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Abstract. In recent years there is an increasing interest for analytical methods
that learn patterns over large-scale data distributed over Peer-to-Peer (P2P) net-
works and support applications. Mining patterns in such distributed and dynamic
environment is a challenging task, because centralization of data is not feasible.
In this paper, we have proposed a distributed classification technique based on
Relevance Vector Machines (RVM) and local model exchange among neighboring
peers in a P2P network. In such networks, the evaluation criteria for an efficient
distributed classification algorithm is based on the size of resulting local models
(communication efficiency) and their prediction accuracy. RVM, utilizes dramati-
cally fewer kernel functions than a state-of-the-art ‘support vector machine’ (SVM),
while demonstrating comparable generalization performance. This makes RVM a
suitable choice to learn compact and accurate local models at each peer in a P2P
network. Our model propagation approach, exchange resulting models with peers in
a local neighborhood to produce more accurate network wide global model, while
keeping the communication cost low throughout the network. Through extensive
experimental evaluations, we demonstrate that by using more relevant and compact
models, our approach outperforms the baseline model propagation approaches in
terms of accuracy and communication cost.

1 Introduction

In recent years there is an increasing interest for analytical methods that
learn patterns over large-scale data distributed over Peer-to-Peer (P2P) net-
works and support applications. For example, distributed classification of large
amount of tagged text and image data stored in online newspapers, digital
libraries and blogs. P2P matchmaking analyzes user profiles to recommend
more appropriate profiles to connect with. Clustering content with respect
to user’s interest in media sharing P2P networks (e.g. BitTorrent, Shareaza,
LimeWire etc). Other applications include collaborative and distributed spam
classification (Caruana et al.(2012)) and outlier detection and scene segmen-
tation in sensor networks.
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1.1 Motivation

Mining patterns from such large-scale distributed P2P networks, is a chal-
lenging task, because centralization of data is not feasible due to prohibitive
communication cost and user’s privacy concerns. In P2P networks, comput-
ing devices might be connected to the network temporarily, communication is
unreliable and perhaps with limited bandwidth, resources of data and com-
putation can be distributed sparsely, and the data collections are evolving
dynamically. A scheme which centralizes the data stored all over a P2P net-
work is not feasible, because any change must be reported to the central
peer, since it might very well alter the result. Therefore, the goal is to de-
velop distributed mining algorithms that are communication efficient, scal-
able, asynchronous, and robust to peer dynamism, which achieve accuracy
as close as possible to centralized but in-feasible ones. Recently, researchers
have proposed model propagation approaches based on SVM (Papapetrou et
al. (2011)) and its variants (Hock et al.(2008)) which tend to reduce model
size by random sub-sampling techniques, for distributed classification in P2P
networks. An inherent problem with these approaches is that, being based on
SVM based classifiers and their variance, the size of resulting model (num-
ber of support vectors) typically grows linearly with the size of the training
set. Therefore, such schemes incur a high communication cost required to ex-
change models among peers, a fact that negatively impacts the efficiency of
the distributed data mining approach.

1.2 Contribution

In this paper, we have presented a distributed classification approach (P2P-
RVM) for P2P networks, which is based on Relevance Vector Machines
(RVM)(Tipping (2001)) and model exchange between peers with in a local
neighborhood. The key feature of RVM is that while capable of generalization
performance equivalent to a regular SVM, it utilizes significantly fewer kernel
functions. This sparsity is achieved since posterior distributions of many of
the kernel weights tend to get zero, during learning process. This makes it
extremely effective to keep only those kernel functions which are more proto-
typical or relevant vectors of the local data, for making accurate predictions
using compact models. Each peer in the P2P network learns an RVM model
locally, and exchange this model in a synchronized way with its directly con-
nected neighbors in the local neighborhood of network.

To perform extensive experimental evaluation of the proposed method, we
have developed a simulation test-bed and compared our approach to baseline
methods, which deploy variants of SVM based on random sub-sampling for
model propagation in P2P networks. Experimental results demonstrate that
P2P-RVM exhibits high classification accuracy and significantly reduces com-
munication cost outperforming the bench-marked methods, and comparable
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in accuracy to any state-of-the-art centralized classifier. We also show that
the proposed method is scalable i.e. independent of the size of P2P network.

The rest of this paper is organized as follows: Section 2 describes related
work. Section 3 introduces our proposed distributed classification approach.
Our simulation framework and experimental evaluations are described in Sec-
tion 4, and the last section concludes the paper.

