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Abstract A key challenge in recommender systems is how to profile new users. A
well-known solution for this problem is to ask new users to rate a few items to reveal
their preferences and to use active learning to find optimally informative items.
Compared to the application of active learning in classification (regression), active
learning in recommender systems presents several differences: although there are
no ratings for new users, there is an abundance of available ratings –collectively–
from past (existing) users. In this paper, we propose an innovative approach for
active learning in recommender systems, which aims at taking advantage of this
additional information. The main idea is to consider existing users as (hypotheti-
cal) new users and solve an active learning problem for each of them. In the end,
we aggregate all solved problems in order to learn how to solve the active learning
problem for a real new user. As the ratings of existing users (i.e., labels) are known
and are used for active learning purposes, the proposed framework is in fact a su-
pervised active learning framework. Based on this framework, we investigate two
different types of models: the first model is based on information about average
item ratings and the second on matrix factorization. We present experimental re-
sults on the Netflix dataset, which show that the proposed approach significantly
outperforms state-of-the-art baselines.
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1 Introduction

Recommender systems help web users to address information overload in a large
space of possible options (Adomavicius and Tuzhilin, 2005). In many applications,
such as in e-commerce, users have too many choices and too little time to explore
them all. Moreover, the exploding availability of information makes this problem
even tougher.

There are several techniques for generating recommendations. Collaborative
filtering is a traditional technique that is widely applied (Burke, 2002; Konstan
et al, 1997; Rashid et al, 2002). It makes automatic predictions about the inter-
ests of a user, by exploiting information about preferences of other users. The
underlying assumption of the collaborative filtering approach is that users with
similar preferences in the past will tend to have similar preferences also in the
future. Collaborative filtering methods fall into two categories: memory-based al-
gorithms and model-based algorithms. In memory-based techniques, the value of
the unknown rating is computed as an aggregate function of the ratings of some
other (usually, the top-N most similar) users for the same item (Konstan et al,
1997). Model-based collaborative techniques provide recommendations by estimat-
ing parameters of statistical models for user ratings. Nevertheless, recent research,
especially as has been demonstrated during the Netflix challenge1, indicates that
Matrix Factorization (MF) is a superior prediction model compared to other ap-
proaches (Koren et al, 2009). MF maps users and items into a latent space and
then items that are in the neighborhood of the target user in the latent space are
recommended to her.

Despite its performance, collaborative filtering suffers from the cold-start prob-
lem, which can be categorized as new-user, new-item, or in general new-system
cold-start problem.2 Although both the new-user and the new-item problems are
equally important, in this paper we focus on the new-user problem, since it affects
every new user that enters the system and, thus, it can directly impact the success
of the system by improving the experience of the new users at this critical phase,
which can reduce the chances of churn. A simple and effective way to overcome
the new-user problem is by posing queries to new users, in order that they express
their preferences about selected items, e.g., by rating them. Nevertheless, the se-
lection of items must take into consideration that users are not willing to answer
a lot of such queries. Thus, new users should be asked to give ratings just to a few
items that are informative, i.e., will help the most in determining their interests.

The corresponding problem in supervised learning arises, when not enough
labeled data exist to train a classification (regression) model. However, when a
set of unlabeled (pool) data is available, it is possible to ask a so-called ‘oracle’
to reveal their labels. Since querying the labels can be costly, only a few such
queries can be selected. Techniques which deal with this problem are called active
learning methods (Cohn et al, 1996), which try to select the best query as the one
which is most informative, i.e., the query which reduces the test error as much
as possible. There are many supervised learning (classification) problems in which
active learning can be used, e.g., text classification (Yang et al, 2009; Tong and

1 www.netflixprize.com
2 The new-system problem refers to a recommender system that is in the early stage and

has not been used by many users. In such a case, any collaborative filtering approach becomes
ineffective.
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Koller, 2002), where, for instance, news articles can be classified to categories such
as sports, economy, science, etc. Nevertheless, most applications today involve huge
amounts of data and obtaining labels, e.g., by human experts, for the complete set
of data is practically not possible. Therefore, active learning provides a solution to
this problem, by drastically reducing the amount of required labeled data without
compromising the classification accuracy.

Compared to the application of active learning in classification (regression),
active learning in recommender systems presents a crucial difference: although
there are no ratings for new users, there is an abundance of available ratings
–collectively– from existing (training) users. Our approach thus aims at taking
advantage of this additional source of information. This is attained by considering
past users as (hypothetical) new users, in order to learn the right queries to be
asked to new users for active learning purposes. On one hand, as the ratings, which
can be considered equivalent to labels in classification (regression), of existing users
are known, we are dealing with a supervised problem. On the other hand, those
ratings are used to find informative queries to new users. For these reasons, we
consider the proposed framework as a supervised active learning framework.

After introducing the general framework of our approach, which opts to find
only one query, we extend it based on decision trees to find a sequence of queries.
Decision trees build classification (regression) models in the form of tree structures.
They are built top-down from a root node by partitioning the data into subsets
that contain instances with similar target values (homogeneous). Usually entropy
is used to calculate homogeneity. The learning algorithm searches the space of
possible branches to find the split that gives the most homogeneous branches (i.e.,
with the lowest entropy). In this paper, decision trees are used to develop adaptive
active learning methods, i.e., new users receive different queries according to their
responses to the previous queries.

The rest of this paper is organized as following: in Section 2 the related work is
reviewed. Problem settings and MF are explained in Section 3. The proposed ap-
proach is introduced in Section 4, followed by the experimental results in Section 5.
Finally, we conclude the paper in Section 6.

2 Related Work

2.1 Methods based on Collaborative Filtering

Active learning, in the context of the new-user problem, was introduced by (Kohrs
and Mérialdo, 2001). They proposed variance and entropy for nearest-neighbor
collaborative filtering. Although they do not explicitly call their approach active
learning, their goal is to learn the new users’ preferences with minimum questions,
which is equivalent to what active learning does in classification problem. (Rashid
et al, 2002) expanded this work, by considering the popularity of items and also
personalizing the item selection for each individual user. Personalized item selec-
tion takes into account the fact that users may choose not to respond to all queries
and, thus, there is a need to select items for which users will respond.

(Boutilier et al, 2003) was the first work that studied the new-user problem
from active learning perspective. They proposed a method for selecting informa-
tive items that lead to the largest change in the estimation of ratings. (Jin and
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Si, 2004) developed a new active learning algorithm based on the Aspect Model
(AM), which is similar to applying active learning for parameter estimation in
Bayesian networks (Tong and Koller, 2001). They use the entropy of the model
as loss function, but do not directly minimize the entropy loss function, because
the current model may be far from the true model and relying only on the cur-
rent model can become misleading. To overcome this problem, (Tong and Koller,
2001) proposes to use a Bayesian network to take into account the reliability of
the current model. This Bayesian approach is, however, intractable, because it
needs excessive execution time. (Harpale and Yang, 2008) extended (Jin and Si,
2004) by relaxing the assumption that a new user can provide a rating for any
queried item. This approach personalizes active learning to the preferences of each
new user, as it queries only those items for which users are expected to provide a
rating. (Karimi et al, 2011a) applied the most-popular-item selection to AM. The
results show that it competes in accuracy with the Bayesian approach while its
execution time is orders of magnitude faster than the Bayesian method.

