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ABSTRACT
This paper introduces an innovative solution to the joint Order
Batching - Order Picking Planning Problem. Previous research on
this field has mainly focused on solving the two problems separately.
Failing to consolidate the two components, however, this approach
leads to sub-optimal solutions. In this work we propose a Genetic
Algorithm for Joint Optimization (GAJO), which optimizes the
integrated problem. Thorough experimentation shows GAJO to
be both more effective and faster than the baseline models.
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1 INTRODUCTION
In a typical warehouse, the order picking process consists of two
major components: the task of travelling through the warehouse to
retrieve the merchandise and that of finding efficient groupings of
orders to minimize the incidence of redundant picking sub-tours.
The global objective, which is the minimization of the total walking
distance across all orders, therefore consists of two sub-targets:
first efficiently batching the orders together, combinatorial problem
defined in the literature as the Order Batching Problem (OBP),
second finding the shortest possible picking path for the items of
every batch of orders, known in the literature as the Order Picking
Planning Problem (OPP).While the separate optimization of the two
problems through two-stage approaches finds a rather extensive
coverage in the literature, their joint optimization through a single
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algorithm is still an open challenge. This represents a noteworthy
research gap, which the present paper intends to fill.

2 PROBLEM FORMULATION
The set of constraints 𝐾 to which the OBP is subject is [4], [3]:

𝐾 :


∑
𝑗 ∈𝐽

𝑐 𝑗 · 𝑎𝑖 𝑗 ≤ 𝐶, ∀𝑖 ∈ 𝐼 (1)∑
𝑖∈𝐼

𝑎𝑖 𝑗 · 𝑥𝑖 = 1, ∀𝑗 ∈ 𝐽 (2)

where 𝐽 is the set of customer orders, 𝐶 is the carrying capacity of
the picking device, 𝑐 𝑗 the capacity required for order 𝑗 , 𝑎𝑖 a vector
of binary entries 𝑎𝑖 𝑗 describing whether an order 𝑗 is included
in a batch 𝑖 (𝑎𝑖 𝑗 = 1) or not (𝑎𝑖 𝑗 = 0), 𝐼 is the set of all feasible
batches and 𝑥𝑖 is a binary decision variable stating whether batch 𝑖
is actually constructed (𝑥𝑖 = 1) or not (𝑥𝑖 = 0). The set of constraints
𝐻 of the OPP is [5]:

𝐻 :



∑
𝑝∈𝑉

𝑦𝑝𝑞 = 1, ∀𝑞 ∈ 𝑉 (3)∑
𝑞∈𝑉

𝑦𝑝𝑞 = 1, ∀𝑝 ∈ 𝑉 (4)

ℎ𝑝 − ℎ𝑞 = (𝑛 + 1)𝑦𝑝𝑞 ≤ 𝑛, ∀(𝑝, 𝑞) ∈ 𝐸 : 𝑝, 𝑞 ≠ 0 (5)

in which𝑉 is the set of vertices𝑉 = {0, ..., 𝑛} of the complete graph
representing the problem, 𝐸 is the set of edges 𝐸 = {(𝑝, 𝑞) : 𝑝, 𝑞 ∈
𝑉 , 𝑝 ≠ 𝑞}, 𝑦𝑝𝑞 is a binary variable describing whether edge (𝑝, 𝑞)
is contained in the tour (𝑦𝑝𝑞 = 1) or not (𝑦𝑝𝑞 = 0) and ℎ𝑝 is the
position of vertex 𝑝 in the tour. Since the set of constraints 𝑀 of
the joint OBP-OPP can be written as

𝑀 = 𝐾 ∪ 𝐻 ∪ 𝑎 (6)

with 𝑎 ensuring compatibility between solution of OBP and OPP

𝑎 :
{
𝑞 ∈ { 𝑗 : 𝑗 ∈ 𝑖},∀𝑞 ∈ 𝑉𝑖 ,∀𝑖 ∈ 𝐼

}
, (7)

then, letting 𝑑𝑝𝑞 be the distance between edges 𝑝 and 𝑞, the mathe-
matical formulation of the joint OBP-OPP can be expressed as:

min
∑
𝑖

∑
(𝑝𝑖 ,𝑞𝑖 ) ∈𝐸𝑖

𝑑𝑝𝑖𝑞𝑖 · 𝑦𝑝𝑖𝑞𝑖

sub 𝑀

(8)
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Figure 1:Working scheme of the proposed S-CCrossoverOp-
erator, which progressively homogenizes the batches.