2 Related Work

Current state-of-the-art research in P2P data mining focus on developing lo-
cal classification or clustering algorithms which in-turn make use of primitive
operations such as distributed averaging, majority voting and other aggregate
functions. Most representative work in this regard is distributed association
rule mining by R.Wolff et al.(2004), distributed decision tree induction by
Bhaduri et al.(2008), distributed K-Means clustering by Datta et al.(2009)
and distributed classification by Ping Luo et al.(2007). Most of these locally
synchronized algorithms are reactive in a sense that they tend to create a con-
sensus in the local neighborhood of peers, by monitoring every single change
in data and keeping track of data statistics, which also require extra polling
messages for coordination.

Based on model propagation, an important work for distributed classifica-
tion in P2P networks is by Hock et al.(2008), in which they build an RSVM
(Lee and Mangasarian (2001)) model using each peer’s local data, then iter-
atively propagate and merge the models to create an improved model. Pa-
papetrou et al.(2011) uses SVM model exchange for this purpose. These ap-
proaches tend to rely on random sub-sampling of local data, to control the size
of resulting model and then optimizing it for reduced errors. Since with SVM
based classifiers, size of model grows linearly with the size of local data and
many redundant support vectors also get through, these methods incur high
communication cost without any significant gain in classification accuracy.

In our study, we focus on the aforementioned category of classification in
P2P networks based on model propagation. Our approach is based on the idea
that instead of learning models from random perturbations of data, consider
the significance of each instance in data, and keep only those which are most
prototypical or relevant to local data set. By using RVM as a base-learner
in our model propagation, we intend to optimize both size (communication
cost)and quality (accuracy) of the resulting model.

3 Approach

In this section, we present our proposed method P2P-RVM illustrating learn-
ing base classifiers locally at each peer, and iterative model propagation and
update by the peers in the local neighborhood. More generally, P2P-RVM
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creates a ‘cascade’ of base-classifiers i.e. instead of analyzing whole data in
one optimization step, the data is partitioned into subsets and optimized sep-
arately with multiple base-classifiers. The partial models are combined and
re-learned iteratively, until the globally optimal model is obtained. We adapt
this general approach for classification in a P2P network. We learn light weight
local models on presumably naturally distributed data sets, iteratively propa-
gate models to or receive from neighbors and update (relearn) to obtain more
accurate global models.

3.1 Building Local Classifier

Classification first builds a model (denoted as classifier) based on labeled
training data and then predicts class labels for new (unseen) data instances. In
P2P networks, each peer contains its own training data set that is not directly
available to the rest of peers. More formally, we consider an ad-hoc P2P
network comprising of a set of such k autonomous peers P = {1, 2, . . . , k}. The
topology of the P2P network is represented by a (connected) graph G(P,E), in
which each peer p ∈ P is represented by a vertex and an edge {p, q} ∈ E, where
E ⊆ {{p, q} : p, q ∈ P}, whenever peer p is connected to peer q. The local
training data set on a peer p is denoted as Xp ⊆ Rd, where d is the number

of data features. Finally, with X =
⋃k

p=1Xp we denote the global training
data set of the entire P2P network. Please notice that X is not feasible to be
centralized (i.e., be collected in a single peer).

Based on the local training data set Xp, each peer p can first build its local
classification model mp. However, when Xp is small, and thus not representa-
tive, the accuracy of the local model mp is reduced. To overcome this problem,
a possible solution is to learn models in a collaborative fashion, where each
peer p shares its local model mp with its immediate neighbors.

Since propagating classification models in large scale ad-hoc P2P networks,
results in prohibitive communication cost, therefore, it is required to build
models that are both accurate and compact, i.e. they can be represented with
the least, as well as the most prototypical information, needed to be exchanged
between neighboring peers.

Based on these requirements, we employ RVM, a probabilistic kernel model
based on the theory of sparse Bayesian learning. The key feature of this ap-
proach is that it utilizes significantly fewer kernel functions while offering good
generalization performance. This is because, inferred models are exceedingly
sparse in that posterior distributions of majority of kernel weights are found
to have maximum values around zero. Training instances associated with re-
maining very few non-zero weights are termed as relevant vectors. Below we
briefly describe RVM formulation derived from Tipping(2001).

