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Abstract—Parking availability prediction is rapidly gaining in-
terest within the community as an operationally cheap approach
to identifying empty parking locations. Parking locations accom-
modate multiple vehicles and are rarely completely occupied.
This makes it difficult to predict occupied locations without
the augmentation of external data, as the data becomes highly
imbalanced. Existing forecasting models neither encapsulate the
heterogeneous modes/types of parking data, nor can handle
sparse measurements. The problem is formulated as a binary
forecasting task, based on the parking occupancy information.
In this paper, we propose a new convolutional hybrid model that
is capable of capturing long term temporal dependencies and
outperforming conventional time-series forecasting benchmarks
on two types of parking data, namely on- and off-street parking.
The performance of the proposed model is further boosted by
integrating external features such as location identifiers, as well
as local/global statistics. An extensive experimental evaluation
proves that the proposed model is capable of handling sparse
data by maintaining high precision and recall across different
sparsity levels, which are controlled by empirically adjusting the
occupancy cut-off threshold, as well as for multiple horizons,
with an average F1 score improvement of 4.13% over strong
off-the-shelf baselines.

Index Terms—Data science, parking availabiltiy, time series
forecasting, Recurrent neural networks, convolutional neural
networks

I. INTRODUCTION

The availabilty of a parking location plays a major role in
private car based trip decisions, and is governed by multiple
factors including the time of day [1], the location of the target
destination [2], traffic [3], weather [4], local events [5], safety,
etc. This can be a demanding task in big cities, specifically in
those where drivers are not accustomed to. Finding a place to
park only increases in difficulty with time, as studies in 2013
suggested that around 25 billion car trips occur annually, with
every car spending on average 162 hours a week being parked
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[6]. Searching for the ’right’ spot, epecially in urban areas,
leads to higher rates of congestion, as drivers tend to reduce
their speed [7] as they approach an on-street parking spot, or
when cruising the block to explore their options. More than
one-third of traffic in big cities is caused by searching for a
parking space [8]. Circling around also harms the environment,
with emissions leading to higher rates of air pollution, not to
mention the extra expenses accumulated on the driver, all the
while leading to increased stress levels, in the search for the
least possible walking distance.
Facilitating the parking process has led to the development of
several parking guidance systems, that help the user identify
available parking spots, along with other functionalities such
as e-payment [9]. Most of the existing solutions depend on
the continous collection of sensor data, in an Internet-of-
things framework, where sensors are spread around metroplo-
tian cities to indicate the occupancy of the respective slots.
However, due to the expensive operational cost (US $2500
[10] to setup a single slot), such solutions [11], [12], lack
scalability.
The availabilty of public parking data encourages the search
for cheaper solutions that model parking occupancy as a
regression problem, that aims to predict the current occupancy
rate of a specified parking location. With the significant repre-
sentational power of neural networks, feed-forward neural net-
works show impressive performance [13]–[15]. The inherent
seasonality present in data is also leverage with autoregressive
models, that can be based on multivariate [16] or univariate
[17] input.
Existing state-of-the-art methods focus on recurrent neural
networks for dynamic modelling, as well as heterogenous data
for improved parking occupancy prediction. They also tackle
the problem as a regression task, which in terms of parking
recommendation, is not as critical as the ability to predict
the status. Such methods require more computational power,
leading to slower training, and do not handle datasets with
significant imbalance well. We reforumulate the parking avail-



ability problem as a binary forecasting task, instead of a simple
regression task. The assumption behind it is that drivers, in
general, are not particularly interested in finding the percentage
of availability in a given location; they are only interested in
knowing whether or not they will be able to find an available
spot for their automobile. It is important to note the distinction
between a parking location and a parking spot. The former
represents a geographic area, which can be on-street or off-
street parking, that accommodate multiple cars, with each car
occupying exactly one spot. The rate of occupancy is hence
calculated based on the parking lots occupied, with respect to
the total number parking lots at a given location. Attempting
to model the dynamics of multiple parking locations can
be tricky, as different locations can display different trends
whereas training one model per location leads to overfitting
and the averaged evaluation can mask the true location-based
performance of the model.
In this paper, we propose a hybrid convolutional model that
is able to predict the status, i.e. occupied or free, for multiple
locations. The status of the location is set by an empirical
threshold that mirrors our confidence in the groundtruth data.
As far as we know, we are the first to propose such a solution,
that captures the low-level temporal dynamics of the system
using convolutional layers, and takes advantage of the location,
as well as relevant time information, i.e. year, day, month, etc.
The proposed model also exploits seasonality of the parking
locations, by augmenting a set of statistics for every time step.
Our model is tested on BANES1 public dataset, as well as
a private dataset provided by PayByPhone2. The results, as
compared to LSTM’s and Gradient Boosted Decision Trees
highlight the performance of our models, and their ability
to scale over long horizonsm, with an average F1 score
improvement, across 36 distinct design paramaters, of 1.31%
and 6.94%, respectively.

