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Abstract. Self-supervised learning is a promising new technique for
learning representative features in the absence of manual annotations.
It is particularly efficient in cases where labeling the training data is
expensive and tedious, naturally linking it to the semi-supervised learn-
ing paradigm. In this work, we propose a new semi-supervised time se-
ries classification model that leverages features learned from the self-
supervised task on unlabeled data. The idea is to exploit the unlabeled
training data with a forecasting task which provides a strong surrogate
supervision signal for feature learning. We draw from established multi-
task learning approaches and model forecasting as an auxiliary task to
be optimized jointly with the main task of classification. We evaluate
our proposed method on benchmark time series classification datasets in
semi-supervised setting and are able to show that it significantly outper-
forms the state-of-the-art baselines.
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1 Introduction

Modern deep learning architectures have taken the fields of Computer Vision,
Natural Language Processing and Recommender Systems by storm. Time series
Classification is no stranger to Recurrent Neural Networks and Convolutional
Neural Networks (ConvNets) too [6,19]. Although proven to learn high level fea-
tures across a broad domain of time series classification problems, the success of
ConvNets hinges on the availability of large amounts of labeled training data. In
reality, however, there is a high cost associated in acquiring such labeled data.
As a result, there have been efforts to utilize semi-supervised learning algorithms
catered especially for time series classification [21,2,9,12,22,17]. The idea be-
hind semi-supervised learning is to exploit unlabeled data for training purpose
in the presence of only few labeled instances. The applicability of this learning
paradigm naturally extends to time series data as plentiful of it can be acquired
trivially. For example, a single polysomnography (sleep study) can generate up
to 40,000 heartbeats but it takes the time and expertise of a cardiologist to
annotate individual heartbeats [2]. Hence, effective methods for semi-supervised
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learning can lead to mining vast amounts of time series data for which only
comparatively few labels might be available.

A related stream of works has been dedicated to learning high level ConvNets
based representations that do not require any manual annotation of data. Self-
supervised learning has emerged as a prominent learning paradigm among such,
where the idea is to define an annotation-free pretext task that is inherent in
the data itself. The task stands to provide a surrogate supervision signal for
feature learning. Example tasks include classifying image rotations [7], colorizing
images [23] solving Jigsaw puzzles [15] to learn transferable representations for
high-level tasks such as object detection and semantic segmentation. Until so
far, applications have been limited to the Computer Vision domain.

In the same spirit of learning generalizable representations, we now introduce
Multi-task learning. Multi-task learning is an important paradigm in machine
learning which builds upon the idea of sharing knowledge between different tasks
[1]. A set of tasks is learned in parallel, aiming to improve performance over
each task compared with learning one of these tasks in isolation. A multi-task
learning problem can also be formulated with respect to main and auxiliary tasks.
Auxiliary tasks are motivated by the intuition that for most problem settings,
performance over one particular task is of primary importance. However, in order
to still reap the benefits of multi-task learning, related tasks could be modeled
as auxiliary tasks [16]. These exist solely for the purpose of learning an enriched
representation that could increase prediction accuracy over the main tasks.

In our work, we bring together ideas from these high-impact research ideas
of self-supervised learning and multi-task learning to propose an auxiliary fore-
casting task that is inherent in labeled and unlabeled time series data both. This
auxiliary task stands to provide a strong surrogate supervision signal for feature
learning which when learned in parallel with the main task of classification of
time series boosts the performance of the classifier especially in semi-supervised
setting. More specifically, we first define a sliding window function parametrized
by hyper-parameters of stride and horizon to be forecasted. Next, we augment
the training set with generated samples for the forecasting task by providing
labeled and unlabeled samples as input to this function. The ConvNet model
is trained jointly to classify the labeled samples and forecast future series val-
ues. This exploitation of the unlabeled samples leads to learning representations
that help boost the classification accuracy. The intuition is that these unlabeled
samples come from the same distribution and if the model learns the complex
task of forecasting series values accurately, then the same latent representations
could be leveraged for classification. In our experiments we show that is indeed
the case and our proposed method excels in semi-supervised setting where only
a few labeled instances might be available for the model to learn from.