Relevance Vector Machines - Formulation:

At each peer p, given is a training set of instance-label pairs {(xj , yj)}|Xp|
j=1 ,

where xj ∈ Rd is an input vector and yj ∈ {−1, 1} is the corresponding class
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label. Since we denote the size of local training data at peer p as |Xp|, in the
following notation |Xp| denotes total number of instances. Aim of classifica-
tion task is to predict the posterior probability of class membership of xj .
Considering a generalized additive model y(x) having the similar form as that
of SVM prediction function,

y(x) =

|Xp|∑
i=1

wiK (x, xi) + w0 (1)

where wi are model weights and K(x, xi) is a kernel function. Applying
sigmoid logistic function σ (y(x)) = 1/1 + e−y(x), we can write the likelihood
function for Bernoulli distribution of P (y|x) as:

P (ŷ|ŵ) =

|Xp|∏
i=1

σ (y(xi))
yi [1− σ (y(xi))]

1−yi (2)

RVM uses the basis function φ(xi) ≡ K(x, xi) based on the kernel function
in (1). Using this, we can re-write (2) as:

P (ŷ|ŵ) =

|Xp|∏
i=1

σ (φ(xi)wi))
yi [1− σ (φ(xi)wi))]

1−yi (3)

where ŷ =
(
y1, . . . , y|Xp|

)T
, ŵ =

(
w1, w2, . . . , w|Xp|

)T
, and φ(xi) =

[1,K(xi, x1),K(xi, x2), . . . ,K(xi, x|Xp|)]
T .

RVM utilizes an [|Xp| × |Xp| − 1] basis matrix Φ =
[
φ(x1), φ(x2), . . . , φ(x|Xp|)

]
,

for filtering out the most relevant basis vectors, as described next.

Estimating maximum likelihood for (3), with as many parameters w as the train-
ing examples, would lead to severe over-fitting. To avoid this, RVM puts a constrain
on parameters by explicitly defining the following prior probability distribution over
them, using the principle of automatic relevance determination (ARD) proposed by
MacKay (2004).

p(ŵ|α̂) =

|Xp|∏
i=0

N
(
wi|0, α−1

i

)
(4)

with α a vector of |Xp+1| hyper-parameters i.e. each hyper-parameter moderates the
strength of the weight with which it is associated. Hyper-parameters α are estimated
from the training data using Gamma distribution with uniform scales.

p(α̂) =

|Xp|∏
i=0

Gamma (αi|a, b) (5)

Using a broad prior over the hyper-parameters α, posterior probability of the as-
sociated weights approaches to zero, thus considering those inputs as irrelevant. This
key feature of RVM is ultimately responsible for significantly reducing the number
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of basis functions (and corresponding support vectors) to most relevant ones. These
support vectors are considered to be the most prototypical representatives of data
set. Ultimately, RVM maximizes the posterior probability of class labels parameter-
ized by hyperparameters α, which is known as maximizing marginal likelihood.

For detailed explanation of inference procedure and hyper-parameter optimiza-
tion, we refer the reader to original paper by Tipping (2001), for reasons of space
limitation.

3.2 Model Exchange and Update

Based on the local training data set Xp, each peer p can first build its local classifica-
tion model mp, as described in previous section. Let Np denote the set of immediate
neighbors of peer p, i.e., Np = {q ∈ P |q 6= p, {p, q} ∈ E}. After learning the local
model, a peer p uses its neighbor list Np to propagate mp to all directly connected
neighbors. Moreover for receiving models, each peer p waits for time t until mq from
all the q ∈ Np have been received. Once all the neighboring models have been re-
ceived, each peer updates its local model with the support vectors in the received
ones. The resulting global model built through this collaborative process is more ac-
curate and helps improving the classification performance of the whole P2P network.
Algorithm 1 describes the working of P2P-RVM at a local peer p.

Algorithm 1 P2P-RVM algorithm for peer p

Input: Xp = Local training data set, t = Time to wait for receiving models before
updating, Np = List of neighbors

Output: Updated model M
Train local classifier model mp using RVM on Xp

foreach q ∈ Np do
Propagate the support vectors of mp to q . Exchange with direct neighbors

end for
RECEIVEDp := ∅ . Initialize an empty set to keep received models
while waiting time < t do

if receive request then . Handle receive requests from neighbors
if mq /∈ RECEIVEDp then

Send ACK
RECEIVEDp := RECEIVEDp ∪ {mq}

end if
end if

end while
if RECEIVEDp 6= ∅ then

foreach mq ∈ RECEIVEDp do . Merge all models
mp = mp ∪mq

end for
end if
M = RVM model trained using updated mp

return M
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Since P2P networks are highly dynamic i.e. peers usually leave and join the
network in an ad-hoc manner. Model propagation approach implicitly deals with
such peer dynamism, because even if a peer leaves the network, its local knowledge
remains in the network in the form of its model, it had shared with other peers.
Moreover, as new data keeps arriving in a P2P network, our simulation consider
this data as a new peer, and executes Algorithm-1 for it, consequently dealing with
data dynamism.