(Karimi et al, 2011b) developed a non-myopic active learning that capital-
izes explicitly on the update procedure of the MF model. Initially, this method
selects those items that, when the new user’s features are updated with the pro-
vided rating (i.e., after querying the selected items), the user’s features will be
changed as much as possible. Being inspired from optimal active learning for the
regression task, (Karimi et al, 2011c) exploits the characteristics of MF and de-
velops a method which approximates the optimal solution for recommender sys-
tems. (Karimi et al, 2012) improved the most-popular item-selection according to
the characteristics of MF. They proposed a method that finds similar users to the
new user in the latent space and then selects the item that is most popular among
similar users.

2.2 Methods based on Decision Trees

The idea of using decision trees for cold-start recommendation was proposed
by (Rashid et al, 2008), whereas (Golbandi et al, 2011) improved it, by advo-
cating a specialized version of decision trees that adapt the preference elicitation
process to the new user’s responses. Like (Kohrs and Mérialdo, 2001; Rashid et al,
2002), these works do not explicitly treat the new-user problem as an active learn-
ing problem. As our method relies on (Golbandi et al, 2011), we provide a brief
explanation (following other authors, we call the method of (Golbandi et al, 2011)
Bootstrapping): Each interior node is labeled with an item i ∈ I and each edge
with users’ response to item i. The new-user preference elicitation corresponds to
following a path starting at the root, by asking the user to rate items associated
with the tree nodes along the path and traversing the edges labeled by the user’s
response until a leaf node is reached. Decision trees are ternary. Each internal tree
node represents a single item on which the user is queried. After answering the
query, the user proceeds to one of the three subtrees, according to her answer. The
answer is either “Like”, “Dislike”, or “Unknown.” The “Unknown” means users
did not rate the queried item (e.g., because they did not know it). Allowing users
not to rate a queried item is crucial, because this is expected in real applications.
Each tree node represents a group of users and predicts item ratings by taking the
average of ratings among corresponding users.
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Formally, let t be a tree node and Ut ⊆ U be its associated set of users. Dt

denotes a subset of Dtrain which belong to node t:

Dt := {(u, i, r) ∈ U × I ×R | u ∈ Ut},

where the profile of item i in node t is denoted as Dt
i :

Dt
i := {(u, r) ∈ U ×R | u ∈ Ut},

The predicted rating of item i at node t is computed using the item average
method:

r̂ti =

∑
(u,r)∈Dt

i

r + λ1r̂si

|Dt
i |+ λ1

(1)

To avoid over-fitting, the prediction for item i is regularized towards its pre-
diction in the parent node r̂si. λ1 is the regularization factor. The effect of the
regularization for item i becomes more significant when the number of ratings in
item’s profile Dt

i is small. The squared error associated with node t and item

i is: (eti)
2 =

∑
(u,r)∈Dt

i

(r − r̂ti)
2. Also, the overall squared error at node t is:

(et)2 =
∑
i∈I

(eti)
2.

Building decision trees is done in a top-down manner. For each internal node,
the best splitting item is the one which divides the users into three groups, such
that the total squared prediction error is minimized. This process continues re-
cursively with each of the subtrees and in the end all users are partitioned among
subtrees.

Suppose we are at node t. Per each candidate item i, three candidate child
nodes are defined: tL(i), tD(i), tU(i) representing users who like item i, dislike it,
and have not rated it, respectively. The squared error associated with this item is
Errt(i) = (etL)2 + (etD)2 + (etU )2. Among all candidate items, the item which
minimizes the following equation is the best :

splitter(t) = argmin
i∈I

Errt(i) (2)

A naive construction of the tree would be intractable if the number of items and
ratings is large. Therefore, (Golbandi et al, 2011) proposes to expand “Unknown”
child nodes in a different way, by using some statistics collected from “Like” and
“Dislike” child nodes. Similar to (Golbandi et al, 2011), our approach is based on
decision trees, but with a different optimization function. The difference between
our approach and (Golbandi et al, 2011) is presented in section 4.1.

(Zhou et al, 2011) modified (Golbandi et al, 2011) by proposing functional
Matrix Factorization (fMF) which associates matrix factorization to decision trees.
First, item features are initialized randomly. Then, decision trees are built. Each
node of the tree represents a group of users who share the same user features. After
learning the tree, the item features are updated using the learned user features.
The loop continues until convergence is reached.

We consider that the method of (Zhou et al, 2011) is too expensive both in
terms of time and memory costs. The computational complexity for constructing
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decision trees is O(N
∑

u∈U
|Du|2 + l|I|k3 + l|I|2k2) where N is the depth of the tree,

|Du| is the number of ratings by user u, l is the number of nodes, |I| is the number
of items, and k is the number of latent features (Zhou et al, 2011). As an illustrative
example, for the Netflix dataset it holds that:

∑
u∈U
|Du|2 ≈ 6.4810, |I| ≈ 18k, and

assume that k = 50. The number of nodes l is
∑q

i=0 3i , so assuming that q = 7,
then l would be 3280. Considering all these numbers and the complexity of fMF,
the total number of operations would be 3.4 × 1013, which is prohibitive. In this
paper, we propose a new method (LAL-FDT), which for the same dataset, needs
orders of magnitude fewer (4.58× 109) operations.

The complexity becomes even larger when we note that in (Zhou et al, 2011)
decision trees are not built only once. After building decision trees in one iteration,
item features are updated and again decision trees are built using the features
of the updated item. This is repeated until convergence. Although (Zhou et al,
2011) conduct experiments on the Netflix data set, unfortunately the authors
do not report the running time of their algorithm. Moreover, in addition to time
complexity, the required memory to store decision trees is also large, since we have
to store user features of all nodes in order to update item features after building
the tree.

(Karimi et al, 2013) improved (Golbandi et al, 2011) in two ways. First, it
proposed the Most Popular Sampling (MPS) method to increase the speed of
the tree construction. Second, it developed a new algorithm to build decision
trees, which is called Factorized Decision Trees (FDT). (Karimi, 2014) summarized
several active learning methods for recommender systems.

2.3 Other Approaches

Active learning has also been applied for the new-system problem (Boutilier et al,
2003; Rubens and Sugiyama, 2007; Sutherland et al, 2013; Rish and Tesauro, 2008)
and the new-item problem (Park and Chu, 2009; Deodhar et al, 2009; Huang,
2007). Also, some works combine the new-system and the new-user problems,
because they assume that, when new users enter the recommender system, there
are not yet many active users, since the system has not been operating for a long
time (Elahi et al, 2014, 2013, 2012).