To recap, our contributions are:

e A novel self-supervised task that is intuitive, requires close to no changes
in the base network structure and provides a strong surrogate supervisory
signal for feature learning in the realm of time series classification.
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e A multi-task network which enables the forecasting and classification task to
share latent representations and learns high-order interactions automatically.

e Extensive experimental evaluation of our self-supervised method in the do-
main of semi-supervised learning for time series classification and show that
it outperforms state-of-the-art baselines.

2 Related Work

The problem of learning with both labeled and unlabeled data is of central im-
portance in machine learning [25]. We specifically review works that have focused
on time series classification. We note the seminal work in the field from Wei et
al. [21]. They proposed a self-training approach based on a nearest neighbor clas-
sifier. The work from [2] later improved the method significantly by proposing
a new meta-feature based distance. In [14] a clustering approach was proposed
combined with self-training. Another SSL algorithm in [12] also is in essence a
clustering based method. The authors of [22] proposed a graph theoretic SSL
algorithm that constructs graphs relating all samples based on different dis-
tance functions and consequently propagates labels. The current state-of-the-art
method in the field [17] is based on shapelet learning [8] on both labeled and
unlabeled time series data.

On the other hand, we note recent works [4,15,23,7,5] which showed that
strong supervision could be leveraged by describing a task that is inherent in
the data itself (requires no manual annotation). We consider the pioneering work
by [4] which leveraged spatial context in an image for self-supervised learning
by predicting relative location of one sampled patch to another. Similar self-
supervised tasks were image colorization [23], solving jigsaw puzzles [15] and
classifying image rotations [7]. More closely related to our work is a multi-task
self-supervised network [5]. The work firstly tries to compare how the repre-
sentations learned from recent proposed self-supervised approaches like above
compare with each other, and then shows that combining these tasks even in
a bare-bones multi-task network without catering for any controlled parameter
sharing lifted the accuracy compared with the single-task networks compared
before. Moreover, we also note the works that cater for temporal structure. Such
temporal structure is inherent in video data, work in [13] proposed a sequen-
tial verification task to determine whether a sequence of frames was in correct
order. It was shown that with this simple but intuitive task, the ConvNet cap-
tures temporally varying information such as human poses and ultimately lifted
the accuracy on benchmark action recognition datasets. Another closely related
example is [20] where the task was to recognize whether the video is playing
forwards or backwards.

With motivations behind our method set from the literature review, we
now draw the following insights: firstly there exist semi-supervised learning ap-
proaches similar to ours that learn from unlabeled data, most notably current
state-of-the-art shapelet learning approach [17] if we consider shapelets to be
similar to convolutional filters. However, with our work we exploit deep learning
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based methods which solve an auxiliary self-supervised task of forecasting which
forces the network to learn filters to solve this particular complex task. Secondly,
there have been a plethora of works that proposed novel self-supervised tasks,
however to the best of our knowledge, there are no examples for the time series
domain and neither that cast a self-supervised task as an auxiliary task.

3 Method

Our aim is to learn a ConvNet model that can estimate a forecasting function
f(.) and a classification function g(.) jointly. To put it in concrete terms, we have
a set of univariate time series samples X = {X1, Xo, ..., X, } with their respective
labels Y = {Y7, Y3, ..., Y, }. We randomly split X to artificially construct XU =
XV, XY, ...,X,g} a set of unlabeled samples, and a labeled set comprising of
XL ={xt XL .. XL} and YE = {VL, Ve, .. VL) Note that k + 1 = n and
total series length is 7. Furthermore, we define a sliding window function w(.)
which is parametrized by a stride s and horizon h. This function takes as input

time series from X, and segments each in forecasting samples for e.g., X{} =

1 1 1 F_ g1 1 1
{xl,t:p’xl,t:erh"'7x1,t=p+h} and Yy; = {yl,t=p+h+17y1,t=p+h+27 ""yl,t=p+2h}

which denote the first sample i.e X;’s first window. The next sample is chosen
with regard to p = p + s and complete set of forecasting samples is given by
XE ={xH XE, . XE Yand Y = (V) YF .., V,E 1. Tt is worth noting that
these windows have a total length of 2h < T of which the later half consists
of targets to be forecasted. And, the total number of forecasting samples, m =
n x | (2 x h+1)/s] where s > 0. To fix ideas, our objectives are Y = f(XT)
and Y* = g(X¥). The loss function for the objective with respect to f(.):

h

Lf(XF70f) nXthZZZ y]t y_jt (1)

t

Specifically, we wish to learn the set of parameters §; that minimize the loss
with respect to predictions, YF. The model does multi-step predictions for the
horizon h and the loss stated above captures this with the outer sum.