4 Experiments and Results

In this section, we present our simulation setup for P2P network, experiments with
P2P-RVM and the baseline methods and finally the evaluations to compare their
performance. We have performed evaluations based on two most significant criteria
for the problem of learning in P2P networks i.e. classification accuracy and communi-
cation cost. The communication cost is measured as the sum of size of all propagated
models, whereas the size of each model is measured as the number of support vectors
it contains. We have compared P2P-RVM with state-of-the-art model propagation
technique for distributed classification called Cascade Reduced-SVM proposed by
Hock et al.2008. The performance of two methods is also compared with standard
SVM, especially to analyze how better they perform relative to any state-of-the-art
centralized classifier. Finally, to demonstrate the effectiveness of model exchange, we
also consider a baseline that performs classification only locally, without any model
exchange.

4.1 Experimental Setup

Our evaluation needs to determine the network topology with edge delays and lo-
cal computations at each peer with message exchange. For this purpose we used
the BRITE topology generator for P2P networks, with ASWaxman model. Other
BRITE parameters we used are HS = 1, 000, LS = 100 (size of plane) and constant
bandwidth distribution with MaxBW = 1, 024 and MinBW = 10 (please refer to
BRITE documentation for more details: www.cs.bu.edu/brite).

For learning regular SVM as a centralized baseline, we used C-SVC implemen-
tation provided by LibSVM (Chih-Chung et al. 2011). We used RBF kernel for
learning RVM, RSVM and SVM classifiers. Optimal values of hyperparameters such
as kernel width for RVM, C and γ for RSVM and SVM, were found using 10-fold
cross validation.

4.2 Data Sets

We have used two standard benchmark classification data sets for our experiments.
These are,

• covertype (581012× 54, 7 classes) data set from UCI repository, and
• cod-rna(488565× 8, 2 classes) data set from LIBSVM repository.
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Both data sets are among the largest in these widely used repositories. In recent
literature of P2P classification, covertype data has been used by several researchers
to evaluate their models. Data from above mentioned repositories, is already parti-
tioned into training and test sets. Data in both training and test sets, is distributed
uniformly among the peers of the network, before performing classification task.

4.3 Results

Algorithms were compared with respect to quality/cost ratio i.e. what accuracy can
be achieved with a given communication cost. Communication cost is given relative
to the upper bound of central scheme, which is cost of centralizing the network’s
whole data to some server. Figure 1 illustrates average prediction performance in
correlation to communication cost for the whole network, for a complete execution
of each algorithm on a network of 50 peers.

Fig. 1: Classification quality and communication cost

The results clearly show that P2P-RVM out-performs the baseline Cascade-
RSVM (denoted as C-RSVM) by achieving average accuracy which is quite close to
that of centralized SVM (denoted as Central), by utilizing only 20 percent of the
communication cost of C-RSVM and in-feasible Central approach. Table-1 compares
the Central, C-RSVM and P2P-RVM in terms of average accuracy and the later two
in terms of average number of support vectors (nSV) used per peer, for a network
of 50 peers.

Table 1: Comparison of average accuracy for whole network and average
model size per peer (nSV)

Data Sets Accuracy (%) Average nSV per peer

Central C-RSVM P2P-RVM C-RSVM P2P-RVM

covertype 76.5 69.5 75.9 174±0 70±5

cod-rna 94.3 93.4 94.1 195±0 10±1

Figure 2 shows the performance of P2P-RVM in terms of scalability i.e. influence
of network size (no. of peers). Secondly, it also illustrates the effectiveness of model
propagation approach by comparing it’s accuracy with that of local models (denoted
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by L-RVM and L-RSVM) i.e. models learned without any exchange.

Fig. 2: Scalability: Effect of number of peers in the network on average accuracy

Model exchange for collaborative classification significantly improves the network
wide prediction accuracy. Moreover, model exchange seems to get more beneficial, as
the network size increases (especially in case of P2P networks, there is a majority of
free riders with very little amount of data to perform any meaningful classification).
Figure 2 also depicts the scalability of P2P-RVM as compared to C-RSVM. P2P-
RVM has shown high resilience to performance degradation as the network size
increases. On the other hand, C-RSVM exhibits a decline in accuracy, as local data
sets get smaller in size.The reason for this performance is that, RSVM algorithm
significantly depends on the size of data as it uses a random subset (nu percent
of data) to be considered as support vectors while learning the model. Whereas,
RVM approach considers only the most prototypical vectors following the principal
of automatic relevance detection.

