in the theory of dy-
namic programming—vii. a partial differential equation for
the fredholm resolvent. Proceedings of the American Math-
ematical Society 8(3):435-440.

Farebrother, J.; Machado, M. C.; and Bowling, M. 2018.
Generalization and regularization in dqn. arXiv preprint
arXiv:1810.00123.

Hinton, G.; Srivastava, N.; and Swersky, K. 2012. Lecture
6a overview of mini-batch gradient descent. https://class.
coursera.org/neuralnets-2012-001/lecture. Online.

Kingma, D. P, and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Lin, L.-J. 1992. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
learning 8(3-4):293-321.

Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Technical report, Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.

Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Schmidhuber, J. 1991. Curious model-building control sys-
tems. In Neural Networks, 1991. 1991 IEEE International
Joint Conference on, 1458-1463. IEEE.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Thrun, S., and Schwartz, A. 1993. Issues in using function
approximation for reinforcement learning. In Proceedings
of the 1993 Connectionist Models Summer School Hillsdale,
NJ. Lawrence Erlbaum.

Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with double g-learning. In AAAI, vol-
ume 2, 5. Phoenix, AZ.

Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanc-
tot, M.; and De Freitas, N. 2015. Dueling network ar-
chitectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.

Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279-292.