Moreover, for the classification task, the model outputs a probability distri-
bution over all possible classes, C. In contrast to the forecasting samples, the
input corresponds to the complete length, T. We also emphasize here the dif-
ference in parameters by denoting 6. as the classification task parameters. The
loss to be minimized with respect to predicting classes C for samples X ©:

Lo(X =—ng< ) (2)

. eyz

3.1 Forecasting as a self-supervised task

The core intuition to model forecasting as an auxiliary task is to force the Con-
vNet model to learn a set of rich hidden state representations from unlabeled but



Self-Supervised Learning for Semi-Supervised Time Series Classification 5

(g(-)

Global Peoling
So ftmax

BN + RelLU
BM + RelLU
BN + RelLU

X.7Y)

U i FC
(X7, X5) Global Pooling

w(.)

Xt rhH
BN + RelU
BN + RelLU
BN + RelLU

Fig. 1: The proposed multi-task model for joint forecasting and classification of
time series. We adopt this architecture from [19] where it was shown to outper-
form variety of baselines on a majority of datasets. We reuse the same parameters
for f(.) up-to the last convolutional block, from where a dedicated linearly fully
connected layer denoted by FC' outputs for the horizon.

structured data. In the case of only few labeled instances being available as in
semi-supervised setting, a fully-supervised approach can overfit on the training
instances by learning a poor set of features which can hardly distinguish differ-
ent classes. However, since training proceeds, by using the same set of features
repeatedly the model can be more assuming of its predictions which would de-
crease the training loss in turn. In order to avoid this, a self-supervised task on
unlabeled data could be leveraged that can learn comparitively more discrimi-
native features for training and ultimately lead to a significant lift in accuracy
on unseen data.

Additionally, forecasting is well-studied and easily formulated, but at the
same time is complex enough which does not open any doors for cheating, as
there are no trivial shortcuts for the model to exploit for solving the task [7].
Moreover, the task allows us flexibility in terms of data generation. By configur-
ing the different values of the horizon and stride, h and s respectively, one could
control the number of samples needed to configure an optimal balance between
the classification and forecasting task samples.

3.2 Multi-task learning approach

Central to the theory of multi-task learning is the leveraging of hidden state
representations from multiple tasks simultaneously in order to create a more
robust model. This begs the question as to whether there exist tasks that could
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mutually benefit each other by sharing parameters between. Naturally, forecast-
ing fits well with a classification task in a multi-task model as both tasks share
the same input space. Moreover, the learned feature spaces are expected to be
correlated in turn also [1].

However, designing a multi-task learning network poses two key challenges.
Firstly, how to divide the feature space in shared and task-specific feature sets.
Secondly, how to balance the weights between the different loss functions so as to
distinguish between the main and auxiliary tasks. We rely on the hard-parameter
sharing scheme, in which the learning parameters are all shared between the tasks
up to the final fully connected layer in a layered architecture. From thereon, task-
specific final layers output predictions for each task. This is illustrated in the Fig.
1 where we indicate shared parameters between the two tasks with same colored
space. On the other hand, by adopting task specific weights we aim to cast the
forecasting as an auxiliary task. We formulate the multi-task learning approach
as an optimization process over the weighted sum of the two loss functions.

LMTL(XF70f7XL796) :LC(XL796)+)‘Lf(XF70f) (3)

A is a hyper-parameter that controls parameter updates of the network relative
to forecasting loss. It is thus crucial to tune for A\ as too high of a value could
bias the network weights for the forecasting task. On the other hand, if it is set
too low, then the network would not learn for the forecasting task at all [1, 10].