Furthermore, it is worth mentioning that in addition to active learning, there
are other approaches that deal with the new-user problem:

– Implicit Feedback. (Zhang et al, 2009; Zigoris, 2006) leverage implicit feed-
back, such as search keywords or user clicks to learn new user preferences.

– Content-based recommendation (Gantner et al, 2010; Gunawardana and
Meek, 2008) combine content-based attributes with collaborative filtering.

– Demographic information. (Safoury and Salah, 2013) use demographic
information on new users.

In this work, we focus on the new-user problem based on an active learning
approach, assuming that there are already enough active users in the system (i.e.,
we do not consider the new-system problem). We believe that active learning
is more promising than other approaches because it relies on ratings, which are
more informative about the actual preferences of users compared to metadata or
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demographic information. That is why collaborative filtering outperforms content-
based methods, as it has been reported that even a few ratings are more valuable
than metadata in movie recommender systems (Pilászy and Tikk, 2009).

3 Background

3.1 Problem Definition

Let U be the set of users, I be the set of items, and R ⊆ R be a (finite) set of
possible ratings, e.g., R := {1, 2, 3, 4, 5}. Let R+ := R ∪ {.} with an additional
symbol for a missing value. The triple (u, i, r) ∈ U × I ×R denotes the rating r of
user u for item i.

For a data set D ⊆ U × I ×R denote the set of all users occurring in D by:

U(D) := {u ∈ U | (u, i, r) ∈ D}

Subsets of the form E ⊆ I ×R are called user profiles. The profile of user u in D
is denoted by:

Du := {(i, r) ∈ I ×R | (u, i, r) ∈ D}

The rating of item i ∈ I in user profile E ⊆ I ×R is denoted by:

r(i;E) :=

{
r , if (i, r) ∈ E
. , else

We define a questionnaire as a tree where each interior node is labeled with an
item i ∈ I, each branch with a rating value r ∈ R+ and each leaf node corresponds
to a rating prediction model r̂ : I → R. For a user profile E ⊆ I × R, let R̂(E)
denote the rating prediction model at the leaf arrived when starting at the root
of the tree and iteratively from a node with label i ∈ I proceeds to its child node
with label r(i;E) until a leaf node is reached.

Given

– a data set Dtrain ⊆ U × I ×R,
– a loss ` : R× R→ R, and
– a maximal number of queries N ,

the active learning for the new-user problem in recommender systems is to find a
questionnaire R̂ of maximal depth N s.t. for another data set Dtest ⊆ U × I × R
(sampled from the same distribution, not being used during training, and with
non-overlapping users, i.e., U(Dtrain) ∩U(Dtest) = ∅) the average loss is minimal.

Users in Dtest are supposed to be new users. For each u ∈ Dtest, Du is split
into Dpool

u (pool data) and Dtest
u (test data). Dpool

u is used to find the prediction
model R̂(Dpool

u ) at the leaf node and Dtest
u is used to evaluate it. Dpool

u should also
contain items with missing value, so that:

Dpool
u = Dpool

u ∪ {(u, i, .)|i ∈ I, i /∈ Dpool
u }

The total loss is the loss over all test users:
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`(Dtest; R̂) :=
1

|Dtest|
∑

u∈U(Dtest)

∑
(i,r)∈Dtest

u

`(r, R̂(Dpool
u )(i)) (3)

What we call decision tree or questionnaire tree here is a multivariate regres-
sion tree. Other names could be used as well, such as ‘rating prediction tree’ or
‘recommendation tree’.

3.2 Matrix Factorization

Matrix Factorization (MF) is a model for approximating the true, unobserved
ratings-matrix R by R̂ ∈ R|U|×|I|. It maps both users and items to a latent space
of dimensionality k. In this latent space, each item i is represented by a vector
hi ∈ Rk. In the same way, each user u is represented with a vector wu ∈ Rk.

The dot product hTi wu captures the interaction between user u and item i,
which indicates how interesting is item i for user u. However, the actual behavior
of users during rating is not fully explained by this interaction and the user and
item bias should also be taken into account. These biases are effects associated
with either users or items, independent of any interactions. For example, some
users tend to give high rating to many items or some items tend to receive high
ratings from many users.

By considering the user and item bias, the predicted rating is computed as
follows (Koren et al, 2009):

r̂ui = µ+ bi + bu + hTi wu (4)

where µ is the global average, bi is the item bias and bu is the user bias.
Figure 1 shows a simple example of MF for a movie recommendation scenario.

There are two latent dimensions. The first dimension measures female-versus male-
oriented characteristic and the second dimension deals with serious versus escapist
aspect. In general, the predicted ratings of users for items is proportional to their
distances in this latent space. For example, we expect that Gus gives a high rating
to “Dumb and Dumber” and a low rating to “The Color Purple”. This means that
“Dumb and Dumber” is a good recommendation for Guss and “The Color Purple”
is a bad recommendation.

The major challenge is the computation of the mapping of each item and user
to the factors represented by the vectors hi, wu ∈ Rk. The mapping is done by
minimizing the following squared error (Koren, 2008):

Opt(Dtrain,W,H) =
∑

(u,i,r)∈Dtrain

(
(r−µ− bu− bi−hTi wu)2 +λ(‖hi‖2 +‖wu‖2)

+ γ(b2i + b2u)

)
(5)

where Dtrain is the set of the (u, i, r) triples for which the rating r of user u to
item i is known, λ is the feature regularization factor, γ is the user and item bias
regularization. The reason of regularization is to avoid over-fitting, which occurs
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Fig. 1 A simple two dimensional latent space for movie recommendation scenario (Koren
et al, 2009)

.

when a statistical model learns random error or noise instead of the underlying
process. The usual method to train MF is stochastic gradient descent (Koren
et al, 2009). This algorithm shuffles the ratings and then loops through all of them
by picking a random triple (u, i, r) and updates the corresponding parameters
in Equation 5. After each iteration (epoch), if the error computed with the loss
function is smaller than ε, the training stops. Otherwise, it continues until reaching
a maximum number L of iterations.

4 Supervised Active Learning Framework

In general, the goal of active learning is to choose those instances that will be
queried query for their label, that reduce the test error as much as possible when
the prediction model is retrained with the queried labels. However, directly finding
the most informative query is not possible, because of two reasons: First, the test
data is not available during the training, thus there is no way to measure the
test error of possible queries in advance. Second, we do not know the labels of
unlabeled instances before querying, so we cannot compute how a specific instance
will improves the model and consequently will reduce the test error.