II. RELATED WORK

Existing smart parking solutions are diverse [18], and can
depend on user-provided data, for example: Parkopedia3 or
ParkNav4, or parking data acquired from sensors, however,
centralized system-based approaches fall outside the scope of
this paper. We focus here on parking availability prediction,
which has also received significant attention recently. Other
models have also been proposed, which tackle availability
modeling as a Markov chain [19]–[21], while others use
clustering techniques [22]. Solutions that are based on arti-
ficial neural networks are also investigated. In [17], parking
occupancy is first evaluated by grouping multiple parking
spots together to form a parking location, and trained on
feed forward network with two hidden layers. In [13], the
proposed solutions includes an MLP with eight hidden layers
on five-minute windows trained to predict 30 minutes into the
future (each timestep represents one minute). In [15], they

1https://github.com/BathHacked/documentation/wiki/Bath-Car-Park-Data
2https://www.paybyphone.co.uk/
3https://www.parkopedia.com/
4http://parknav.com/

use an input of 1383 dimensions, that include binary features
representing events that intuitively influence parking behavior
as well as meteorogical information such as the temperature
and rainfall.
Perhaps the closest approach to our model is proposed in
[23]. In their work, parking availabilty is modeled as an
integration of three major components, closeness, periodicity
and general influence. The dynamics of the historical data are
captured by two LSTMs that are concatenated with engineered
features, i.e. weather, holidays, event, in an feed-forward
neural network. The dataset and proposed feature used by
[23] are not publicized, which prevents a fair comparison
against that method. The status of the parking location is set
empirically as well, depending on the point of interest.
In [24], the spatial aspect of temporal data is leveraged
in a deep neural network based model. The architecture is
composed of a spatio-temporal component, that captures the
dynamics of the data via convolutional layers, and a global
component that takes in external features, before fusing their
respective outputs for regression. Another spatio-temporal
approach is suggested by [25] for traffic prediction. The ap-
proach also capture spatial dependencies of the streets using a
convolutional layer, while modeling the temporal dependencies
using LSTMs. A diffusion convolutional recurrent network is
proposed in [26], which is essentially consists of an encoder-
decoder setup coupled with a sequence-to-sequence learning
framework.
In contrast to existing models that require features collected
from different sources, we propose a model that relies only
on the univariate parking occupancy distribution. The convo-
lutional approach is also better suited for sparser data, scales
better for longer horizons, and requires much less training
time.

III. MODEL

Parking availablity prediction is formulated in this paper
as a time series binary forecasting problem. Given the time
window of occupancy rates, Xi

t at a specific parking location,
i ∈ P where P represents the total number or locations, and
time t, the objective is to predict at horizon h, the status of
that location, i.e. occupied or free. The status is set empiri-
cally by an occupancy-threshold, which we investigate in the
Experiments Section. The problem is therefore formulated as

yit+h = Ω(Xi
t |θ) (1)

where i corresponds to a specific parking location, and θ
represents the parameters of model Ω.