5 Conclusion

In this paper, we proposed P2P-RVM, a collaborative distributed classification ap-
proach which utilizes relevance vector machines to learn local models, and exchange
them among peers in the local neighborhood of a P2P network through cascade
model propagation and updates. P2P-RVM has shown a strong performance bene-
fits in terms of classification accuracy, communication cost and scalability.

In our future work we will investigate the problem of classification in dynamic
distributed networks, where nodes are allowed to physically move in space, such as in
case of vehicular ad hoc networks (VANET). We expect that, approaches like RVM,
can be useful in scenarios where communication resources are scarce but distributed
learning applications still need to be highly accurate.

Acknowledgment

This work is funded by the Seventh Framework Program of European Commission,
through the project REDUCTION (No. 288254). www.reduction-project.eu.



10 Khan, Nanopoulos and Schmidt-Thieme

References

Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. (2008): Distributed
Decision-Tree Induction in Peer-to-Peer Systems. Stat. Anal. Data Min. 1, 2,
85-103.

Byung-Hoon Park, Hillol Kargupta. (2002): Distributed Data Mining: Algorithms,
Systems, and Applications. In: The handbook of data mining, pp. 341-358 edited
by Nong Ye

Chih-Chung Chang and Chih-Jen Lin, LIBSVM (2011): A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

Caruana, Godwin and Li Maozhen,(2012):A survey of emerging approaches to spam
filtering. In: ACM Computing Surveys

Datta, Bhaduri, Giannella, Wolff, Kargupta (2006): Distributed Data Mining in
Peer-to-Peer Networks. Internet Computing, IEEE , vol.10, no.4, pp.18,26, July-
Aug. 2006

Datta, Chris Giannella, and Hillol Kargupta. (2009): Approximate Distributed K-
Means Clustering over a Peer-to-Peer Network. IEEE Trans. on Knowl. and
Data Eng. 21, 10, 1372-1388

Graf, Cosatto, Bottou, Dourdanovic,Vapnik.(2004): Parallel support vector ma-
chines: The cascade SVM. In Advances in neural information processing systems
(pp. 521-528)

Hock-Hee Ang, Vivekanand Gopalkrishnan, Steven C. Hoi, and Wee Keong Ng.
(2008). Cascade RSVM in Peer-to-Peer Networks. In: European Conference on
Machine Learning and Knowledge Discovery in Databases.

Lee, Y. and Mangasarian, Olvi L.(2001): RSVM: Reduced Support Vector Machines.
First SIAM International Conference on Data Mining,5-7

MacKay, D. J. (1996). Bayesian methods for back propagation networks. In Models
of neural networks III (pp. 211-254). Springer New York.

Papapetrou Odysseas , Wolf Siberski, and Stefan Siersdorfer. (2011): Collaborative
classification over P2P networks. In: 20th international conference companion
on World wide web (WWW ’11)

Ping Luo, Hui Xiong, Kevin L, and Zhongzhi Shi.(2007): Distributed classification
in peer-to-peer networks. In: 13th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’07)

R. Wolff and A. Schuster. (2004): Association rule mining in peer-to-peer systems.
In: Trans. Sys. Man Cyber. Part B 34,6.

Sangkyun Lee, Marco Stolpe, and Katharina Morik. (2012): Separable approximate
optimization of support vector machines for distributed sensing. In:European
conference on Machine Learning and Knowledge Discovery in Databases - Vol-
ume Part II (ECML PKDD’12)

Tipping, Michael E.(2001): Sparse Bayesian Learning and the Relevance Vector
Machine. Journal of Machine Learning Research,211-244.

Yumao Lu, Roychowdhury, Vandenberghe. (2008): Distributed Parallel Support Vec-
tor Machines in Strongly Connected Networks. In: IEEE Transactions on Neural
Networks, vol.19, no.7, pp.1167,1178.

Zeng, Li, Ling Li, Lian Duan, Kevin Lu, Zhongzhi Shi, Maoguang Wang, Wen-
juan Wu, and Ping Luo.(2012): Distributed data mining: a survey. Information
Technology and Management 13, no. 4: 403-409.