For the same reasons, finding the most informative query is not possible in
recommender systems as well, because, first, the test data of new users are not
available during the query process and, second, their answers to the queried items
are not known before asking them. But in recommender systems there is additional
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data that does not exist in general classification problems: there are already many
training (active) users. We can consider training users as (hypothetical) new users
and solve an active learning problem for each of them. In the end, we aggregate all
solved problems in order to learn how to solve the active learning problem for a real
new user. As the ratings (i.e., labels) of existing users are known and are used to
find informative queries to new users, the proposed framework is a supervised active
learning framework. Moreover, aggregation acts like a post-learning phase over all
solved active learning problems, so we call the proposed framework Learning Active
Learning (LAL).

The reason that we can solve active learning problems for training users is
that their ratings are known. The ratings of each user are split into pool data
and validation data. The validation data is used to measure the test error of
candidate items. For each item there are two errors: the error before adding the
item to the train data and the error afterward. The difference between these errors
reflects how informative the item is, i.e., after the item is queried and its rating is
added to the training data, we can measure how effective would it be to improve
the recommendation accuracy. Note that the pool data consists of all items of
the data set, including those that have been rated by the user and those with
missing rating. Items with missing ratings have no impact on the validation of
error, therefore models trained with or without them do not differ. Algorithm 1
describes the general framework of LAL.

Algorithm 1 The General Algorithm of Learning Active Learning (LAL)

Input: Dtrain

Output: i∗

1: for u ∈ U(Dtrain) do
2: split Dtrain

u into Dpool
u and Dvalidation

u

3: Dpool
u = Dpool

u ∪ {(u, i, .)|i ∈ I, i /∈ Dpool
u }

4: RMSE1
u = initial error of user u on Dvalidation

u

5: for i ∈ Dpool
u do

6: retrain the prediction model with rui
7: RMSE2

u= new error of user u on Dvalidation
u

8: ∆ui = RMSE1
u −RMSE2

u

9: end for
10: end for
11: δ̄ = aggregate all ∆ui

12: i∗ = argmaxi δ̄i

To compute the effect of the candidate item i on the validation error, first
we measure the initial error of user u, which is denoted as RMSE1

u. Then the
prediction model is retrained with the rating of the candidate item i and the
resulting error (denoted as RMSE2

u) is measured. The difference between the
second and the first validation errors indicates how much the candidate item is
informative. We call this difference ∆. Another possibility is to train the model
with all pool data excluding the candidate item and measure RMSE1

u. Then we
train again the model with all pool data including the candidate item and measure
RMSE2

u. However, this method is slower because it needs to be trained twice.
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After finding the informativeness of all items for all training users, we need
to aggregate the results in order to find the best query for real new users. There
are several possibilities for such an aggregation. For example, we can compute the
average ∆ of each item over all users:

δ̄i =
1

|U |
∑
u∈U

∆ui

where δ̄i is the average error reduction of item i. The best item i∗ is the item
with the maximum δ̄i∗ . Another possibility is to count how many times an item
has been the best item in each separate active learning problem for training users
and choose the item with the maximum occurrence. Figure 3 provides a schematic
view of LAL steps.

un

u1

I1 Im

un

u1

I1 Im

I1 Im

Rating Matrix

Matrix 

Vector δ

RMSE Model

Aggregation Model

Max Selection

Best query

Fig. 2 A schematic view of LAL steps
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Algorithm 1 identifies only the single best query. If N queries need to be asked,
we need to find N items. A trivial solution would be to rank items according to
their δi in a descending order fashion and then pick the top-N items. However,
recent research indicates that selecting a fixed set of items upfront and asking
them one by one, is not a good strategy (Golbandi et al, 2011; Rashid et al, 2008).
Instead, it could be better to adapt the interview process according to the new
users’ answers to the previous queries. This means that the queries are selected
while new users are being interviewed. However, switching to an adaptive approach
requires a considerable computational effort. The reason is that, in each step, given
the provided ratings by the new user so far, we have to execute again Algorithm 1,
which is time consuming and not applicable. Note that new users are not willing to
wait for a long time to be asked for the next queries, so an active-learning method
should be fast. Therefore, we need a method that is both adaptive and fast.

To address the aforementioned challegne, we consider a model that is learned
offline, i.e., before new users start the interview process. When the interview starts,
given the ratings that the new user has provided so far, the model quickly finds
the next best query. To capture the adaptive aspect of the model, decision trees,
as they have been proposed by Golbandi et al (2011), are appropriate. So, we also
use decision trees for this purpose, to build an adaptive and fast learning active
learning method. In fact, the required time to find the next query requires only a
simple comparison to find the child node to which the new user should be moved
according to the rating this user provides about the queried item. As already
explained in section 2, Golbandi et al (2011) opts for a 3-way split. However, it
can be expected that a more fined-grained split will improve the accuracy, since
it distinguishes users’ tastes more precisely (Karimi et al, 2014). Therefore, in
this paper, given the ratings of the data set is from 1 to 5, we use 6-way splits.
Specifically, one child node per rating and one child node for the “unknown”
answer.

Algorithm 1 checks all items to find the best query. The best query is the item
that will result in the maximum reduction in error. To compute the error, we need
a model for rating prediction. There are many models for rating prediction, such
as global average, item average, and user average, which are simple, and more
advanced models such as MF. Although MF is the state-of-the-art method for
rating prediction, we do not use it for building the decision tree. The reason is
that there are many nodes in the decision tree and in each node there are many
candidate items that must be checked. Training an MF model for each item-node
combination would need prohibitive computational time, which makes the learning
algorithm intractable. For this reason, following Golbandi et al (2011), we use the
item average. Namely, predictions in a node are computed as the item average over
the ratings of users associated with this node. Although item average is simple, it
is fast and suitable for large-scale recommender systems.

Algorithm 2 describes the updated algorithm of LAL based on decision trees,
which is used to select N queries. Suppose that we are at node t and we are
going to ask the q-th query, which must be selected from Dpool. For performance
reasons, Dtrain is already split into Dpool

u and Dvalidation
u for all training users u

and the resulting sets are accessible as global variables in ConstructDecisionTree
function. Dpool

u includes all items of the data set. r̂t is a vector that stores rating
predictions in node t for all items using the item average method (Equation 1). It
is computed based on Dpool

u of all users in node t. Compared to Algorithm 1, the
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main change concerns the computation of RMSE1
u and RMSE2

u based on decision
trees. RMSE1

u is the error of user u in the current node t that is computed based
on rating predictions r̂t and Dvalidation

u . Each pool (candidate) item splits the
node into 6 child nodes. In the child node v, the rating predictions are computed
based on Dpool

u of all users in node v. To compute the RMSE2
u, first we need to

find the child node v to which user u has moved. Then, RMSE2
u is computed

based on r̂v. Note that like (Golbandi et al, 2011), the ratings in “Unknown” child
node are computed based on the collected statistics from other child nodes (1 to
5). Finally, ∆ui is computed, which is the difference between the original RMSE1

u

and the resulting RMSE2
u. After finding all ∆ui, we aggregate them by using the

average function. The item with the maximum δi value is selected to be queried.
After finding the best query i∗, we need to go on to find the next best queries.
So, we create child nodes using i∗ and recursively call the ConstructDecisionTree
function to split these nodes. Note that in order to avoid selecting one item twice,
i∗ is removed from the pool items of the child nodes.