For our model, we use multiple one-dimensional convo-
lutional layers to extract low-level representation from the
time-series. For simplicity, we drop the location index as the
method is trained on all parking locations uniformly. Let Xt =
{x1, x2, · · · , xt}, with xi ∈ [0, 100] be a univariate sequence
that represents the percentage of the total places in location
being occupied, Xt ∈ R1×t and yt+h the corresponding scalar
representing the availability status at horizon h for any parking
location i ∈ P . Given a 1 ×m filter with weights w and the



input to a convolutional layer l being xli, we can compute the
output of the convolutional layer as

x
(l+1)
i,j,k = σ

(
m−1∑
r=0

wr,kx
(l)
i,j+r,k

)
(2)

with σ as a non-linear function, and k refers to the feature
map.
Convolutional layers are capable of capturing the dynamic
changes in the historical data. At the final layer, we apply
global max-pooling across all the feature maps in order to
keep the most prominent values. This representation, Q, is
then introduced into a fully connected layer, with a sigmoid
activation function, to predict the output probability. The
model is split into two parts, the convolutional layer, which
extracts temporal features from the time windows, and the
fully connected layer that generates the output,

yt+h = Ω(Q|θ) (3)

Qi =
1

J

J∑
j=1

xLi,j,k (4)

1) Location: Motivated by the first Law of Geography:
”near things are more related than distant things” [27], and
the fact that parking locations follow distinct parking patterns,
we introduce the location identifier, Li, as a one-hot encoded
vector, to the latent representation obtained from the convo-
lutional layers. This is done by appending the convolutional
layer output with the location identifier, forming an extended
representation. This enables the model to identify location-
specific transitions, making the prediction yit+h conditioned
on the location as well as the historical data,

yit+h = Ω([Qi, Li]|θ) (5)

2) Statistics: Another aspect to parking is that it contains
an inherent seasonality. People tend to park in the most
convenient places, specifically those that they are accustomed
to. To capture this seasonality, we compute the statistics of
bins; each bin consists of five minutes and represents the
smallest time unit in the processed series, taking the mean,
maximum and variance across: (a) bins, (b) [bin,hour] pairs,
(c) [bin,weekday] pairs, and (d) [bin,hour,weekday] tuples,
up until the previous day of the pair/tuple in question, as
presented in Figure 1. Statistics also include one-hot encoded
time information. These statistics can be utilized in two ways,
either by being a part of the input time-series, i.e. changing
Xi ∈ R1×t from a univariate series to a multivariate series,
Xi ∈ R1×t×s where s is the number of statistical values, or
by adding the statistics of the target point as part of the input,
much similar to what is done at the location level, Figure 2,
leading to a prediction multi-model feature fusion model of
the form,

yit+h = Ω([Qi, Li, Si]|θ) (6)

Fig. 1: Statistics

Fig. 2: Time series modeling with historical data; The features
with disconnected borders are introduced as an extension to
the base model.

IV. MODEL ARCHITECTURE

The time series are trained in a convolutional block with
four one-dimensional convolutional layers with a feature map
size of 64 , 1× 3 kernels, and ReLU activation functions. We
apply a global max-pooling layer on the final feature map.
The corresponding representation is then followed by two fully
connected layers of size 512 and 256 respectively.
The extended models, which include location and/or statistical
information, are set-up by simply appending the additional
information to the output of the convolutional block, as shown
in Figures 2.
As this is a binary forecasting problem, we optimize the model
by minimizing the binary cross-entropy loss, prediction multi-
model feature fusion model of the form,

CE = −
P∑
i

T−h∑
t

yi,t+h log(ŷi,t+h)+(1−yi,t+h) log(1−ŷi,t+h)

(7)
where yi,t+h represents the ground-truth and ŷi,t+h represents
the predicted status at a location i at horizon h.

V. EXPERIMENTAL EVALUATION

In this section we describe how the performance of the
proposed model is evaluated for binary time-series forecasting.



A. Datasets

1) BANES Historic Car Park Occupancy: The publicly
available BANES Historic Car Park Occupancy dataset in-
cludes occupancy rates of 8 different off-street parking houses
in London, which are located next to each other. The data
is updated in incremental steps of five minutes, a more
meaningful resolution than one minute updates, in parking-
related problems. We refer to these five-minute updates as
bins throughout the rest of the paper. Figure 3 shows the
kernel density distribution, which represents the probability
distribution generated by the data, for both off- and on-street
parking.