So far we have not drawn a link between the two feature sets of the tasks.
In order to do so, consider that in a multi-task setting, the model is able to
accurately forecast an unlabeled sample. The intuition is, if this unlabeled sample
belongs to the same class as the very labeled sample the model is now trying to
classify, and hence both are similar, then the latent features that were activated
for the unlabeled sample could be leveraged to classify. Additionally, since the
model is trained end-to-end, we also hypothesize that the model automatically
learns to share latent representations between tasks and their corresponding
high-order interactions based on this latent space.

4 Experiments

We compare our proposed multi-task model to multiple baselines on 13 real-
world public time series datasets [3]. Since the data generating processes are
completely different!, the proposed method’s performance can be judged without
bias to similar data generating processes. Previously proposed methods were
compared on the same in [17]. A summary of the datasets is given in Table.
1. All experiments were run with PyTorch and code? is published online to
encourage reproducibility.

1 with exception to Lightning datasets
2 https://github.com/super-shayan /semi-super-ts-clf
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Table 1: Summary statistics of 13 real-world datasets from [17, 3].
Coffee CBF ECG Face- OSULf. Italy- Light. Light. Gun- Trace Word- Olive- Star-

Four Power 2 7 Point Syn  Oil  Light
# 56 930 200 112 442 1096 121 143 200 200 905 60 9236
C 2 3 2 4 6 2 2 7 2 4 25 4 3

T 286 128 96 350 427 24 637 319 150 275 270 570 1024

4.1 Baselines

Wei’s method[21] is based on self-training through which the classifier itera-
tively augments the labeled set by adding a sample from the unlabeled set. The
choice as to which sample to add is based on the (nearest neighbour) classifier’s
prediction of which sample was the closest to any of its labeled counterpart in
euclidean distance. The newly added sample is then given the same class as its
closest neighbour.

DTW-D]2] is a meta-feature based distance. This distance was defined as the
ratio of DTW to the euclidean distance. The intuition is to exploit the difference
between the two distance’s performance mainly the benefit of choosing DTW
over the euclidean distance. Self-training is then carried out based on this dis-
tance.

SUCCESS[12] does constrained hierarchical clustering of the complete set of
training samples, irrespective of labels. The distance metric utilized is DTW
and all unlabeled samples are given the top-level seed’s label.

Xu’s method[22] is a graph theoretic SSL algorithm that constructs graphs re-
lating all samples based on different distance functions such as DTW or Wavelet
Transform. A probabilistic method optimally combines these various graphs af-
ter which a well studied harmonic Gaussian field based method [24] is adopted
for label propagation.

Bag-of-words[18] leverages a sliding window procedure to generate local seg-
ments from time series data. These local segments are used to create histograms
to train an SVM model for classification. It is worth noting that this method
differs from above as it uses only labeled samples.

SSSL[17] is the current state-of-the-art method in the field. It uses shapelets
to classify unlabeled samples thereby producing pseudo-labels. A coordinate de-
scent solver wraps the optimization process by iteratively solving for the classi-
fication of labeled samples, pseudo-labels and shapelets respectively.

Base[19] is a single-task variant of our proposed method that is only trained on
the labeled samples to do classification.
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IT-Model[11] is well-known semi-supervised learning method for image classifica-
tion task. The basic idea is rooted in incorporating stronger regularization via
ensembling. The method relies on dropout and asks the network being trained
to output consistent labels for the same input. The input albeit goes through
different dropout conditions leading to stochastic outputs. This makes it a well-
defined task to exploit especially for unlabeled data. As the training proceeds, it
is expected for the network’s self-ensembled predictions to converge to the same
labels for both labeled and unlabeled data. We sandwiched dropout layers after
the batch-normalization layers and trained with dropout values of 20% and 40%.