Algorithm 2 LAL based on decision trees

ConstructDecisionTree
Input: U t, Dpool, q,r̂t
Output: i∗

1: for u ∈ U t do
2: compute RMSE1

u based on r̂t
3: end for
4: for i ∈ Dpool do
5: split U t into 6 child nodes according to their ratings to item i
6: for each child node v do
7: compute rating predictions r̂v
8: end for
9: for u ∈ U t do

10: find the child node v that user u has moved to
11: compute RMSE2

u based on r̂v
12: ∆ui = RMSE1

u −RMSE2
u

13: end for
14: end for
15: δ̄ = aggregate all ∆ui

16: i∗ = argmaxi δ̄i
17: if q < N and ∆̄i∗ ≥ 0 then
18: create 6 child nodes based on the selected item i∗

19: Dpool
new = Dpool\{i∗}

20: for child node v do
21: recursively call ConstructDecisionTree (Uv,Dpool

new , q + 1, r̂v)
22: end for
23: end if

In Algorithm 2, there are two stopping criteria. The first checks whether the
number q of queries that we have already asked so far is equal to the maximum
number N of queries that we are supposed to ask. The second criterion is about δi∗ .
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In most of the cases, δi∗ is expected to be positive. This means that the splitting of
nodes will result in a more coherent cluster of users, which consequently improves
the recommendation accuracy. However, sometimes this does not happen and there
is no item that, after splitting the current node with it, would improve the accuracy
of the predictions of the current node. In such cases, δi∗ is negative. One reason for
this phenomenon is that, as we go down into the deep layers of the decision trees,
the number of associated users of nodes decreases. Therefore, the ratings in such
nodes are predicted with less training data, which obviously adversely affects the
accuracy. Although the predictions are still regularized towards the predictions in
the parent node, this regularization might not be sufficient to compensate for the
effect of less training data in such nodes. In the case of negative δi∗ , the current
node is not split any further.

4.1 LAL vs. Bootstrapping

LAL uses decision trees to adapt the preference elicitation process to the new
user’s answers. As (Golbandi et al, 2011) is also based on decision trees, there are
similarities between these two approaches. In this section, we would like to clarify
the similarities and also highlight the novelties of our approach.

We first revisit Bootstrapping from the point of view of the proposed LAL
method. For each candidate item, we want to know how good this item would be
in order to be selected for querying the new user. The reasons is that its rating
is not known upfront. However, there are already many training users and their
ratings are available. Thus, instead of trying to find out how good the item is for
the new user, we investigate how good this item is for training users. The training
users are divided into three groups: those who like it, dislike it and do not know
it (unknown). We treat the users of each group as a single user and compute
the same rating predictions for all of them. The rating predictions are simply the
item average. After computing the predictions, we need to evaluate them to find
out how accurate the predictions are. The evaluation is done individually in each
group. For this purpose, all ratings of the corresponding users’ group are united
and are considered as validation data. The validation error of each group is the
square error over all validation data of the corresponding group. Finally, the three
resulting validation errors are summed up to compute the total validation error of
the candidate item. The item that has the minimum error is selected for query.

When comparing Bootstrapping to LAL conceptually, we can consider that
Bootstrapping also builds an error matrix E, which is similar to the matrix ∆.
However, matrix E is filled out in a column-wise fashion, instead of the row-
wise manner in ∆. Also, the aggregation function is a summation operator, which
sums up over all errors in a column to find the total error of each item. In the
end, the item with the minimum error is the best item to query. In fact, both
approaches aim to exploit the additional information from existing users to find
informative queries. However, they look at this information from different angles.
LAL starts from a training user and treats the user as a hypothetical new user
and then computes the informativeness of each candidate item for this user. By
calculating the informativeness of items for training users, the system can estimate
the informativeness of items for test users. On the other hand, Bootstrapping starts
at an item and computes the error of the item for all training users, which gives
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an estimation for the error of test users. In addition to this conceptual difference,
there are three specific points that makes the LAL a suitable approach:

1. In Bootstrapping the square error is used, whereas LAL is based on RMSE. In
our experimental study we use RMSE for the evaluation of recommendation
accuracy. For this reason it is meaningful to use the same measure during
optimization.

2. In LAL, the informativeness of each item is a relative value, which is the
difference between the current error and the new error after querying the item.
But in Bootstrapping, the informativeness is an absolute value, computed only
based on the new error. The relative informativeness is expected to be more
precise, because it provides more information on the effectiveness of the items
to reduce the error.

3. In Bootstrapping, training data and validation data are the same. Namely,
the same data that has been used to predict ratings (using the item average
method) is also used for evaluation. However, in LAL, the validation data does
not appear in the pool data, so it is not used to compute predictions, which is
expected to lead to a better generalization.

4.2 Further Improvements in LAL

(Karimi et al, 2013) reported that split items in Bootstrapping are the most popu-
lar items among the associated users of nodes and the rest of items are irrelevant.
We called this method Most Popular Sampling (MPS). The results on the Netflix
dataset indicated that, by sampling the 200 most popular items at each node, we
can save a considerable running time without harming accuracy. In this paper, we
also use MPS with sampling size equal to 200.

Another finding of (Karimi et al, 2013) is that the rating predictions in the
leaf nodes of decision trees can be improved by MF. We called this approach
Factorized Decision Trees (FDT). Again in this paper, we use FDT to improve the
rating predictions of decision trees built by LAL. In this way, we can benefit from
the right strategy for active learning and also the right prediction model for rating
prediction. In the experiment, we report the results of LAL on two prediction
models: item average and MF.

4.3 Complexity Analysis of LAL

In order to analyze the complexity of LAL, we follow the same procedure as in
Bootstrapping (Golbandi et al, 2011). Specifically, we find the complexity of split-
ting one node, then we extend it to one level, and finally to the entire decision
tree.