2) PayByPhone Parking Data: PayByPhone, PbP, is a park-
ing assistant application that facilitates payment transactions
at specific parking locations. As a user/driver, you specify the
parking lot as well as the expected duration on a minute-based
resolution before parking. This transaction is then registered
and saved in the database. Each parking lot has a unique ID
and a street ID, that is shared across neighboring parking lots.
To unify the data representation with the off-street parking
data, we first expand the transactions over the entire day before
grouping the parking lots together based on the street ID.
We then calculate the respective occupancy of every street.
Due to the fact that some cars leave the designated spot
before the termination of the pre-allocated time, transcations
can overlap and lead to an occupancy of more than 100%.
Setting a maximum of 100% occupancy rate is also part of
the preprocessing. Finally, the data is aggregated over five-
minute bins. The data supplied by PayByPhone also includes
eight on-street locations with more than 1 million transactions
that span more than two years in Vancouver, Canada.

(a) Off-street Parking (b) On-street Parking

Fig. 3: Gaussian Kernel Density Estimate

B. Protocol

We trained our models using TensorFlow on the datatsets
described above, independently, using a batch size of 64, a
learning rate of .0001, and an AdamOptimizer [28]. We trained
the models on two GeForce 1080 TI GPUs, and training
ended when no improvement was detected on the validation
set for 20 iterations. The same hyperparameters were used to
train all models. For comparison, we implemented gradient
boosted decision trees using the XGBOOST [29] library, and
an LSTM with 128 neurons. The metrics used to evaluate
the models are precision, recall and F1-score. Throughout the

experiments, we investigate the performance over 6 different
horizons: 5 minutes (1 time step ahead), 15 minutes (3 time
steps ahead), 30 minutes (6 time steps ahead), 1 hour (12
time steps ahead), 2 hours (24 time steps ahead), and 3
hours (36 time steps ahead), as well as two history lengths,
specifically: 4 and 8 hours. We also ran the same experiments
with three different occupancy-thresholds. The threshold is
set empirically to control the value at which we consider
the parking location to be fully occupied. This threshold is
set as a, 50%, 75% and 90% precautionary measure, that
takes into consideration external factors that are not foreseen
in the data itself, which might include illegal parking, non-
digital monetary transactions, etc. The higher the threshold,
the sparser the occupancy distribution.
As mentioned earlier, this results in an imbalanced dataset,
which is highlighted in the bar graphs of Figure 4.

(a) Off-street Parking (b) On-street Parking

Fig. 4: Sparsity for parking.

C. Baselines

We compare our proposed model with two strong baselines.
The comparative figures presented later in this section are
between the baselines and the simple convolutional model
proposed, where all three models take as an input a univariate
occupancy window.

1) Gradient-boosted decision trees: Gradient-boosted deci-
sion trees (GBDT) is a widely adopted algorithm within the
field of time-series forecasting. The goal of this approach is
to choose a classification function F (x) to minimize the sum
of a specified loss L(yi, F (xi)), where prediction multi-model
feature fusion model of the form,

Foptimal = min
F

N∑
i=1

L(yi, F (xi)) (8)

. This approach results in a prediction model in the form
of an ensemble of weak prediction models. The algorithm is
provided as an open source python library, that demonstrates
fast and efficient learning.

2) Recurrent Neural Networks: Recurrent neural networks
are an extenstion of deep neural networks, that is capable of
handling data of sequential nature. We use long short term
memory cells, LSTM, a variant of RNNs that are better suited
to capture the temporal dependencies in time-series, where
short- and long-term temporal dependencies exist. An LSTM
consists of a forget gate layer f , an input gate layer i, and



an ouput gate layer, o. Unlike feed-forward neural networks,
LSTMs introduce recursive connections between hidden layer
activations. A forward pass of an LSTM unit is summarized
by the following equations,

ft = σg(Wf · [ht−1, xt] + bf ) (9)

it = σg(Wi · [ht−1, xt] + bi) (10)

ot = σg(Wo · [ht−1, xt] + bo) (11)

ct = ft � ct−1 + it � (tanh(Wc[ht−1, xt] + bc)) (12)

ht = ot � tanh(ct) (13)

where W and b represent the weights and the bias associated
with the indexed layer, respectively, whereas σg is the sigmoid
activation function. The LSTM cell state is represented by c
and the hidden units by h.