Transfer Learning is common in the regime of self-supervised learning based
methods [4, 7]. Following these works, we train a non-linear classifier on top of
each of a network’s layers trained particularly for forecasting the datasets under
consideration. The forecasting network in question is composed of stacking 6
convolutional layers in successive order with filter numbers 8, 16, 32, 64, 128,
256 respectively. Moreover, we sandwich maxpooling layers between halving the
input in temporal dimension after each convolutional layer. Next, flattening and
training 2 non-linear fully connected layers with dimensions 200 and 100. The
very final layer’s dimensionality corresponds to the horizon. This network is the
result of an extensive grid search over multiple forecasting tasks from concurrent
work. As we motivated, this network is geared towards forecasting in sharp
contrast to the network in Fig. 1 adopted for the classification task. We trained
this network with a grid search in s x h where, s € {0.05,0.1,0.2} and h €
{0.1,0.2} 3, and used the configuration resulting with the least loss in Eq. 1.
This baseline serves to evaluate the self-supervised learned features from the
forecasting task, by measuring classification accuracy that they achieve when we
train a classifier on top of them without any fine-tuning [7]. This classifier has
two non-linear layers corresponding to dimensions of 200 and 100 respectively.
We hypothesize that if the features do correlate between the classification and
forecasting task, then this non-linear classifier is expected to perform well.

5 Results

We begin this section by shedding light on the evaluation protocol. We randomly
split each dataset into train and test splits with 80% and 20% of the samples.
Secondly, we split the train split further into labeled and unlabeled sets by
randomly discarding 90% of the labels. This evaluation protocol is kept in line
with the previous published methods, so as to report a direct fair comparison.
The metric of evaluation is classification accuracy throughout the experiments.
Given that the initial splits can bias the maximum achievable accuracy, similar
to the works before ours, we report the maximum achieved accuracy on the
test split by running the experiments 10 times with different hyper-parameters
altogether.

3 We overload the notation, and use s and h as percentages of the series length T
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Table. 2 shows the comparison of accuracies for the proposed method and the
baselines. The results are also stated for the best performing transfer learning
scheme and the II-model. A number of interesting observations can be drawn
from these results. Firstly, we observe that our proposed method is able to
outperform all other methods by a wide margin across almost all benchmark
datasets considered. This is only made possible because of the exploitation of
the unlabeled data better than other methods. Given that we consider here only
10% labeled samples, the difference between the performance of the methods
boils down to how these cater for the unlabeled samples. By leveraging the
forecasting task, the model is able to pick up useful representations that directly
effect the final accuracy.

We observe that the proposed model fails to correctly model the underlying
distribution of the WordSynonyms dataset. Firstly, we observe that in contrast
to other datasets, the number of classes is the highest and hence we hypothesize
that due to intra-class variances the model simply needs more labeled samples to
model the underlying distribution. Moreover, we plot samples from the dataset
together with our forecasts for last window of each of these samples in Fig. 2.
Our second intuition is that given the dataset is based on handwriting, it can be
a difficult task to forecast it correctly. The mean squared error that we achieve
also hints in this direction, though exceptionally for these handwriting samples
it does not convey explicit meaning.

Perhaps surprisingly, the Base method, is able to come at a close second.
With exception to WordSynonyms and the Lightning7 datasets, it is able to
beat the current state-of-the-art by a considerable margin. We posit that this
relates to the powerful non-linear modeling of the ConvNet in contrast to other
algorithms. Also worth considering is that this architecture is the result of an
extensive search over a wide variety of benchmark datasets as evident in [19].
Hence because of these reasons, even with few labeled samples available it is able
to lead over rest of the baselines.

Additionally, we notice that the II-model does not lead to fruitful results.
Although the underlying architecture is the same as in Base model, we observed
that the model was unfortunately not able to properly cater for the consistency
regularization term for the unlabeled data. As a result, the multi-task loss it
optimizes for diverges resulting in poor performance over the test splits not
outperforming the base model. Despite initially considering to orthogonally in-
tegrate the II-model with our proposed multi-task model, we refrained because
of poor performance for this standard configuration.

We also summarize the results for the transfer learning based approach which
serves to quantify the usefulness of features learned purely for the self-supervised
forecasting task. We can see that without any fine-tuning, by learning a non-
linear classifier on top of the layers provides useful results. Although, results
reported here are generalized over the layers, by reporting only the maximum
possible accuracy regardless of the layer, it still serves as a validation of our
initial hypothesis that feature spaces correlate heavily among the forecasting
and classification tasks.
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To point out the effect of hyper-parameters on our proposed multi-task
model, we state the results with respect to different stride and horizon values in
Table. 3. It can be noted that for a subset of datasets the search was fruitful.
Indeed, we find out that performance varies considerably with respect to the
size of forecasting samples generated with particular stride and horizon, as it
has direct effect on the learned representations.