The core part of LAL in Algorithm 2 consists of lines 4 to 14, where the best
split item is found. Compared to Bootstrapping, this part has three differences.
In Bootstrapping, nodes are split into three child nodes, the error is calculated
using the training data of associated users U t, and the best split item is the
item that reduces the error of child nodes as much as possible. Different from
Bootstrapping, LAL splits nodes into six child nodes, the error is computed using
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the validation data of associated users U t, and most importantly, the best split
item is the item that maximizes the amount of error reduction over all users.
Despite these differences, the core part of LAL and Bootstrapping have the same
time complexity. On the other hand, the complexity of other parts of LAL, before
and after the core part, is dominated by the complexity of this part. Therefore,
the complexity of splitting node t in LAL is O(

∑
u∈Ut

|Du|2). Like Bootstrapping, as

at each level of the tree a user belongs to only a single node, the time complexity
of computing a single tree level is O(

∑
u∈U
|Du|2) or shorter O(|D|2). Finally, given

that N queries are going to be asked, the tree has N levels, thus the complexity
of building the entire tree is O(N · |D|2). If we use FDT to update the rating
predictions at leaf nodes, we should also consider the overhead of training an MF
model. In this case, the total complexity of LAL will be O(N · |D|2 + |D| · k · L).

5 Experimental Evaluation

In this section, we experimentally examine the performance of LAL. Our objective
is to investigate the accuracy of rating prediction with respect to the number of
queries asked to new users. It is important to obtain improvement in accuracy after
a small number of queries, since users are generally reluctant to answer many of
such queries.

5.1 Experimental Setup

The main challenge in applying active learning for recommender systems is that
users are not willing to answer many queries in order to rate the queried items.
For this reason, we report the performance of all examined methods in terms of
prediction error (RMSE) versus the number of queried items, which is simply
denoted as the number of queries. The RMSE of user u is computed as follows:

RMSEu =

√√√√ 1

|Dtest
u |

∑
(i,r)∈Dtest

u

(r − r̂ui)2 (6)

where Dtest
u is the set of the test items of user u, r̂ui is the predicted rating of user

u for item i, and r is the true (actual) rating. Thus, we examine the problem of
selecting at each step, the item for which each the test user u will be queried to
provide a rating. Note that test users are acting as new users of the system. The
reported RMSE is the average over all test users.

RMSE is a typical error measure for rating prediction in recommender systems,
which is also used in the baseline (Golbandi et al, 2011) and in the Netflix prize.
Moreover, as the algorithm of LAL is based on optimizing RMSE, we should
also evaluate it using the same optimization criterion. However, there are some
considerations concerning the use for evaluating the performance of recommender
systems. During the Netflix prize it has been reported that even 1% lift in RMSE
leads to a significant difference in the ranking of the “top-10” most recommended
movies for a user (Koren, 2007). Therefore, we also evaluate our approach based
on RMSE.
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To reproduce the reported results of this paper, the way that the parameters
are initialized should be taken into account. The parameters of MF are initialized
randomly with a normal distribution of N(0, 001). The random seed is set and
then a sequence of random numbers are generated to initialize user features, item
features, user bias, item bias, and finally to shuffle the dataset and choose a random
instance (u, i, r) for the stochastic gradient descent.

In our experiment, each new user is being asked 6 queries. We pick Boot-
straping (Golbandi et al, 2011) and our own previous work (Karimi et al, 2013),
called FDT as baselines for the comparison. Bootstrapping was implemented by
calibrating with the same hyper-parameters as reported in (Golbandi et al, 2011).
After this calibration step, we changed one of the hyper-parameters in our exper-
iments. In the original Bootstrapping (Golbandi et al, 2011), nodes in which the
number of ratings is less than a predefined threshold are not expand, because the
expected reliable refinement that could be gained is negligible. For this purpose
the β threshold of Bootstraping was set in (Golbandi et al, 2011) equal to 200000.
The motivation for having this threshold is to save runtime. In our experiments,
however, we set β to zero, because MPS is already able to save runtime and there
is no need to stop learning. The results show that this setting is significantly ben-
eficial. For instance, when β = 200000, RMSE is 0.971 after 5 queries, whereas for
β = 0 RMSE can be reduced to 0.958.

As the performance of baselines has been experimentally investigated based on
the Netflix dataset, we also run our experiments on this dataset. Netflix includes
100,480,507 ratings of 480,189 users to 17,770 movies. The dataset is already split
into train and test datasets. However, this split is not suitable for cold-start evalu-
ation protocol, since users in the training and test sets are the same. As test users
are considered as new users, they should not already appear in the training set.
Therefore, we split all users into two disjoint subsets, training users and test users,
containing 75% and 25%, respectively. The tree is learned based on the ratings of
the training users in the Netflix training data. Ratings of the training users in the
Netflix test data set are used as the validation data in LAL and also for finding
hyper-parameters in MF. Users in the test set are assumed to be new users. The
ratings of the test users in the Netflix training data set are used to generate the
user responses in the interview process (pool data). To evaluate the performance
after each query, the ratings of test users in the Netflix test data are used.

We conduct five-fold cross validation and report the average RMSE. In our
experiments, the variances of the results on different folds were very small (around
0.000003). We also ran a t-test and measured p-values in all queries. The p-values
were very small (in the range of 0.0003 to 0.0005). The reason is that the data set
is big. It can be assumed that, due to the same reason, (Golbandi et al, 2011) did
not report results on statistical significance.

We report the performance of LAL based on two prediction models. LAL-Boot,
like Bootstrapping, leverages item average for rating prediction. On the other hand,
LAL-FDT, like FDT, exploits MF to update rating predictions at leaf nodes after
constructing decision trees.

We also compare our work to four simple baselines. The goal of this comparison
is to assess the difficulty of the new-user problem. These four baselines are:

– Random: At each node, the split item is selected randomly.
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– Local Most Popular (LMP): At each node, the most popular item according
to the users associated with the node is selected.

– Global Most Popular (GMP): First, the s most popular items are found
based on all ratings available in the dataset. Then we start building question-
naire trees. All the nodes that are at level l are expanded using the l-th most
popular item. In this way, the dynamic aspect of questionnaire trees is omitted
and all new users, regardless of their responses to the queries, receive the same
questions.

– Entropy and Popularity (Ent*Pop): For all candidate items, the entropy
of ratings that are within a node is computed and then is multiplied with the
log of the number of ratings received by the item. Finally, the item with the
highest value is selected. Note that the entropy is local (within a node) but the
popularity is global (in the whole data set).

Similarly to (Golbandi et al, 2011), the prediction model of these baselines are
item average.