D. Results and Discussion

In this section, we will discuss the difference in performance
between our proposed model and the baselines independently.
The results show that our proposed model outperforms the
gradient-boosted decision trees as well as recurrent neural
network in more than 60% of the design parameters, with
an average F1 score improvement of 6.41% and 1.31% re-
spectively. Figures 5 represents the difference in performance
between the proposed convolutional model and GBDT across
two different time steps, 48 time steps (4 hours) and 96 time
steps (8 hours) for the aforementioned thresholds.
We notice that the difference in F1-score, which defines
the harmonic mean between precision and recall, increases
as the horizon increases. The performance scales similarly
in both datasets. Although GBDT demonstrates competitive
performance with horizons up to 15 minutes, i.e. 6 time steps,
for longer horizons, its performance falls around ∼20%. We
also notice that the immediate history, represented with the 4
hours, performs better than an 8 hour time frame. This can
be expected, since in parking, more immediate behavior can
be more informative than distant behavior, due to the dynamic
nature of traffic.
For the off-street parking data, provided by BANES dataset,
we notice that as the cut-off threshold increases, our model
demonstrates higher performance, unlike GBDT which deto-
riorates as the data becomes sparser. On the other hand, for
on-street parking, provided by the PbP dataset, our proposed
model and GBDT fare similarly with long horizons and sparser
data.
If we focus on recall, Table I, which in this scenario, represents
the percentage of predicted occupied spots that were indeed
occupied, we see that as the data becomes sparser for on-street
parking, the proposed model and GBDT demonstrate similar
behavior, however for off-street parking, our method clearly
beats GBDT. The more immediate history results in overall
better performance as well, the blue column is always higher
than the orange column.
Finally by investigating the precision, Figure 6, which in this
scenario, represents the percentage of predicted free spots that

TABLE I: Average difference in Recall with GBDT

Horizon Timesteps Threshold On-street Off-street

Less than 30 Minutes 4 Hours 50% 0.03 -0.68
Less than 30 Minutes 8 Hours 50% -4.56 -1.25

Less than 30 Minutes 4 Hours 75% 7.10 -0.41
Less than 30 Minutes 8 Hours 75% 3.79 -1.32

Less than 30 Minutes 4 Hours 90% 2.51 -0.42
Less than 30 Minutes 8 Hours 90% 1.90 -1.57

More than 1 Hour 4 Hours 50% 36.31 3.72
More than 1 Hour 8 Hours 50% 36.37 1.84

More than 1 Hour 4 Hours 75% 13.46 14.45
More than 1 Hour 8 Hours 75% 11.72 11.52

More than 1 Hour 4 Hours 90% 2.42 23.73
More than 1 Hour 8 Hours 90% 1.59 23.00

were indeed free, our method outperforms GBDT in most of
the off-street parking settings. We also notice that for on-street
parking, the precision of our improves in comparison as the
horizon increases.

(a) On-street (b) Off-street

Fig. 5: Difference in F1-score with GBDT

Moving the discussion to the difference between the pro-
posed model and the LSTM with 128 hidden units, Figure 7,
clearly reflects that the proposed model behaves differently as
a function of sparsity and horizon. In on-street parking data,
with a threshold of 50%, we outperform LSTMs on longer
horizons, whereas for a threshold of 90%, the proposed model
is better at handling sparser data. For off-street parking, our



(a) On-street (b) Off-street

Fig. 6: Average difference in Precision with GBDT

approach demonstrates competitive performance, especially at
longer horizons, with an average variation in F1-score of ∼3%.
From Figure 8 and Table II, we realize that LSTMs are inclined
to predict more positives, i.e. occupied positions, whereas
our proposed model is more conservative. This assumption
is based on the results that highlight a higher difference in
precision as compared to a lower difference in recall. Overall,
our proposed approach is better suited at handling sparser data
for longer horizons.