We also wish to highlight further observations here though briefly. We ob-
served that the final forecasting loss (Eq. 1) was consistent across s and h con-
figurations albeit least at the extremities of stride and horizon values i.e those
that lead to maximum possible forecasting samples. Also, we observed that net-
work was robust to the different values of A altogether. More importantly, as we
posited earlier, the network performance was indeed biased to labeled samples
resulted from random splits.

Table 2: The proposed method vs. baselines.
Results verbatim from table in [17] ‘ Proposed

Wei. DTW-D SUC. Xu. BoW SSSL|Basell Tr. MTL

Coffee 0.571 0.601 0.632 0.588 0.620 0.792{1.0 1.0 1.0 1.0
CBF 0.995 0.833 0.997 0.921 0.873 1.0 |1.0 1.0 0.784 1.0
ECG 0.763 0.953 0.775 0.819 0.955 0.793/0.9 0.8750.9 0.975
FaceFour |0.818 0.782 0.800 0.833 0.744 0.851]0.913 0.913 0.739 0.957
OSUL{. 0.468 0.701  0.534 0.642 0.685 0.835]0.977 0.977 0.460 0.978

ItalyPower|0.934 0.664 0.924 0.772 0.813  0.941 |0.986 0.986 0.959 0.991
Light.2 0.658 0.641 0.683 0.698 0.721 0.813]0.92 0.84 0.88 0.92
Light.7 0.464 0.503 0.471 0.511 0.677 0.796 |0.758 0.689 0.482 0.828
GunPoint [0.925 0.711 0.955 0.729 0.925 0.824|1.0 1.0 0.8251.0
Trace 0.950 0.801 1.0 0.788 1.0 1.0 1.0 1.0 1.0 1.0
WordSyn. [0.590 0.863 0.618 0.639 0.795 0.875|0.497 0.491 0.342 0.519
OliveOil ]0.633 0.732 0.617 0.639 0.766 0.776|0.916 1.0 0.833 1.0
StarLight [0.860 0.743 0.800 0.755 0.851  0.8720.982 0.983 1.0 0.991

Datasets ‘

5.1 Conclusion

We proposed a novel semi-supervised learning algorithm for time series classifi-
cation based on a self-supervised feature learning task. We trained a ConvNet
model that jointly classified and did auxiliary forecasting by sharing latent rep-
resentations and learning high-order interactions end-to-end. As a result of ex-
ploiting the unlabeled data more effectively, our method was able to outperform
state-of-the-art baselines. Future work includes extending our method to mul-
tivariate time series and researching additional ways to incorporate consistency
regularization, which might yield better performance.
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Fig.2: We plot here the qualitative results for the forecasting task. We observe
that the network is able to model the underlying distribution, albeit not perfectly.

Table 3: This table reports maximum accuracy for our proposed approach when
marginalizing out horizon and stride from all runs and possible A values.

Datasets 1% 0.05 0.1 0.2

h: 0.1 02 01 02 01 02
Coffee 1.0 1.0 1.0 1.0 10 1.0
CBF 1.0 1.0 10 10 10 1.0
ECG 0.950 0.9 0925 09 0.975 0.875
FaceFr. 0.913 0913 0.870 0.957 0.957 0.913
OSULS. 0.966  0.966 0.978 0.955 0.978 0.955
ItalyPower 0.986 0.991 0.986 0.986 0.982 0.991
Light.2 0.840 0.920 0.840 0.880 0.880 0.880
Light.7 0.828 0.828 0.759 0.759 0.793 0.759
GunPoint 1.0 1.0 1.0 1.0 10 1.0
Trace 1.0 1.0 1.0 10 10 1.0
WordSyn. 0497 0.519 0.508 0.497 0.503 0.508
OliveOil 1.0 1.0 10 10 10 1.0
StarLight 0.983  0.983 0.99 097 0.983 0.991
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