5.2 Results
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Fig. 3 RMSE results of four simple baselines, LAL-FDT, LAL-Boot, FDT and Bootstrapping

Figure 3 depicts the results of four simple baselines, LAL-FDT, LAL-Boot,
FDT and Bootstrapping. As these results show, random item selection performs
very badly and gains almost nothing after 6 queries. LMP does not work well either.
Among the four simple baselines, GMP and Ent*Pop are the best, although their
performance is still worse than Bootstrapping. Table 1 shows some statistics that
can explain these results. The table shows the probabilities of receiving different
responses from new users by each method. The main reason that random selection
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does not perform well is that it chooses items that will not be rated by new
users. The probability that random selection receives a rating is less that 0.01.
When the new user does not rate the queried item, that new user is moved to
the unknown child node. As the predictions in the unknown child node do not
significantly differ from the predictions at the current node, this strategy is not
able to improve the accuracy of predictions. Remember the premise that test
users and training users have the same distributions. If test (new) users do not
know the split item, training users do not know it either. Therefore, decision trees
which are built using training users with the random selection strategy are very
imbalanced. This means that almost all users of the current node are moved to the
unknown child node and consequently the predictions at the current node and the
child nodes would be almost the same (Karimi et al, 2013). LMP and GMP receive
more ratings compared to the random selection, that is why their performance also
improves in Figure 3. Interestingly, Ent*Pop performs worse than GMP in selecting
familiar items (i.e., items that users know and for which they will provide a rating),
but its recommendation accuracy is better.3 The reason is that, the selection of
familiar items is not the only factor that can improve the accuracy. In addition to
that, the queried items must be informative, i.e., they must be effective to reveal
the preferences of the new users. This is stated in (Rashid et al, 2002) with the
following illustrating example: “Popular movies may be widely liked; if this is true,
then their ratings carry little information. If everyone likes Titanic, and I say I like
it too, what can the system learn from that”. On the other hand, disputing items
are more informative because some users like them and some users dislike them,
therefore it would be informative for the system to know the opinion of the new
users on them. Finally, compared to Ent*Pop, Bootstrapping and FDT have about
the same chance to select the known items, although their performance (in terms
of recommendation accuracy) is higher because it does not exploit any heuristic
and directly computes the error and chooses the item that leads to the minimum
error.

Table 1 The probability that the new user likes the queried item (plike), dislikes it (pdislike),
or does not rate it (punknown) for different active learning methods.

Method plike pdislike punknown

Random 0.004 0.003 0.993

LMP 0.18 0.16 0.66

GMP 0.26 0.17 0.57

Ent*Pop 0.15 0.19 0.66

Bootstrapping and FDT 0.18 0.15 0.67

In order to compare the proposed method (LAL-FDT) with other approaches,
first we compare it against FDT to find the right query selection strategy, given
that the same prediction model (MF) is used. Clearly, LAL-FDT outperforms
FDT for all examined number of queries. The same fact is also observed when we
compare LAL-Boot to Bootstrapping. The reason is that the proposed criterion

3 We also examined a pure entropy approach that performed worse than GMP and for this
reason we omit the presentation of its results.



20 Rasoul Karimi et al.

of LAL outperforms the criterion of Bootstrapping to select queries, regardless of
the rating prediction model. However, we have to mention that the premise for
the improved performance of LAL is that the test data (new users) and training
data (existing users) follow the same distribution. Therefore, when LAL treats
training users as hypothetical new users and finds the best queries for them, the
same items would also represent the best queries to new users as well. Moreover,
LAL uses relative RMSE to find the informativeness of items, which is a better
measure compared to the absolute square error in Bootstrapping. Finally, in LAL
the errors are computed based on validation data, and as this data do not appear
in the training data, the obtained errors would be closer to the test error (i.e.,
better generalization), which leads to selecting more informative items.

As Figure 3 shows, going beyond query 6 is not beneficial for LAL-FDT. For
FDT and Bootstrapping, this convergence happens after 8 and 10 queries, respec-
tively (Karimi et al, 2013) (these results are omitted). In general, decision trees
would not help too much after a specific level where the number of nodes exceeds
a threshold and this threshold depends on the query selection strategy and the
prediction models (MF or item average). However, it has to be remind that the
goal of the proposed approach is to reach this convergence by using a small number
queries, because new users are not willing to answer many questions.

After 5 queries, LAL-Boot converges to FDT and it even starts to become worse
with the sixth query. This happens because, as we go down to the deeper layers
of decision trees, the number of associated users of nodes drops. Therefore, the
ratings in such nodes are predicted with less training data, which adversely affects
accuracy. Although the predictions are still regularized towards the predictions in
the parent node, this regularization might not be sufficient to compensate for the
effect of less training data in such nodes. However, FDT does not suffer from this
problem, because it does not use hierarchical regularization, instead it exploits
typical `2 regularization. In this way, LAL-FDT takes advantage of both LAL-
Boot and FDT. It enjoys a right strategy to select a query and a right prediction
model to benefit from its response.

The report improvement achieved in this reported result is substantial, es-
pecially when compared to improvement reported in related work, such as (Jin
and Si, 2004; Harpale and Yang, 2008) (even for smaller datasets), or in similar
problems, such as this recent paper (Chen et al, 2013). The reason is that even a
small lift in RMSE leads to significantly better overall performance (w.r.t. to user
experience) of the recommender system (Koren, 2007).

Table 2 summarizes the RMSE (after 6 queries) and the complexity of LAL-
FDT (proposed method), LAL-Boot, FDT, Bootstrapping, and Ent*Pop as the
best simple baseline. LAL-FDT and FDT have the same complexity, while the ac-
curacy of LAL-FDT is higher. LAL-FDT is more complicated than Bootstrapping,
because it needs to train an MF model. In our experiments, training a MF model
takes around 3 hours, which after considering the gained improvement, pays off.

A grid search methodology was followed to find hyper-parameters for LAL-
MF. Grid search is an exhaustive search in a manually specified subset of the
hyperparameter space of a learning algorithm. In our experiments, the range of α
and λ were [0.0001, 0.01] and [0.001, 0.03] respectively. The hyper-parameters of
LAL-FDT and FDT in all levels are reported in table 3 and 4, respectively. In our
experiments, varying k did not change the results, so we fixed it to 70. Also, the
best value of γ was 0.0001 for all levels.
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Table 2 The RMSE (after 6 queries) vs. the complexity of the proposed method (LAL-FDT)
and the baselines.

Method RMSE Complexity

Ent*Pop 0.9612 O(N.|D|)
Boot 0.9568 O(N.|D|2)

LAL-Boot 0.9540 O(N.|D|2)

FDT 0.9531 O(N.|D|2 + |D|.k.L)

LAL-FDT 0.9475 O(N.|D|2 + |D|.k.L)

Table 3 Hyper-parameters of LAL-FDT in all levels

level α λ

1 0.001 0.001

2 0.0013 0.005

3 0.001 0.003

4 0.001 0.003

5 0.0004 0.009

6 0.0006 0.017

Table 4 Hyper-parameters of FDT in all levels

level α λ

1 0.0013 0.001

2 0.0013 0.001

3 0.001 0.001

4 0.0012 0.003

5 0.0012 0.003

6 0.0013 0.01

5.3 Decision trees versus online updating

Decision trees enable us to develop adaptive and fast active learning methods.
Another approach to develop a fast active learning method is to use online updat-
ing (Rendle and Schmidt-Thieme, 2008). In online updating, when a new rating
from the new user is received, only latent features of the new user in MF model
are updated and the rest of features, including item features and features of the
training users, are not touched. Although online updating is fast, its accuracy is
much worse than decision trees.