(a) On-street (b) Off-street

Fig. 7: Difference in F1-score with LSTM

TABLE II: Average difference in Recall with LSTM

Horizon Timesteps Threshold On-street Off-street

Less than 30 Minutes 4 Hours 50% -2.24 -0.16
Less than 30 Minutes 8 Hours 50% -6.11 -0.28

Less than 30 Minutes 4 Hours 75% 1.83 -0.67
Less than 30 Minutes 8 Hours 75% 0.11 -1.30

Less than 30 Minutes 4 Hours 90% 14.86 -1.54
Less than 30 Minutes 8 Hours 90% 18.48 -2.15

More than 1 Hour 4 Hours 50% -15.08 -0.50
More than 1 Hour 8 Hours 50% -18.58 -1.70

More than 1 Hour 4 Hours 75% -7.74 0.68
More than 1 Hour 8 Hours 75% -8.19 -0.51

More than 1 Hour 4 Hours 90% -44.06 0.47
More than 1 Hour 8 Hours 90% -15.62 0.90

(a) On-street (b) Off-street

Fig. 8: Average difference in Precision with LSTM

E. Ablation Study

We conducted an ablation study to highlight the importance
of statistical features and location identifiers in modeling the
temporal dependencies of parking data. We use the following
models: (a) univariate time-series without any statistical or
location data, H1, (b) univariate time-series with location
identifier, HL, (c) univariate time-series with statistics of the
point at the horizon, HS1, (d) univariate time-series with both
statistics of the target point and the location identifier, HSL,
(e) multivariate time-series, where the statistics are appended
as additional channels to the occupancy distribution, plus the
location identifier, HS2L, and finally, (f) multivariate time-
series with the location identifier and the statistics of the target
point, HS3L. Figures 9, 10, and 11 represent the average F1-
score of on- and off-street parking for multiple horizons across
the two time-windows tested.
Immediately we notice that as the horizon increases, the
performance of all the models decreases. At first, all models
perform relatively similar, with F1-scores above ∼90%. It is
not until the horizon exceeds one-hour that we start noticing



(a) On-street (b) Off-street

Fig. 9: Ablation study for a threshold of 50%

a considerable difference in performance.
Appending a location identifier to the convolutional model
consistently achieves better results. This comes as no surprise
since parking locations are unique, and every parking spot
follows a specific temporal behavior depending on its geo-
location, number of spots, neighboring parking locations, etc.
Hence, augmenting the latent temporal representation with
location identifiers introduces a bias in the activation, and
boosts the performance of the entire model.
Appending statistical features improves the overall perfor-
mance as well. As mentioned earlier, the statistics include
minimum, maximum, and variance of the bins, as well as
one-hot encoded time features of the target point. These
statistics capture the seasonalities and trends that are present in
parking behavior. Using statistics of the target input, without
additional information, HS1, outperforms location identifiers.
This might be the case due to the fact that these statistics
provide a meaningful insight into the target point, as opposed
to the location itself, which gives insight to the specific
parking location as whole.Target statitstics are significantly
better when as the data becomes sparser.
We notice finally that augmenting all of the statistical with
location identifiers, HS3L, achieves the best amongst all
variations. This multi-modal feature fusion introduces more
diversity into the data, and allows the model to capture the
dynamics of the data on both spatial aspect and the local
temporal aspect.

VI. CONCLUSION

Parking availability prediction is an emerging topic that is
gaining more and more interest among companies with access
to such traffic data. Conventional time-series forecasting ap-
proaches result in good performances for immediate horizons,
however, they are not capable of maintaining high F1-score
across all horizons. In this paper, we propose a new hybrid
convolutional approach that outperforms time-series forecast-
ing benchmarks, namely gradient-boosted decision trees and
recurrent neural networks for more than 60% of the design
parameters, with a respective average improvement of 6.41%

(a) On-street (b) Off-street

Fig. 10: Ablation study for a threshold of 75%

(a) On-street (b) Off-street

Fig. 11: Ablation study for a threshold of 90%

and 1.31%. We show that our model is capable of handling
sparse data, with less than 1% of the data being occupied, as is
evident by the difference in the F1-score. The hybrid approach,
which builds on top of the convolutional layer by appending
location and/or statistical features, improves the performance,
especially at longer horizons.
The training is agnostic to any type of external data that might
effect the traffic behavior, such as the weather or a local event.
Future work will focus on data augmentation, and to improving
the convolutional feaure extractor. It would also be interesting
to investigate the effect of limiting the horizondata the training
data to the transcations are registered. This would drastically
reduce the training data, however it would be more realistic
as it will be trainined to predict for horizons that are based on
real customer preferences.
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