3 METHODOLOGY
We propose a novel approach involving a plain Genetic Algorithm.
It is named Genetic Algorithm for Joint Optimization, or GAJO.
This is a 11-step procedure, summarized below:
Step 1 - Encode initial solutions. Each chromosome consists of
three portions, respectively describing batch sizes, batch contents
in terms of orders and batch-wise picking sequence.
Step 2 - Compute fitness of each solution.
Step 3 - Create mating pool of fittest individuals.
Step 4 - Perform crossover and mutation on the second portions of
random individuals from the mating pool, while leaving the remain-
ing portions untouched. We introduce a new crossover operator
called S-C Crossover: given two parent chromosomes, a similarity
score is computed for each of their batches based on the average
walking distance separating the items they contain. A list is then
created of all unique pairs of orders to be picked. For each pair of or-
ders on the list, one at a time, it is checked if swapping the position
of the two orders leads to an increase in average similarity in all
four batches. If this is the case, the two swaps are actually carried
out. The procedure is repeated until the order pair list has been
exhausted. Since this operation typically renders the chromosomes
invalid due to incompatibility between second and third portions,
the third portions of the resulting chromosomes are dropped. After
performing mutation, the two incomplete chromosomes are added
to a new population. The process is repeated, two insertions at a
time, until the new population has the same size as the original one.
Thus the former replaces the latter.
Step 5 - Select one incomplete chromosome from the new popu-
lation, then create a number of feasible picking tours for its first
batch and add them to a new, inner population.
Step 6 - Create mating pool from the inner population.
Step 7 - Perform crossover and mutation on random individuals
in the inner population and add the offspring to a new inner popu-
lation. Repeat the process until the new inner population has the
same size as the original one, then replace the latter with the former.
Step 8 - Repeat steps 6 and 7 for a given number of iterations.
Step 9 - Repeat steps 5 through 8 for all batches of the current
incomplete chromosome selected in Step 5.
Step 10 - Repeat steps 5 through 9 for all individuals in the popula-
tion of incomplete chromosomes created in Step 4.
Step 11 - Repeat steps 2 through 10 for a given number of iterations.

Table 1: Assessment of the mean distance, standard devia-
tion and runtime of the three algorithms over ten indepen-
dent sets of experiments.

Algorithm Distance Standard Runtime
Found Deviation

Hybrid 20633.92 m 104.52 21’34"

Savings 5828.41 m 80.69 /

GAJO 5133.15 m 61.12 3’47"

4 EXPERIMENTS
Objective of the experiment is to find the shortest possible picking
paths for several groups of orders received by the warehouse of a
large German retail company at various points in time, by using
three different algorithms: the PSO-ACO Hybrid Algorithm [1], the
Savings Algorithm [2] and GAJO. A total of ten groups of orders of
disparate sizes were considered, ranging from 200 to 3300 orders,
and every algorithm was run five times on each group of orders.
Comparison across algorithms was made on two levels: perfor-
mance, meaning the length of the path found, and runtime for one
iteration. Since the Savings Algorithm is a lightweight procedure
intended to quickly return good-quality solutions, while the other
two models are designed to improve their search over time, the
former was kept out of the runtime-based analysis. Table 1 shows
the average distance, standard deviation and runtime recorded by
the three algorithms over the fifty runs. The paths found by the
proposed GAJO are on average 75.13% shorter than those found
by the Hybrid Algorithm and 11.93% shorter than those found by
the Savings Algorithm. Furthermore, an iteration of GAJO is on
average 82.46% faster than an iteration of the Hybrid Algorithm.

5 CONCLUSIONS
This work proposes an efficient algorithm for the optimization of the
joint Order Batching - Order Picking Planning Problem. We point
out that, to the best of our knowledge, this is the first successful
attempt to the joint optimization of the OBP-OPP. The experimental
results show that the proposed GAJO greatly outperforms both
considered baseline models, while also being significantly faster.
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