Table 5 shows the RMSE of applying most popular item selection, given online
updating is used. Compared to the most popular active learning for decision trees
(Figure 3), online updating loses with a large margin. The initial error in online
updating is 1.0560, which is much larger than the item average (0.9872). One could
argue that the initial error in online updating is based on the random initialization
of user features since new users have not given any ratings before the first query.
However, this gap cannot be compensated in the next queries. Even the RMSE of
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online updating after five queries is still larger than the initial RMSE of decision
trees. Therefore, we can conclude that online updating and in general methods
that solely rely on the provided ratings by new user for rating predictions are not
suitable approaches for the new-user problem in recommender systems because
new users will eventually provide a few ratings, which is not enough to train an
accurate model. Due to this fact, the chosen baseline (Golbandi et al, 2011), is
stronger than other related works, such as (Lee et al, 2013; Harpale and Yang,
2008; Jin and Si, 2004). Although the accuracy of item average in decision trees is
higher than the online updating, it does not provide latent features of new users.
Latent features are necessary, if we want to fold-in new users in an MF model
that already exist in the recommender system for active users. This issue reveals
another advantage of FDT over Bootstrapping. In FDT, the latent features of
new users have already been learnt and just need to be copied in the MF model.
Moreover, its accuracy is also higher than Bootstrapping. In fact, the FDT is a
new approach for online updating in which, given a new user with a few ratings,
we pick the training users with the same ratings and then use all of their ratings to
learn the new user’s latent features. A more complete comparison between decision
trees and online updating can be found in (Karimi et al, 2014).

Table 5 The accuracy of the most popular active learning for MF in the first three queries.
MF is retrained using the online updating technique.

ini. query query 1 query 2 query 3

1.056 1.0395 1.0295 1.0234

5.4 Limitations

In general, applying active learning to cold-start problem requires the coopera-
tion of users to provide ratings to the queried items. Usually, users are willing to
spend a little time and answer the queries in order to get better recommenda-
tions afterwards. However, if users are reluctant to do so, we need to switch to
other approaches for the cold-start problem, such as implicit feedback (Zigoris,
2006; Zhang et al, 2009), Content-based recommendation (Gantner et al, 2010;
Gunawardana and Meek, 2008), or demographic information (Safoury and Salah,
2013).

The willingness of users to provide ratings is not adequate to guarantee the
success of the user preference elicitation process. If users are asked to provide
ratings to items that they do not know, they will not be able to rate the items. In
our setting, this corresponds to the answer denoted as “unknown”. In this case,
no information is gained about a user’s taste and, therefore, asking or not asking
the queries will result in the same accuracy in terms of modeling the preferences
of this user. In this paper, this issue has been addressed by limiting the queries to
the most popular items. Items that have been rated by many training users, are
more probable to receive ratings from new users as well. However, the effectiveness
of this heuristic in other types of data sets needs to be investigated. For data sets
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like books, one could expect the same outcome, since most popular books would
also be known to many people. However, in other recommendation scenario (e.g.,
for cloth items), it might be less straightforward to identify which types of items
are most popular. In such cases, showing a description of items to users could (e.g.,
a picture) can be helpful, because even if users have not already experienced the
items, they would be able to rate them.

In this paper, we assume that the train data set is large. This means that the
recommender system has already many existing users and then the new users join
the system. Considering many popular recommender systems, such as Amazon,
Netflix, or eBay, this assumption is realistic, because those systems have already
many users. Hence, this assumption is also made in the baseline paper (Golbandi
et al, 2011). However, when the recommender system is new, the number of users
is small, because the systems is in the early stage and has not been used by
many users so far (Elahi et al, 2014, 2013, 2012). In this case, the performance of
the proposed approach (LAL) might be affected. The reason is that LAL treats
training users as hypothetical new users in order to learn how to solve the active
learning problem for new users. Therefore, if the number of training users is small,
there may be types of test users that have not been included in the training data,
and therefore the system is unable to predict the right queries for them.

To make LAL adaptive to responses of new users, we have used a decision-
tree based approach, as proposed by (Golbandi et al, 2011). While this model
works fine for the Netflix data, it may become slower for much larger data sets
(e.g., Yahoo Music that contains 717 M ratings and thus is seven times bigger
than Netflix). Although MPS could significantly speed up the tree construction
algorithm, relying solely on decision trees to implement LAL for such big data sets
could still be challenging.

6 Summary and Future Work

In this paper, we proposed an innovative approach to apply active learning for the
new-user problem in recommender systems. The main idea is to consider past users
as (hypothetical) new users in order to learn the right queries to be asked to new
users for active-learning purposes. Based on this framework, we investigated two
different types of models: the first model is based on information about average
item ratings and the second on FDT. The results on the Netflix dataset indicate
that the best improvement is achieved when LAL is combined with FDT.

Principally, there are two tasks in recommender systems: rating prediction and
item recommendation. In this paper, we proposed LAL for predicting rating of
new users. As future work, we plan to use LAL for item recommendation, too.
In this case, we have to change the objective function in LAL. Moreover, instead
of RMSE, other criteria, such as F-measure, recall, and precision will be more
suitable for the evaluation of this case.

LAL relies on two models. The first model is used to measure the test error of
training users to generate the matrix ∆U×I , whereas the second model aggregates
this matrix into a vector δI containing the overall error reduction of items. In this
work, we used decision trees to generate matrix ∆, and δ was computed by taking
the average over all observed ∆ui values for each item. There are several ways
to extend our work by changing these models. We can use other models besides
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decision trees to generate matrix ∆ . It would also be interesting to use other
aggregation models, for example a counting model that counts how many times
an item has been selected as the best item for training users and chooses the one
with the maximum number of occurrences.

The proposed approach can also be applied in other problems in machine learn-
ing that have settings similar to recommender systems. In recommender systems,
there is a matrix of users and items, and the entities are ratings given by users to
items. There are other (dyadic) datasets with the similar format, e.g.:

– MIT-DP4: is from MIT RealityMining project. Rows represent the blue tooth
devices and columns represent the persons. The entities represent the scanning
activities between the devices and persons.

– NIPS-PW5 is from the NIPS proceedings. Rows represent papers and columns
represent words. The entities represent the count of the words that appear in
the corresponding papers.

– CIKM-PA6 is an author-paper graph constructed from CIKM proceedings.
Rows represent the authors and columns represent the papers. The entities
indicate whether the papers are written by the authors or not.

Similar to recommender systems, a new row (column) may be added to the
matrix. On the other hand, it is costly to fill the entities of the new row (column).
Therefore, a few columns (rows) must be selected for being labeled.

Finally, we plan to conduct an online user study to validate to results of our
offline evaluations.
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